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Abstract: The specific duality and asymptotic stability of the positive linear electrical 

circuits are addressed. The specific duality of positive linear electrical circuits composed 

of resistances, inductances, capacitances and source voltages is established. 1) The linear 

electrical circuits are positive if and only if the common branches between meshes with 

resistances and inductances and meshes with resistances and capacitances contain only 

source voltages; 2) In linear electrical circuits the interchanges of the inductances by the 

capacitances and the capacitances by inductances do not change the asymptotic stability 

of the electrical circuits. The asymptotic stability of the positive and nonpositive elec-

trical circuits is analyzed. 
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1. Introduction 
 

A dynamical system is called positive if its trajectory starting from any nonnegative initial 

state remains forever in the positive orthant for all nonnegative inputs. An overview of state of 

the art in positive theory is given in the monographs [3, 10]. Variety of models having positive 

behavior can be found in engineering, especially in electrical circuits [18], economics, social 

sciences, biology and medicine, etc. [3, 10]. 

The positive electrical circuits have been analyzed in [1, 5­9, 11, 18]. The constructability 

and observability of standard and positive electrical circuits have been addressed in [6], the 

decoupling zeros in [7] and minimal-phase positive electrical circuits in [8]. A new class of 

normal positive linear electrical circuits has been introduced in [9]. Positive fractional linear 

electrical circuits have been investigated in [12], positive linear systems with different frac-

tional orders in [13, 14] and positive unstable electrical circuits in [15]. Zeroing of state va-

riables in descriptor electrical circuits has been addressed in [16] and the realization problem 

of positive linear systems in [2]. 
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In this paper the specific duality and asymptotic stability of the positive linear electrical 

circuits will be analyzed. 

The paper is organized as follows. In Section 2 the basic definitions and theorems concern-

ing the positivity and asymptotic stability are recalled. The specific duality of the positive 

linear electrical circuits is analyzed in Section 3 and their asymptotic stability in Section 4. 

Concluding remarks are given in Section 5. 

The following notation will be used:   is the set of real numbers, mn  is the set of 

mn  real matrices, mn
  is the set of mn  real matrices with nonnegative entries and 

,1  nn
 nM  is the set of nn  Metzler matrices (real matrices with nonnegative off-

diagonal entries), nI  – the nn  identity matrix, TA  denotes the transpose of the matrix A. 

 

 

2. Positive electrical circuits and their stability 
 

Consider the linear continuous-time electrical circuit described by the state equations: 

  )()()( tButAxtx  , (1a) 

  )()()( tDutCxty  , (1b) 

where ,)( ntx   ,)( mtu   pty )(  are the state, input and output vectors and ,nnA   

,mnB   ,npC   mpD  . 

Definition 1. [3, 11, 18] The electrical circuit (1) is called (internally) positive if 
ntx )(  and ptyy  )( , ],0[ t  for any nxx  )0(0  and every mtu )( , 

],0[ t . 

Theorem 1. [3, 11, 18] The electrical circuit (1) is positive if and only if 

  nMA ,  
mnB 

 ,  
npC 

 ,  
mpD 

 . (2) 

It is well-known [3, 11, 18] that any linear electrical circuit composed of resistors, coils, 

capacitors and voltage (current) sources can be described by the state Eq. (1). Usually as the 

state variables )(1 tx ,…, )(txn  (the components of the state vector )(tx ) the currents in the 

coils and voltages on the capacitors are chosen. 

Theorem 2. The linear electrical circuit composed of resistors, coils and voltage sources is 

positive for any values of the resistances, inductances and source voltages if the number of 

coils is less or equal to the number of its linearly independent meshes and the direction of the 

mesh currents are consistent with the directions of the mesh source voltages. 

Proof. Proof is given in [18]. 

Theorem 3. The R, L, C, e electrical circuits are not positive for any values of their resis-

tances, inductances, capacitances and source voltages if at least one of their branches contains 

a coil and capacitor. 

Proof. Proof is given in [18]. 

Definition 2. [18] The positive electrical circuit (1) is called asymptotically stable if 
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  0)(lim 


tx
t

 for all nx 0 . (3) 

Theorem 4. [18] The positive electrical circuit (1) is asymptotically stable if and only if 

  0Re k  for nk ,...,1 , (4) 

where k  is the eigenvalue of the matrix nMA  and 

  ))...()((]det[ 21 nn AI  . (5) 

Theorem 5. [3, 15] A symmetric matrix nnA   ( AAT  ) has only real eigenvalues ,k  

nk ,...,1 . 

Theorem 6. If k1λ , nk ,...,1  are the eigenvalues of the matrix 
nnA 1  and k2λ , 

nk ,...,1  are the eigenvalues of the matrix 
nnA 2  then kkk 21 λλλ  , nk ,...,1  are the 

eigenvalues of the matrix 21AAA  . 

Proof. Proof follows from the Lagrange-Sylvester formula for the product of two square 

matrices [4, 16]. 

 

 

3. Specific duality 
 

We shall show the essence of the problem with simple examples of electrical circuits. 

Example 1. Consider the electrical circuit shown in Fig. 1 with given resistances 1R , ,2R  

,3R  inductances 1L , 2L  and source voltages 1e , 2e . 

 

 

Fig. 1. Electrical circuit with inductances 

 

Using Kirchhoff’s laws we may write the equations: 

  )(
d

d
213

1
1111 iiR

t

i
LiRe  , (6a) 

  )(
d

d
123

2
2222 iiR

t

i
LiRe  , (6b) 

which can be written in the form 
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





































2

1
1

2

1
1

2

1

d

d

e

e
B

i

i
A

i

i

t
, (7a) 

where 

  



























2

32

2

3

1

3

1

31

1

L

RR

L

R

L

R

L

RR

A ,  





















2

1
1 1

0

0
1

L

L
B . (7b) 

The electrical circuit is positive since the matrix 1A  is a Metzler matrix and the matrix 1B  

has nonnegative entries. 

Now let us consider the electrical circuit shown in Fig. 2 with given resistances 1R , ,2R  

,3R  capacitances 1C , 2C  and source voltages 1e , 2e . 

 

 

Fig. 2. Electrical circuit with capacitances 

 

Note that the electrical circuit shown in Fig. 2 has been obtained from the electrical circuit 

shown in Fig. 1 by interchange of inductances 1L , 2L  by capacitances 1C , 2C . It will be 

shown that the electrical circuit shown in Fig. 2 is not positive for all values of the resistances, 

capacitances and source voltages. 

Using the Kirchhoff’s laws for the electrical circuit shown in Fig. 2 we obtain the equa-

tions: 

  1
2

23
1

1311
d

d

d

d
)( u

t

u
CR

t

u
CRRe  , (8a) 

  2
2

232
1

132
d

d
)(

d

d
u

t

u
CRR

t

u
CRe  , (8b) 

which can be written in the form 

  .
10

01

10

01

d

d

)(

)(

2

1

2

1

2
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 (9) 
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Premultiplying (9) by the matrix    

 






















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





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
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








232321
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3
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3
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])([])([

])([])([

)(

)(

CRRRRR

RR

CRRRRR

R

CRRRRR

R

CRRRRR

RR

CRRCR

CRCRR
 (10) 

we obtain 
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u

t
, (11a) 

where 

  

.

])([])([

])([])([

,

])([])([

])([])([
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R

CRRRRR

R
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RR

B

CRRRRR
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CRRRRR

R

CRRRRR

R

CRRRRR

RR

A

 (11b) 

Note that the matrix 2A  is not a Metzler matrix. Therefore, the electrical circuit shown in 

Fig. 2 is not a positive one and we have the following important conclusion: 

Conclusion 1. By interchanging the inductances 1L , 2L  by the capacitances 1C , 2C  from 

the positive electrical circuit shown in Fig. 1 we obtain the electrical circuit shown in Fig. 2 

which is not positive. 

Example 2. Consider the electrical circuit shown in Fig. 3 with given resistances 1R , 2R , 

3R , inductances 1L , 2L  and source voltage e . 

 

 

Fig. 3. Electrical circuit with inductances 

 

Using Kirchhoff’s laws we obtain the equations: 

  
t

i
LiRiRRe

d

d
)( 1

123131  , (12a) 
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t

i
LiRRiRe
d

d
)(

2
223213  , (12b) 

which can be written in the form 

  eB
i

i
A

i

i

t
3

2

1
3

2

1

d

d










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



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



, (13a) 

where 
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


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

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









2
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2

3

1

3

1
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3

L
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L

R

L

R

L
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A ,  





















2

1
3 1

1

L

L
B . (13b) 

The electrical circuit shown in Fig. 3 is not positive since matrix 3A  is not a Metzler 

matrix. 

Now let us consider the electrical circuit shown in Fig. 4 with given resistances 1R , ,2R  

,3R  capacitances 1C , 2C  and source voltage e . 

 

 

Fig. 4. Electrical circuit with capacitances 

 

The electrical circuit shown in Fig. 4 has been obtained from the electrical circuit shown in 

Fig. 3 by interchanging of inductances 1L , 2L  by capacitances 1C , 2C . 

It will be shown that the electrical circuit shown in Fig. 4 is positive for all values of the 

resistances, capacitances and source voltage e. 

Using Kirchhoff’s laws for the electrical circuit shown in Fig. 4 we obtain: 

  1
2
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1
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d

d

d

d
)( u

t

u
CR

t

u
CRRe  , (14a) 

  2
2
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1
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d
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t
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which can be written in the form 
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where: 
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Note that matrix 4A  is a Metzler matrix and 
2

4 B . Therefore, the electrical circuit 

shown in Fig. 4 is positive and we have the following conclusion: 

Conclusion 2. By interchanging inductances 1L , 2L  by capacitances 1C , 2C  from the 

nonpositive electrical circuit shown in Fig. 3 we obtain the positive electrical circuit shown in 

Fig. 4. 

Example 3. Consider the electrical circuit shown in Fig. 5 with given resistances ,kR  

4,...,1k , inductances 1L , 2L , capacitance C  and source voltages ,je  .3,2,1j  

 

 

Fig. 5. Electrical circuit of Example 3 

 

Using Kirchhoff’s laws we can write the equations: 

  

,
d

d

,
d

d
)(

,
d

d
)(

432

1
2132322

1
12313131

t

u
CRuee

t

i
LiRiRRe

t

i
LiRiRRee







 (16) 

which can be written in the form 
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where: 
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The electrical circuit is positive since 35 MA   and 
33

5

B  for all values of the resis-

tances, inductances and capacitance. 

Now let us consider the electrical circuit show in Fig. 6 with given resistances ,kR  

4,...,1k , inductance ,L  capacitances 1C , 2C  and source voltages je , .3,2,1j  

 

 

Fig. 6. Electrical circuit of Example 3 

 

Using Kirchhoff’s laws we obtain the equations: 
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which can be written in the form 
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Premultiplying (19) by the inverse matrix 
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we obtain 
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where 
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 (21b) 

The matrix 6A  is not a Metzler matrix since 
33

6

 A . Therefore, the electrical circuit 

shown in Fig. 6 is not positive and we have the following conclusion: 

Conclusion 3. By interchanging inductances 1L , 2L  by capacitances 1C , 2C  and capaci-

tance C by inductance Lwe obtain from the positive electrical circuit shown in Fig. 5 the 

nonpositive electrical circuit shown in Fig. 6.      

From analysis of the procedures of obtaining matrices 2A  and 6A  we have the following 

lemma: 
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Lemma 1. To obtain matrices 2A  and 6A  of the linear electrical circuits with capacitors 

we have to premultiply Eqs. (9) and (19) by suitable inverse matrices with nonnegative 

entries. As the result we obtain the matrices with nonpositive entries 2A  and 6A . 

If we add additional resistance 5R  in the branch with 3e  of the positive electrical circuit 

shown in Fig. 5 then we obtain the electrical circuit shown in Fig. 7. 

 

 

Fig. 7. Electrical circuit with additional resistance 

 

We shall show that the electrical circuit shown in Fig. 7 is positive if and only if 05 R . 

Using Kirchhoff’s laws for the electrical circuit shown in Fig. 7 we obtain: 

  

,
d

d
)(

,
d

d
)(

,
d

d

d

d
)(

155432

1
2132322

1
1523153131

iR
t

u
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i
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i
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t

u
CRiRiRRRee


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 (22) 

which can be written in the form 
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, (23) 

where: 53111 RRRR  , 3222 RRR  , 5433 RRR  . 

From (23) we have 
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, (24a) 

where: 



Vol.  66 (2017)                      Specific duality and stability of positive electrical circuits 673 

 

.

11
0

0
1

0

1
11

110

010

101

00

00

0

,

1
0

0

1

10

0

0

00

00

0

3333

2

33

5

1331

5

1
1

33

2

51

7

3333

5

2

22

2

3

331

5

1

3
11

33

2
5

1

5

223

311

1

33

2

51

7







































































































































































CRCR

L

R

R

LRL

R

L

CR

L

CRL

B

CRCR

R

L

R

L

R

RL

R

L

R
R

R

R

L

R

RR

RR

CR

L

CRL

A

 (24b) 

From (24b) it follows that the electrical circuit is positive if and only if 05 R . 

In a similar way we can show that the electrical circuit shown in Fig. 7 is positive if and 

only if the common branch between the meshes with current 2i  and Cdu/dt contains only 

source voltage 2e . 

In a general case we have the following theorems: 

Theorem 7. Let the positive linear electrical circuit composed of resistances, inductances, 

capacitances and source voltages be positive. Then the corresponding linear electrical circuit 

obtained from the positive electrical circuit by interchanging the inductances by the capaci-

tances and the capacitances by the inductances (the remaining elements of the electrical circuit 

are the same) is not positive if and only if the first electrical circuit is positive. 

Proof. Proof follows immediately from Lemma 1. 

Theorem 8. Electrical circuits are positive if and only if the common branches between 

meshes with resistances and inductances and meshes with resistances and capacitances contain 

only source voltages. 

Proof. Proof is similar to the one presented for the electrical circuit shown in Fig. 7. 

 

 

4. Stability of electrical circuits 
 

In this section the asymptotic stability of the positive and nonpositive electrical circuits 

will be addressed. 

Theorem 9. Let ,λk  nk ,...,1  be real eigenvalues of symmetric matrix nnA  . Then 

the matrix 

  
nnADA  ,  ]diag[ 1 nddD  ,  0kd , nk ,...,1  (25) 

has also only real eigenvalues 
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  kkk d   for nk ,...,1 . (26) 

Proof. By Theorem 5 the symmetric matrix A  has only real eigenvalues 
kλ , nk ,...,1 . 

Note that 

  ]det[det]}[det{]det[ 11 ADDADDADIn    (27) 

and 

  0]det[  ADIn  if and only if 0]det[]det[ 1  AIAD n . (28) 

 The equality (28) is equivalent to (26)  

 From (26) for 0kd , nk ,...,1  we have the following corollary:   

Corollary 4. If 0kd , nk ,...,1  then matrix A is Hurwitz ( 0Re k , nk ,...,1 ) if 

and only if matrix A  is Hurwitz. 

Example 4. (Continuation of Example 1) Consider the positive electrical circuit shown in 

Fig. 1 for 221  RR , 13 R  and 221  LL . 

In this case 
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)(

323
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  ).4)(2(86
31

13
]det[ 2

12 



 AI  (30) 

The eigenvalues of the matrix (29) are: 21  , 42  . 

Using (7b) we obtain: 
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  ).2)(1(23
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3

]det[ 2
12 




 AI  (32) 

The eigenvalues of the matrix (31) are: 11  , 22  . 

In this case 



Vol.  66 (2017)                      Specific duality and stability of positive electrical circuits 675 
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d
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and from (26) we have 

  1
1

1
1 




L
,  2

2

2
2 


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L
.  

The positive electrical circuit is asymptotically stable. 

Now let us consider the nonpositive electrical circuit shown in Fig. 2 with ,221  RR  

13 R  and 221 CC . 

Using (11b) we obtain: 
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Therefore, the nonpositive electrical circuit is also asymptotically stable and the 

interchange of inductances 1L , 2L  by capacitances 1C , 2C  does not change the asymptotic 

stability of the electrical circuit. 

Using (31) and (34) we obtain: 
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and after substitution 221  RR , 13 R , 221  LL  and 221 CC  
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2112 AAA . (37) 

By Theorem 6 the eigenvalues 4/1
~

21111   , 4/1
~

22212    of the matrix (4.13) 

are the product of the eigenvalues 111  , 212   of the matrix (31) and the eigenvalues 

4/121  , 8/122   of the matrix (34). 
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Therefore, we have the following important lemma. 

Lemma 2. The real eigenvalues of matrices 1A  and 2A  are negative and matrices 1A  and 

2A  are Hurwitz since the eigenvalues of matrix 2112 AAA   are positive. 

Example 5. (Continuation of Example 3) Consider the positive electrical circuit shown in 

Fig. 5 for 14321  RRRR , 221  LL  and 2C . 

Using (17b) we obtain: 
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The eigenvalues of the matrix (38) are: 1λλ 21  , 3λ3  . 

In this case matrix 5A  has the form 
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The eigenvalues of the matrix (40) are: 2/1λλ 21  , 2/3λ 3  . 

In this case 

  ]222diag[]diag[]diag[ 421321  CRLLdddD  (42) 

and from (26) we have 
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The positive electrical circuit is asymptotically stable. 

Now let us consider the nonpositive electrical circuit shown in Fig. 6 with 

14321  RRRR , 221  CC  and 2L . 

Using (21b) we obtain: 
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Therefore, the nonpositive electrical circuit is also asymptotically stable and the inter-

change of inductances 1L , 2L  by capacitances 1C , 2C  and capacitance C  by inductance L  

does not change the asymptotic stability of the electrical circuit. 

Using (40) and (43) we obtain: 
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 (45) 

and after substitution 14321  RRRR , 221  LLL  and 221  CCC  
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By Theorem 6 the eigenvalues 4/1λλλ
~

61511  , 4/1λλλ
~

62522  , 4/1λλλ
~

63533   

of the matrix (46) are the product of the eigenvalues of the matrices (40) and (43). Therefore, 

we have the following important lemma: 

Lemma 3. The real eigenvalues of matrices 5A  and 6A  are negative and matrices 5A  and 

6A  are Hurwitz since the eigenvalues of matrix 56A  are positive. 

In a general case we have the following theorem: 

Theorem 10. In linear electrical circuits composed of the resistances, inductances and ca-

pacitances the interchanges of the inductances by capacitances and the capacitances by induc-

tances do not change the asymptotic stability of the electrical circuits. 

Proof. Proof follows immediately from the Lemmas 2 and 3. 

 

 

5. Concluding remarks 
 

The specific duality and asymptotic stability of the positive linear electrical circuits have 

been addressed. It has been shown: 

  1) The linear electrical circuits composed of resistances, inductances, capacitances and source 

voltages obtained by interchanging the inductances by capacitances and the capacitances by 

inductances is positive if and only if the first electrical circuit is not positive (Theorem 6). 

  2) The linear electrical circuits are positive if and only if the common branches between 

meshes with resistances and inductances and meshes with resistances and capacitances con-

tain only source voltages (Theorem 7). 

  3) In linear electrical circuits the interchanges of the inductances by the capacitances and the 

capacitances by inductances do not change the asymptotic stability of the electrical circuits 

(Theorem 8). 

 The theorems have been illustrated by examples of linear electrical circuits. The conside-

rations can be easily extended to positive fractional linear electrical circuits. 
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