The asymptotic stability of discrete-time and continuous-time linear systems described by the equations $x_{i+1} = \tilde{A}^k x_i$ and $\dot{x}(t) = A^k x(t)$ for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix \tilde{A}^k and of the continuous-time systems depends only on phases of the eigenvalues of the matrix A^k, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.

Key words: analysis, comparison, stability, discrete-time, continuous-time, linear system.

1. Introduction

The asymptotic stability is one of the basic notions of the theory of dynamical systems [1, 8, 10, 12]. It has been addressed in many books and papers [1, 3, 6, 10-12]. The approximation of positive standard and fractional stable continuous-time linear systems by suitable discrete-time systems has been analyzed in [3, 4]. Comparison of approximation methods of positive stable continuous-time linear systems by positive stable discrete-time systems has been presented in [5]. The influence of the value of discretization step on the stability of positive and fractional systems has been analyzed in [6]. Inverse systems of linear systems have been investigated in [7].

In this paper the asymptotic stability of discrete-time and continuous-time linear systems described by the equations $x_{i+1} = \tilde{A}^k x_i$ and $\dot{x}(t) = A^k x(t)$ for k being integers and rational numbers will be investigated.

The paper is organized as follows. In section 2 the basic definitions and theorems concerning the asymptotic stability of continuous-time and discrete-time systems and theorem on the eigenvalues of the matrix function are recalled. The asymptotic stability
of the discrete-time linear systems for k being integers and rational numbers are investigated in section 3. Similar problems for continuous-time linear systems are analyzed in section 4. Comparison of the stability of discrete-time and continuous-time linear systems is presented in section 5. Concluding remarks are given in section 6.

The following notation will be used: \mathbb{R} — the set of real numbers, $\mathbb{R}^{n \times m}$ — the set of $n \times m$ real matrices, I_n — the $n \times n$ identity matrix, \mathbb{Z}_+ — the set of nonnegative integers.

2. Preliminaries

Consider the autonomous continuous-time linear system

$$\dot{x}(t) = Ax(t), \quad (1)$$

where $x(t) \in \mathbb{R}^n$ is the state vector and $A \in \mathbb{R}^{n \times n}$. The solution of (1) for the given initial condition has the form [1, 8, 10, 12]

$$x(t) = e^{At}x_0. \quad (2)$$

Definition 1 The system (1) (or equivalently the matrix A) is called asymptotically stable if

$$\lim_{t \to \infty} x(t) = 0 \quad \text{for all } x_0 \in \mathbb{R}^n \quad (3)$$

Theorem 3 [1, 8, 10, 12] The system (1) (the matrix A) is asymptotically stable if and only if

$$\Re s_l < 0 \Leftrightarrow \frac{\pi}{2} < \phi < \frac{3\pi}{2} \quad \text{for all } l = 1, \ldots, n, \quad (4)$$

where $s_l = |s_l|e^{j\phi_l}$, $l = 1, \ldots, n$ are the eigenvalues of the matrix A, i.e. the roots of the equation

$$\det[I_n s - A] = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 = 0. \quad (5)$$

Similarly, let us consider the autonomous discrete-time linear system [1, 8, 10, 12]

$$x_{i+1} = \bar{A}x_i, \quad i \in \mathbb{Z}_+ = \{0, 1, \ldots\}, \quad (6)$$

where $x_i \in \mathbb{R}^n$ is the state vector and $\bar{A} \in \mathbb{R}^{n \times n}$. The solution of (6) for the given initial condition x_0 has the form [1, 8, 10, 12]

$$x_i = \bar{A}^i x_0, \quad i \in \mathbb{Z}_+. \quad (7)$$

Definition 2 The system 6 (or equivalently the matrix \bar{A}) is called asymptotically stable if

$$\lim_{i \to \infty} x_i = 0 \quad \text{for all } x_0 \in \mathbb{R}^n. \quad (8)$$
Theorem 4 [1, 8, 10, 12] The system (6) (the matrix \bar{A}) is asymptotically stable if and only if
\[|z_l| < 1 \text{ for all } l = 1, ..., n, \] (9)
where z_l, $l = 1, ..., n$ are the eigenvalues of the matrix \bar{A}, i.e. the roots of the equation
\[\det[I_n z - \bar{A}] = z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = 0. \] (10)

Theorem 5 Let s_l, $l = 1, ..., n$ be the eigenvalues of the matrix $A \in \mathbb{R}^{n \times n}$ and $f(s_l)$ be well defined on the spectrum $\sigma_A = \{s_1, s_2, ..., s_n\}$ of the matrix A, i.e. $f(s_l)$ are finite for $l = 1, ..., n$. Then $f(s_l)$, $l = 1, ..., n$ are the eigenvalues of the matrix $f(A)$.

Proof The proof is given in [2, 9].

For example if s_l, $l = 1, ..., n$ are the nonzero eigenvalues (not necessary distinct) of the matrix $A \in \mathbb{R}^{n \times n}$ then s_l^{-1}, $l = 1, ..., n$ are the eigenvalues of the inverse matrix A^{-1}.

3. Discrete-time linear systems

In this section the asymptotic stability of the system
\[x_{i+1} = \bar{A}^k x_i, \quad i \in \mathbb{Z}_+ \] (11)
will be investigated for k being integers ($k = \pm 1, \pm 2, ...$) and rational numbers ($k = \frac{p}{q}$, p, q – integers).

For $k = 1, 2, ...$ we have the following theorem.

Theorem 6 The linear system (11) is asymptotically stable for $k = 1, 2, ...$ if and only if the linear system (6) is asymptotically stable.

Proof By Theorem 3 if z_l, $l = 1, ..., n$ are the eigenvalues of the matrix \bar{A} then the eigenvalues of the matrix \bar{A}^k are z_l, $l = 1, ..., n$. Note that $|z_l| < 1$ for and $k = 1, 2, ...$ if and only if the condition (9) is satisfied. Therefore, by Theorem 4 the system (11) is asymptotically stable if and only if the system (6) is asymptotically stable.

Example 1 Consider the system (6) with
\[\bar{A} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ \frac{1}{6} & \frac{1}{6} \end{bmatrix} \] (12)

The characteristic polynomial of (12) has the form
\[\det[I_3 z - \bar{A}] = \begin{vmatrix} z & -1 \\ 1 & z - \frac{1}{6} \end{vmatrix} = z^2 - \frac{1}{6} z - \frac{1}{6} \] (13)
and its zeros are $z_1 = \frac{1}{2}$ and $z_2 = -\frac{1}{3}$.

The eigenvalues of the matrix (12) satisfy the condition (9) and the system is asymptotically stable. By Theorem 6 the system (11) with (12) is also asymptotically stable for $k = 2, 3, \ldots$

For $k = -1, -2, \ldots$ we have the following theorem.

Theorem 7 The linear system (11) is asymptotically stable for $k = -1, -2, \ldots$ if and only if the system (6) is unstable, i.e. the eigenvalues of the matrix \tilde{A} satisfy the condition

$$|z_j| > 1 \quad \text{for} \quad j = 1, \ldots, n. \quad (14)$$

Proof By Theorem 5 if z_j, $j = 1, \ldots, n$ are the eigenvalues of the matrix \tilde{A} then the eigenvalues of the matrix \tilde{A}^k for $k = -1, -2, \ldots$ are z_j^k, $k = 1, 2, \ldots$. Note that $|z_j|^{-k} < 1$, $k = 1, 2, \ldots$ if and only if the condition (14) is satisfied. Therefore, by Theorem 4 the system (11) is asymptotically stable for $k = -1, -2, \ldots$ if and only if the system (6) is unstable. \hfill \square

Example 2 (Continuation of Example 1) The inverse matrix of (12) has the form

$$\tilde{A}^{-1} = \begin{bmatrix} -1 & 6 \\ 1 & 0 \end{bmatrix} \quad (15)$$

and its eigenvalues are $\tilde{z}_1 = 2$, $\tilde{z}_2 = -3$. Therefore, the discrete-time linear system with the matrix (15) is unstable.

Note that for (15) we obtain the matrix

$$\tilde{A}^{-2} = (\tilde{A}^{-1})^2 = \begin{bmatrix} -1 & 6 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 7 & -6 \\ -1 & 6 \end{bmatrix} \quad (16)$$

and its eigenvalues are $\tilde{z}_1 = 4$, $\tilde{z}_2 = 9$. The linear system (11) for with (16) is unstable. Similar results can be obtained for $k = -3, -4, \ldots$

For $k = \pm \frac{p}{q}$, $p, q \in \{1, 2, \ldots\}$ we have the following theorem

Theorem 8 The linear system (11) is asymptotically stable

1) for $k = \frac{p}{q}$, $p, q \in \{1, 2, \ldots\}$ if and only if the linear system (6) is asymptotically stable,

2) for $k = -\frac{p}{q}$, $p, q \in \{1, 2, \ldots\}$ if and only if the linear system is unstable.
ANALYSIS AND COMPARISON OF THE STABILITY OF DISCRETE-TIME
AND CONTINUOUS-TIME LINEAR SYSTEMS

Proof By Theorem 5 if \(z_j, j = 1, \ldots, n, \) are the eigenvalues of the matrix \(\tilde{A} \) then the eigenvalues of the matrix \(\tilde{A}^{\pm \frac{p}{q}} \) are \(z_j^{\pm \frac{p}{q}} \) for \(j = 1, \ldots, n \) and

\[
\ln |z_j|^{\pm \frac{p}{q}} = \pm \frac{p}{q} \ln |z_j| \quad \text{for} \quad j = 1, \ldots, n.
\]

If \(\frac{p}{q} > 0 \) and \(|z_j| < 1, j = 1, \ldots, n\) then from (17) we have

\[
\frac{p}{q} \ln |z_j| < 0 \quad \text{and} \quad |z_j|^\frac{p}{q} < 1 \quad \text{for} \quad j = 1, \ldots, n.
\]

Therefore, the system (11) is asymptotically stable for \(k = \frac{p}{q} > 0 \) if and only if the system (6) is asymptotically stable. Proof in the case 2) is similar. \(\square \)

Example 3 (Continuation of Example 1) Consider the system (6) with (12) for \(p = 3, q = 2 \). Using (12) we obtain the matrix

\[
\tilde{A}^3 = \frac{1}{6^2} \begin{bmatrix} 1 & 7 \\ 7 & 13 \\ 6 & 6 \end{bmatrix}
\]

with the eigenvalues \(z_1 = \frac{1}{8}, z_2 = -\frac{1}{27} \). The eigenvalues of the matrix

\[
\tilde{A}^{\frac{3}{2}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 6 & 6 \end{bmatrix}^{\frac{3}{2}}
\]

are \(\tilde{z}_1 = \left(\frac{1}{2} \right)^{\frac{3}{2}}, \tilde{z}_2 = \left(-\frac{1}{3} \right)^{\frac{3}{2}} \) and satisfy the condition (9). Therefore, by Theorem 7 the system (6) with (12) for \(p = 3, q = 2 \) is asymptotically stable.

Remark 1 The asymptotic stability of the discrete-time system (6) depends only on the modules of the eigenvalues of the matrix \(\tilde{A} \) and it is independent of the phases of the eigenvalues.

Remark 2 The matrix \(-\tilde{A} \in \mathbb{R}^{n \times n} \) is asymptotically stable if and only if the matrix \(A \in \mathbb{R}^{n \times n} \) is asymptotically stable since the eigenvalues of the matrices \(A \) and \(-\tilde{A} \) have the same modules.
4. Continuous-time linear systems

In this section the asymptotic stability of the continuous-time linear system
\[\dot{x}(t) = A^k x(t), \quad A \in \mathbb{R}^{n \times n} \]
will be investigated for \(k \) being integers (\(k = \pm 1, \pm 2, \ldots \)) and rational numbers (\(k = \frac{p}{q}, p, q \) – integers).

Theorem 9 Let \(s_l = |s_l| e^{j\phi_l}, \ l = 1, \ldots, n \) be the \(l \)-th eigenvalue of the matrix \(A \). The system (6) is asymptotically stable if and only if
\[\frac{\pi}{2} < k\phi_l < \frac{3\pi}{2} \text{ for } l = 1, \ldots, n. \]

Proof By Theorem 5 if \(s_l \) is the \(l \)-th eigenvalue of the matrix \(A \) then \(s_l^k, l = 1, \ldots, n \) are the eigenvalues of the matrix \(A^k \) and by Theorem 3 the system (21) is asymptotically stable if and only if the condition (22) is satisfied. \(\square \)

From the condition (22) of Theorem 9 we have the following conclusion.

Conclusion 1 The asymptotic stability of the system (21) for any \(k \) depends only on the phases of the eigenvalues \(s_l, l = 1, \ldots, n \) of the matrix \(A \) and it is independent of their modules.

Example 4 Consider the asymptotic stability of the continuous-time linear system (21) with the matrix
\[A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \]
for \(k = 2, 3 \) and \(k = -1, -2, -3 \). The characteristic polynomial of the matrix (4.3) has the form
\[\det[I_2 s - A] = \begin{vmatrix} s & -1 \\ 1 & s + 1 \end{vmatrix} = s^2 + s + 1 \]
and its zeros are
\[s_1 = -\frac{1}{2} + j\frac{\sqrt{3}}{2} = e^{j\frac{2\pi}{3}}, \quad s_1 = -\frac{1}{2} - j\frac{\sqrt{3}}{2} = e^{-j\frac{2\pi}{3}}. \]
Therefore, the system (21) with (23) for \(k = 1 \) is asymptotically stable since (25) satisfy the condition (22).

It is easy to verify that for (23)
\[A^2 = A^{-1} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, \quad A^{-2} = A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \]
and the matrices have the same characteristic polynomial (24) and are asymptotically stable. Note that
\[A^3 = A^{-3} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] (27)
and the system (21) with (27) is unstable. The same result follows for (27) from the condition (22) since for (25) with \(k = \pm 3 \) we have the phases \(\pm \frac{2\pi}{3} = \pm 2\pi \).

Example 5. Consider the asymptotic stability of the system (21) with the matrix
\[A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \] (28)
for \(k = -1, -2, -3, 2, 3, \frac{1}{2} \). The characteristic polynomial of the matrix (27) has the form
\[\det[I_2s - A] = \begin{vmatrix} s & -1 \\ 2 & s + 3 \end{vmatrix} = s^2 + 3s + 2 \] (29)
and its zeros are \(s_1 = -1, s_2 = -2 \). Thus, the system for \(k = 1 \) is asymptotically stable. For \(k = -1 \) we have
\[A^{-1} = \begin{bmatrix} -\frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{bmatrix} \] (30)
and
\[\det[I_2s - A^{-1}] = \begin{vmatrix} s + \frac{3}{2} & \frac{1}{2} \\ -1 & s \end{vmatrix} = s^2 + \frac{3}{2}s + \frac{1}{2} \] (31)
and the eigenvalues of (30) are \(s_1 = -1 = e^{j180^\circ}, s_2 = -\frac{1}{2} = \frac{1}{2}e^{j180^\circ} \). The system (21) with (30) for \(k = 1 \) is asymptotically stable (the condition (22) is satisfied). For \(k = -2 \) we obtain the matrix
\[A^{-2} = \begin{bmatrix} 7 & 3 \\ 4 & 4 \\ 3 & 1 \\ 2 & 2 \end{bmatrix} \] (32)
with the eigenvalues \(s_1 = 1 = e^{j0^\circ}, s_2 = \frac{1}{4} = \frac{1}{4}e^{j0^\circ} \). Therefore, the system (21) with (32) is unstable.
The same result follows from (22) since \(k\phi = -2 \cdot 180^\circ = 0^\circ \). For \(k = -3 \) we obtain the matrix
\[
A^{-3} = \begin{bmatrix}
-15 & 7 \\
8 & -8 \\
7 & 3 \\
4 & 4
\end{bmatrix}
\] (33)
with the eigenvalues \(s_1 = -1 = e^{j180^\circ}, s_2 = -\frac{1}{8} = \frac{1}{8}e^{j180^\circ} \). Therefore, the system is asymptotically stable. The same result follows from (22). For \(k = 2 \) we obtain the matrix
\[
A^2 = \begin{bmatrix}
-2 & -3 \\
6 & 7
\end{bmatrix}
\] (34)
with the eigenvalues \(s_1 = 1 = e^{j0^\circ}, s_2 = 4 = 4e^{j0^\circ} \). The system (21) with (34) is unstable. For \(k = 3 \) we have the matrix
\[
A^3 = \begin{bmatrix}
6 & 7 \\
-14 & -15
\end{bmatrix}
\] (35)
with the eigenvalues \(s_1 = -1 = e^{j180^\circ}, s_2 = -8 = 8e^{j180^\circ} \). Therefore, the system for \(k = 3 \) is asymptotically stable. In general case we obtain that the system (21) with (28) is asymptotically stable for \(k = \pm (1 + 2l), l = 0, 1, \ldots \) and unstable for \(k = \pm 2l, l = 1, 2, \ldots \).

Theorem 10 If the matrix \(A \in \mathbb{R}^{n \times n} \) has at least one real positive eigenvalue then the system (21) is unstable for all values of \(k \) (integer and rational).

Proof By Theorem 5 if \(s_l, l = 1, \ldots, n \) are the real positive eigenvalues of the matrix \(A \) then \(s_{l^k}, l = 1, \ldots, n \), are the real positive eigenvalues of the matrix \(A^k \) and the system (21) is unstable. \(\square \)

Example 6 Consider the system (21) with the matrix
\[
A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -2 & 2
\end{bmatrix}
\] (36)
for \(k = 2 \). The characteristic polynomial of the matrix (36) has the form
\[
\det[I_3s - A] = \begin{vmatrix}
s & -1 & 0 \\
0 & s & -1 \\
-1 & 2 & s - 2
\end{vmatrix} = s^3 - 2s^2 + 2s - 1
\] (37)
ANALYSIS AND COMPARISON OF THE STABILITY OF DISCRETE-TIME AND CONTINUOUS-TIME LINEAR SYSTEMS

and its zeros are: \(s_1 = 1 = e^{j0^\circ}, s_2 = \frac{1}{2} + j\frac{\sqrt{3}}{2} = e^{j60^\circ}, s_3 = \frac{1}{2} - j\frac{\sqrt{3}}{2} = e^{-j60^\circ} \). The system (21) with (36) for is unstable. Using (36) we obtain the matrix

\[
A^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & -2 & 2 \\ 2 & -3 & 2 \end{bmatrix}.
\]

Characteristic polynomial of (38) has the form

\[
\det[I_3s - A^2] = \begin{bmatrix} s & 0 & -1 \\ -1 & s+2 & -2 \\ -2 & 3 & s-2 \end{bmatrix}
\]

and its zeros are \(s_1 = 1 = e^{j0^\circ}, s_2 = -\frac{1}{2} + j\frac{\sqrt{3}}{2} = e^{j120^\circ}, s_3 = -\frac{1}{2} - j\frac{\sqrt{3}}{2} = e^{-j120^\circ} \).

The system (21) with (36) for \(k = 2 \) is unstable. By Theorem 10 it is unstable for any \(k \). The following example shows that the system (21) can be unstable for \(k = 1, 2 \) and asymptotically stable for \(k = 3l, l = 1, 2, \ldots \).

Example 7 Consider the system (21) with the matrix

\[
A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}
\]

for \(k = 1, 2, 3, \ldots \). The characteristic polynomial of (40) has the form

\[
\det[I_3s - A] = \begin{bmatrix} s & -1 & 0 \\ 0 & s & -1 \\ 1 & 0 & s \end{bmatrix} = s^3 + 1
\]

and its zeros are: \(s_1 = -1 = e^{j180^\circ}, s_2 = \frac{1}{2} + j\frac{\sqrt{3}}{2} = e^{j60^\circ}, s_3 = \frac{1}{2} - j\frac{\sqrt{3}}{2} = e^{-j60^\circ} \). For \(k = 1 \) the condition (22) is not satisfied and the system is unstable. For \(k = 2 \) we have the matrix

\[
A^2 = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}
\]

with the eigenvalues \(s_1 = 1 = e^{j0^\circ}, s_2 = -\frac{1}{2} + j\frac{\sqrt{3}}{2} = e^{j120^\circ}, s_3 = -\frac{1}{2} - j\frac{\sqrt{3}}{2} = e^{-j120^\circ} \) and the system is also unstable.
For \(k = 3 \) we obtain the matrix
\[
A^3 = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{bmatrix}
\] (43)

with the eigenvalues \(s_1 = s_2 = s_3 = -1 = e^{j180^\circ} \). Therefore, the system for \(k = 3 \) is asymptotically stable.

It is easy to prove that the system is asymptotically stable for \(k = 3l, l = 1, 2, \ldots \).

5. Comparison of the stability of discrete-time and continuous-time linear systems

From the conditions (4) and (9), Remark 1 and Conclusion 1 it follows that the asymptotic stability of the discrete-time linear systems depends only on the modules of the eigenvalues of the matrix \(\tilde{A} \) and of the continuous-time linear systems only on the phases of the eigenvalues of the matrix \(A \).

To obtain to the continuous-time linear system (1) the corresponding discrete-time linear system (6) we apply the approximation
\[
\dot{x}(t) \approx \frac{x(t + h) - x(t)}{h} = \frac{x_{i+1} - x_i}{h} = Ax_i, \quad i \in \mathbb{Z}_+
\] (44)
where \(x_i = x(t), x_{i+1} = x(t + h), h = \Delta t > 0 \). From (44) we have
\[
x_{i+1} = \tilde{A}x_i
\] (45)
where
\[
\tilde{A} = I_n + hA
\] (46)

From Theorem 5 applied to (46) we obtain
\[
z_l = 1 + hs_l, \quad l = 1, \ldots, n
\] (47)
where \(z_l \) are the eigenvalues of the matrix \(\tilde{A} \) and \(s_l \) are the eigenvalues of the matrix \(A \).

Theorem 11 The discrete-time linear system (45) is asymptotically stable for all admissible values of \(h > 0 \) if and only if the continuous-time linear system (1) is asymptotically stable.

Proof From (47) we have
\[
s_l = \frac{z_l - 1}{h} = \frac{|z_l|e^{j\psi_l} - 1}{h}, \quad l = 1, \ldots, n
\] (48)
where $|z_l|$ and ψ_l are the module and phase of z_l and
\[
\text{Re} s_l = \frac{|z_l| \cos \psi_l - 1}{h}, \quad l = 1, \ldots, n.
\] (49)

From (49) it follows that $\text{Re} s_l < 0$ for any admissible $h > 0$ if and only if $|z_l| < 1$, i.e. the discrete-time system is asymptotically stable.

Similarly, from (47) for $s_l = |s_l| e^{j\phi_l}$ we have
\[
|z_l|^2 = |1 + h s_l|^2 = [1 + h |s_l| \cos \phi_l]^2 + [h |s_l| \sin \phi_l]^2 = 1 + 2h |s_l| \cos \phi + h^2 |s_l|^2 < 1
\] (50)
and $|z_l|^2 < 1$ if and only if $\cos \phi < 0$ or equivalently the condition (4) is satisfied.

Note that the admissible value of $h > 0$ should satisfy the condition (50).

Theorem 12 The discretization step h of the asymptotically stable systems satisfies the condition
\[
h < \min_{1 \leq l \leq n} \frac{2\alpha_l}{\alpha_l^2 + \beta_l^2},
\] (51)
where $s_l = -\alpha_l + j\beta_l$, $l = 1, \ldots, n$ are the eigenvalues of the matrix A.

Proof From (47) it follows that the discrete-time system (45) is asymptotically stable if and only if
\[
|z_l| = |hs_l + 1| = |1 - h\alpha_l + jh\beta_l| < 1 \quad \text{for} \quad l = 1, \ldots, n.
\] (52)
From (52) we have
\[
(1 - h\alpha_l)^2 + (h\beta_l)^2 < 1
\] (53)
and solving (53) with respect to h we obtain (51).

Example 8 Consider the continuous-time linear system (1) with the matrix
\[
A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}.
\] (54)

The characteristic polynomial of (54) has the form
\[
\det[I_2 s - A] = \begin{vmatrix} s & -1 \\ 2 & s + 3 \end{vmatrix} = s^2 + 3s + 2
\] (55)
and the eigenvalues of the matrix (54) are $s_1 = -1$, $s_2 = -2$. The system (1) with (54) is asymptotically stable. The eigenvalues of the corresponding matrix
\[
\tilde{A} = I_n + hA = \begin{bmatrix} 1 & h \\ -2h & 1 - 3h \end{bmatrix}
\] (56)
of discrete-time system are $z_1 = 1 - h$, $z_2 = 1 - 2h$. The discrete-time system (45) with (56) is asymptotically stable for all $0 < h < 1$.

6. Concluding remarks

The asymptotic stability of discrete-time linear systems (11) and continuous-time linear systems (21) for \(k \) integers (\(k = \pm 1, \pm 2, \ldots \)) and rational \(\left(\frac{p}{q}, p, q - \text{integers} \right) \) has been investigated. Necessary and sufficient conditions for the asymptotic stability of the systems have been established (Theorems 6, 7, 8, 9, 10). It has been shown that:

1) The asymptotic stability of (11) depends only on the modules of the eigenvalues of the matrix \(\bar{A}^k \) and of (21) only on the phases of the eigenvalues of the matrix \(A^k \).

2) The discrete-time systems (11) are asymptotically stable for all admissible values of \(h \) if and only if the continuous-time systems (21) are asymptotically stable.

3) The upper bounds of \(h \) depends on the eigenvalues of the matrix \(A \).

The considerations have been illustrated by numerical examples of discrete-time and continuous-time linear systems.

The presented considerations can be extended to positive discrete-time and continuous-time linear systems. An open problem is an extension of the considerations to fractional linear systems.

References

