The relationship between the observability of standard and fractional discrete-time and continuous-time linear systems are addressed. It is shown that the fractional discrete-time and continuous-time linear systems are observable if and only if the standard discrete-time and continuous-time linear systems are observable.

Key words: fractional, standard, linear, discrete-time, continuous-time, system, observability.

1. Introduction

The notion of controllability and observability of linear systems have been introduced by Kalman [14, 15]. Those notions are the basic concepts of the modern control theory [1, 6, 13, 16, 21, 24, 25]. They have been extended to positive and fractional linear and nonlinear systems [2, 4, 5, 7-11, 22, 23]. The mathematical fundamentals of fractional calculus are given in the monographs [18-20]. The positive fractional linear systems have been introduced in [8, 11].

In the paper [17] it has been shown that the fractional discrete-time and continuous-time linear systems are controllable if and only if the standard discrete-time and continuous-time systems are controllable.

In this paper it will be shown that the fractional discrete-time and continuous-time linear systems are observable if and only if the standard discrete-time and continuous-time linear systems are observable.

The paper is organized as follows. In section 2 the basic definitions and theorems concerning standard and fractional discrete-time and continuous-time linear systems are recalled. The relationship between the observability of the standard and fractional discrete-time linear systems is considered in section 3 and of continuous-time linear systems in section 4. Concluding remarks are given in section 5.
The following notation will be used: $\mathbb{R}^{n \times m}$ is the set of $n \times m$ real matrices and $\mathbb{R}^n = \mathbb{R}^{n \times 1}$, \mathbb{Z}_+ is the set of nonnegative integers, I_n is the $n \times n$ identity matrix.

2. Preliminaries

Consider the standard discrete-time linear system

$$x_{i+1} = Ax_i + Bu_i, \quad i \in \mathbb{Z}_+ = \{0, 1, \ldots\}, \quad (1a)$$
$$y_i = Cx_i, \quad (1b)$$

where $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$, $y_i \in \mathbb{R}^p$ are state, input and output vectors and $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$.

The solution to the equation $(1a)$ is given by

$$x_i = A^i x_0 + \sum_{j=0}^{i-1} A^{i-j-1} Bu_j. \quad (2)$$

Substituting (2) into (1b) we obtain

$$y_i = CA^i x_0 + \sum_{j=0}^{i-1} CA^{i-j-1} Bu_j. \quad (3)$$

Now let us consider the fractional discrete-time linear system

$$\Delta^\alpha x_{i+1} = Ax_i + Bu_i, \quad 0 < \alpha < 2, \quad (4a)$$
$$y_i = Cx_i, \quad (4b)$$

where

$$\Delta^\alpha x_i = \sum_{j=0}^{i} (-1)^j \left[\begin{array}{c} \alpha \\ j \end{array} \right] x_{i-j}, \quad (4c)$$

$$\left[\begin{array}{c} \alpha \\ j \end{array} \right] = \begin{cases} 1 & \text{for } j = 0 \\ \frac{\alpha(\alpha-1)\ldots(\alpha-j+1)}{j!} & \text{for } j = 1, 2, \ldots \end{cases} \quad (4d)$$

is the fractional α-order difference of x_i and $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$, $y_i \in \mathbb{R}^p$ are state, input and output vectors and $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$.

Substitution of (4c) into (4a) yields

$$x_{i+1} = (A + I_n \alpha) x_i + \sum_{j=2}^{i+1} c_j x_{i-j+1} + Bu_i, \quad i \in \mathbb{Z}_+, \quad (5a)$$
where
\[c_j = c_j(\alpha) = (-1)^{j+1} \begin{pmatrix} \alpha \\ j \end{pmatrix}, \quad j = 2, 3, \ldots \] (5b)

The solution to the equation (5a) has the form [11]
\[x_{i+1} = (A + I_n \alpha)x_i + \sum_{j=2}^{i+1} c_j x_{i-j+1} + Bu_i, \quad i \in \mathbb{Z}_+, \] (6a)

where
\[\Phi_{j+1} = \Phi_j(A + I_n \alpha) + \sum_{k=2}^{j+1} c_k \Phi_{j-k+1}, \quad \Phi_0 = I_n \] (6b)

and \(c_k \) is defined by (5b).

Substituting (6a) into (4b) we obtain
\[y_i = C\Phi_i x_0 + \sum_{j=0}^{i-1} C\Phi_{i-j-1} Bu_j. \] (7)

Consider the standard continuous-time linear system
\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t), \quad \text{(8a)} \\
y(t) &= Cx(t), \quad \text{(8b)}
\end{align*}
\]
where \(x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p \) are state, input and output vectors and \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n} \).

The solution to the equation (8a) has the form
\[x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \] (9)

and
\[y(t) = Ce^{At}x_0 + \int_0^t Ce^{A(t-\tau)} Bu(\tau) d\tau. \] (10)

Now let us consider the fractional continuous-time linear system
\[
\begin{align*}
\frac{d^\alpha x(t)}{dt^\alpha} &= Ax(t) + Bu(t), \quad 0 < \alpha < 2 \quad \text{(11a)} \\
y(t) &= Cx(t), \quad \text{(11b)}
\end{align*}
\]
where
\[
\frac{d^\alpha x(t)}{dt^\alpha} = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{x^{(n)}(\tau)}{(t-\tau)^{\alpha+1-n}} d\tau, \quad x^{(n)}(\tau) = \frac{d^n x(\tau)}{d\tau^n} \quad \text{(12)}
\]
is the Caputo fractional derivative of order $n - 1 < \alpha < n$ ($n \in \mathbb{N}$) of $x(t)$, $\Gamma(x)$ is the Euler gamma function, $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$, $y_i \in \mathbb{R}^p$ are state, input and output vectors and $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$.

The solution of the equation (11a) is given by [11]

$$x(t) = \Phi_0(t)x_0 + \int_0^t \Phi(t - \tau)Bu(\tau)d\tau, \quad x_0 = x(0),$$

where

$$\Phi_0(t) = \sum_{k=0}^{\infty} \frac{A^k t^{k\alpha}}{\Gamma(k\alpha + 1)}, \quad (13b)$$

$$\Phi(t) = \sum_{k=0}^{\infty} \frac{A^k (k+1)^{\alpha-1}}{\Gamma((k+1)\alpha)} \quad (13c)$$

and

$$y(t) = C\Phi_0(t)x_0 + \int_0^t C\Phi(t - \tau)Bu(\tau)d\tau.$$ \hfill (14)

Theorem 4 (Cayley–Hamilton) Let $A \in \mathbb{R}^{n \times n}$ and

$$\det[I_n \lambda - A] = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1 \lambda + a_0.$$ \hfill (15)

Then

$$A^n + a_{n-1}A^{n-1} + \ldots + a_1 A + a_0 I_n = 0.$$ \hfill (16)

Proof Proof is given in [3, 12].

Theorem 5 (Kronecker-Capelli) The linear matrix equation

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n$$ \hfill (17)

has a solution $x \in \mathbb{R}^n$ if and only if

$$\text{rank}[A, b] = \text{rank}A.$$ \hfill (18)

Proof Proof is given in [12].

3. Observability of standard and fractional discrete-time linear systems

It is well-known [1, 2, 7] that the observability of the standard and fractional linear systems depends only of the pair (A, C) and it is independent of the matrix B.
Definition 13 The standard linear discrete-time linear system (1) is called observable in the interval \([0, q]\) if knowing the output \(y_i\) for \(i = 0, 1, \ldots, q - 1, q \leq n\), it is possible to find the unique \(x_0\) of the system.

Theorem 6 The standard linear discrete-time linear system (1) is observable if and only if

\[
\text{rank} \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix} = n. \quad (19)
\]

Proof Proof is given in [1, 6, 13].

Definition 14 The fractional discrete-time linear system (4) is called observable in the interval \([0, q]\) if knowing the output \(y_i\) for \(i = 0, 1, \ldots, q - 1, q < n\), it is possible to find the unique \(x_0\) of the system.

We shall show that the fractional discrete-time linear system (4) is observable in the interval \([0, q]\) if and only if the standard linear discrete-time system (1) is observable in the same interval.

From (7) for \(B = 0\) and (6b) for \(i = 0, 1, \ldots, q - 1\) we have

\[
y_{0q} = \begin{bmatrix}
y_0 \\
y_1 \\
\vdots \\
y_{q-1}
\end{bmatrix} = \begin{bmatrix}
C\Phi_0 \\
C\Phi_1 \\
\vdots \\
C\Phi_{q-1}
\end{bmatrix} x_0 = O_{0q}x_0, \quad (20a)
\]

where

\[
O_{0q} = \begin{bmatrix}
C \\
C(A + I_n\alpha) \\
C[(A + I_n\alpha)^2 + c_2I_n] \\
\vdots \\
C[(A + I_n\alpha)^q - 1 + \ldots + (\alpha^{q-1} + \ldots + c_{q-1})I_n]
\end{bmatrix}. \quad (20b)
\]

By Kronecker-Capelli theorem the equation (20a) has a unique solution \(x_0\) for any given \(y_{0q}\) if and only if

\[
\text{rank} O_{0q} = n. \quad (20c)
\]

Therefore, the following theorem has been proved.

Theorem 7 The fractional discrete-time linear system (4) or equivalently (5a), (4b), is observable in the interval \([0, q]\) if and only if the condition (20c) is satisfied.
It will be shown that the condition (20c) is equivalent to the condition (19). Note that

\[
O_{0q} = \begin{bmatrix}
C \\
C(A + I_n \alpha) \\
C[(A + I_n \alpha)^2 + c_2 I_n] \\
\vdots \\
C[(A + I_n \alpha)^{q-1} + \ldots + (\alpha^{q-1} + \ldots + c_{q-1})I_n]
\end{bmatrix}
\]

(21)

since

\[
(A + I_n \alpha)^k = A^k + k \alpha A^{k-1} + \ldots + \alpha^k I_n \quad \text{for} \quad k = 2, 3, \ldots, q - 1.
\]

(22)

From (21) it follows that

\[
\text{rank} \ O_{0q} = \text{rank}
\begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{q-1}
\end{bmatrix}
\]

(23)

since the matrix

\[
\begin{bmatrix}
I_n & 0 & 0 & \ldots & 0 \\
\alpha I_n & I_n & 0 & \ldots & 0 \\
(c_2 + \alpha^2)I_n & 2\alpha I_n & I_n & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(c_{q-1} + \ldots + \alpha^{q-1})I_n & \ldots & \ldots & \ldots & I_n
\end{bmatrix}
\]

(24)

is nonsingular for all values of \(\alpha \) and \(c_k, k = 1, 2, \ldots, q - 1 \). Therefore, the following theorem has been proved.

Theorem 8 The fractional discrete-time linear system (4) is observable in the interval \([0, q], q \leq n\), if and only if the standard discrete-time linear system (1) is observable in the same interval \([0, q]\).

Example 1 Consider the standard system (1) and the fractional system (4) for \(\alpha = 0.5 \)

with the same matrices

\[
A = \begin{bmatrix}
0 & 1 \\
-1 & -3
\end{bmatrix}, \quad C = [1 \ 1].
\]

(25)
Using (19) and (25) for $q = 2$ we obtain
\[
\text{rank} \begin{bmatrix} C \\ CA \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} = 2 \tag{26}
\]
and by Theorem 6 the standard system is observable in the interval $[0, 2]$.

For the fractional system with (25) using (20b) we obtain
\[
\text{rank} \begin{bmatrix} C \\ C(A + \alpha I_2) \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 1 \\ -0.5 & -1.5 \end{bmatrix} = 2. \tag{27}
\]
By Theorem 7 the fractional system with (25) is also observable in the interval $[0, 2]$.

4. Observability of standard and fractional continuous-time linear systems

Definition 15 The standard continuous-time linear system (8) is called observable in the interval $[0, t_f]$ if knowing the output $y(t)$ for $t \in [0, t_f]$ it is possible to find the unique x_0 of the system.

Theorem 9 The standard continuous-time linear system (8) is observable if and only if
\[
\text{rank} \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = n. \tag{28}
\]

Proof Proof is given in [1, 6, 13].

Definition 16 The fractional continuous-time linear system (11) is called observable in the interval $[0, t_f]$ if knowing the output $y(t)$ for $t \in [0, t_f]$ it is possible to find the unique x_0 of the system.

We shall show that the fractional continuous-time linear system (11) is observable in the interval $[0, t_f]$ if and only if the standard continuous-time linear system (8) is observable in the same interval.

Using the Cayley-Hamilton theorem (the equality (10)) it is possible to eliminate the powers $k = n, n + 1, \ldots$ of the matrix A^k in (13b) and we obtain
\[
\Phi_0(t) = \sum_{k=0}^{n-1} c_k(t)A^k. \tag{29}
\]

The coefficients c_k in (29) can be computed as follows.
To simplify the calculations it is assumed the eigenvalues λ_k of the matrix A are distinct, i.e. $\lambda_i \neq \lambda_j$ for $i \neq j$. In this case using (29) we obtain

$$
\begin{bmatrix}
\Phi_0(\lambda_1) \\
\Phi_0(\lambda_2) \\
\vdots \\
\Phi_0(\lambda_n)
\end{bmatrix}
= H
\begin{bmatrix}
c_0(t) \\
c_1(t) \\
\vdots \\
c_{n-1}(t)
\end{bmatrix},
$$

(30)

where

$$
H =
\begin{bmatrix}
1 & \lambda_1 & \cdots & \lambda_1^{n-1} \\
1 & \lambda_2 & \cdots & \lambda_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda_n & \cdots & \lambda_n^{n-1}
\end{bmatrix}.
$$

(31)

If the eigenvalues are distinct, then the matrix (31) is nonsingular and from (30) we have

$$
\begin{bmatrix}
c_0(t) \\
c_1(t) \\
\vdots \\
c_{n-1}(t)
\end{bmatrix}
= H^{-1}
\begin{bmatrix}
\Phi_0(\lambda_1) \\
\Phi_0(\lambda_2) \\
\vdots \\
\Phi_0(\lambda_n)
\end{bmatrix}.
$$

(32)

The coefficients $c_k(t)$, $k = 0, 1, \ldots, n - 1$ can be also found using the well-known Lagrange-Sylvester formula [3, 12].

Substitution of (29) into (14) for $B = 0$ yields

$$
y(t) = C\Phi_0(t)x_0 = \sum_{k=0}^{n-1} c_k(t)CA^k =
\begin{bmatrix}
c_0(t) & c_1(t) & \cdots & c_{n-1}(t)
\end{bmatrix}
\begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix}x_0.
$$

(33)

From (33) it follows that it is possible to find $y(t)$ for given $t \in [0,t_f]$, if and only if

$$
\text{rank}
\begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix} = n
$$

(34)

since $c_k(t) \neq 0$ for $t \in [0,t_f]$. Therefore, the following theorem has been proved.
Theorem 10 The fractional continuous-time linear system (11) is observable in the interval \([0,t_f]\) if and only if the standard continuous-time linear system (8) is observable in the same interval.

Example 2 Consider the standard system (8) and the fractional system (11) with the same matrices
\[
A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}.
\] (35)

Using (28) and (35) we obtain
\[
\text{rank} \begin{bmatrix} C \\ CA \end{bmatrix} = \text{rank} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 2 \quad (36)
\]
and by Theorem 10 the standard system is observable. In this case for the fractional system (11) with (35) we obtain
\[
\Phi_0(t) = I_2 + \frac{At^\alpha}{\Gamma(\alpha+1)} = I_2 + \frac{At^\alpha}{\alpha} = \begin{bmatrix} 1 & \frac{t^\alpha}{\alpha} \\ 0 & 1 \end{bmatrix} = c_0(t)I_2 + c_1(t)A, \quad (37)
\]
where
\[
c_0(t) = 1, \quad c_1(t) = \frac{t^\alpha}{\alpha}. \quad (38)
\]
By Theorem 10 the fractional system is also observable.

5. Concluding remarks

The relationship between the observability of the standard and fractional discrete-time and continuous-time linear systems has been addressed. It has been shown that: 1) the fractional discrete-time linear systems are observable if and only if the standard discrete-time linear systems are observable (Theorem 8); 2) the fractional continuous-time linear systems are observable if and only if the standard continuous-time linear systems are observable (Theorem 10). The considerations have been illustrated by numerical examples. The considerations can be extended to the standard and fractional time-varying linear systems.

References

