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Abstract. This paper presents analysis of selected noise reduction methods used in optical coherence tomography (OCT) retina images (the so-
called B-scans). The tested algorithms include median and averaging filtering, anisotropic diffusion, soft wavelet thresholding, and multiframe 
wavelet thresholding. Precision of the denoising process was evaluated based on the results of automated retina layers segmentation, since this 
stage (vital for ophthalmic diagnosis) is strongly dependent on the image quality. Experiments were conducted with a set of 3D low quality scans 
obtained from 10 healthy patients and 10 patients with vitreoretinal pathologies. Influence of each method on the automatic image segmentation 
for both groups of patients is thoroughly described. Manual annotations of investigated retina layers provided by ophthalmology experts served 
as reference data for evaluation of the segmentation algorithm.

Key words: optical coherence tomography (OCT), image denoising, image segmentation, anisotropic diffusion, wavelet thresholding.

Denoising methods for improving automatic segmentation  
in OCT images of human eye

A. STANKIEWICZ1, T. MARCINIAK1*, A. DĄBROWSKI1,  
M. STOPA2, 3, P. RAKOWICZ2, 3, and E. MARCINIAK2

1Division of Signal Processing and Electronic Systems, Poznan University of Technology, 24 Jana Pawla II St., 60-965 Poznan, Poland
2Clinical Eye Unit and Pediatric Ophthalmology Service, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences,  

16/18 Grunwaldzka St., 60-780 Poznan, Poland
3Department of Optometry and Biology of Visual System, Poznan University of Medical Sciences,  

5D Rokietnicka St., 60-806 Poznan, Poland

2. Characteristics of OCT interfaces

The inspection of biometric properties of an eye using the OCT 
technology is based on segmentation and identification of the 
most important segments (such as retina layers and borders 
of the optic disc) and on the analysis of their depth at various 

1. Introduction

The newest measurement technologies provide automatic vi-
sualization and analysis of pathologic tissues. This process can 
be further extended through application of advanced algorithms 
for analysis of medical images [1]. The detailed measurements 
and proper representation of thickness, volume and placement 
of the examined structures make it easier for the specialists to 
chose the proper treatment course [2].

Among noninvasive techniques for soft tissue measure-
ment used in ophthalmology is the spectral domain optical 
coherence tomography (SD-OCT) [3]. This technology is 
based on illuminating the tissue with a stream of infrared 
light. The light reflected from inner structures of the eye, is 
spectrally analyzed to receive data, representing layers of the 
retina. A set of single scans across the retina (called A-scans) 
is assembled into a cross-section (i.e. the B-scan) illustrating 
the layered morphological structure of the retina. A series of 
B-scans creates a three-dimensional visualization (3D OCT 
scan) of the retina.

Figure 1 presents a 3D OCT scan annotated with the most 
commonly identified retina layers: inner limiting membrane 
(ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner 
plexiform layer (IPL), inner nuclear layer (INL), outer plexi-
form layer (OPL), outer nuclear layer (ONL), inner segments 
of photoreceptors (IS), outer segments of photoreceptors (OS), 
and retinal pigment epithelium (RPE) [4].

Fig. 1. Example of 3D OCT scan of human retina with annotated most 
important layers
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points. This information is required to perform the detailed and 
proper diagnosis that can point out possible treatment courses. 
Fig. 2 presents a general scheme of the OCT analysis proce-
dure.

Using modern OCT devices it is possible to acquire even 
70 000 A-scans per second [5]. This means performing a 3D 
scan, of 141 B-scans with the resolution of 640£385 points 
each, in around 0.8 second. The fast measurement assures no 
artifacts caused by involuntary movements of the eyeball. Some 
of the newest devices employ also a motion correction tech-
nology (MCT) in order to minimize this problem [6].

The B-scans constituting the 3D OCT scan can be very 
noisy, what is the main cause of errors during the automatic 
segmentation of layers. The research on the nature of noise in 
the OCT images [7] proves, that it is not an entirely random 
noise as it contains some specific information. It is called the 
speckle noise. It depends on:

● the placement in the image
● intensity scale of the image
● reflecting properties of the examined tissue.
It is not possible to automatically assess its level. Due to 

the above features, elimination of noise from the OCT images 
is a very difficult task, though necessary for the proper tissue 
analysis.

Fig. 3 illustrates an example of the B-scan acquired through 
a 3D OCT examination. This image has a low quality due to the 
noise. It includes pathological changes caused by the vitreomac-
ular traction syndrome (tearing of the retina in the fovea region 
due to anomalous vitreous detachment). This pathology causes 
incorrect segmentation of retina layers performed with the use 
of the automatic procedure presented in Section 3.

Methods for reducing the speckle noise can be divided into 
two groups: methods based on averaging of a series of images 
and algorithms designed for denoising single frames (B-scans).

The first group of methods requires multiple scans of the 
same area that are next averaged [8, 9]. Since the noise present 
in every cross-section has various spatial distributions (as op-
posed to the examined tissue) this is an efficient approach to 

this noise reduction. The more images used for the averaging, 
the better is the noise minimization and the tissue structure 
enhancement.

Unfortunately, this technique significantly prolongs the 
measurement time. Indeed, for the above example, the standard 
number of frames is 32, but using MCT even 80, what means 
the time acquisition of 24 and 62 seconds, respectively for the 
earlier discussed 3D scan. This is not acceptable for a patient. 
The prolonged acquisition would also cause shift and rotation 
between subsequent B-scans in the 3D dataset due to unex-
pected movement of the patient/eyeball, problems with main-
taining vision focus and blinking. These problems do not affect 
scan acquisition under a second, therefore this method can be 
used only during the acquisition of a single B-scan (one Line 
Scan Pattern) through the center of macula.

Methods of the second group used for denoising the B-scans 
in a volumetric set involve:

● averaging and median filtering [10]
● regularization [11]
● local Bayesian estimation [12]
● diffusion filtering, including nonlinear anisotropic fil-

tering [13–15]
● wavelet thresholding (e.g. spatially adaptive filtering 

[16], dual tree complex wavelet transformation [17], 
curvelets transformation [18]).

The results of research conducted by Ozcan et al. [19] sug-
gest superiority of methods based on wavelet transformations 
in comparison to other techniques. The published findings were 
derived from data gathered mainly using images of animal 
tissues (pigs, rats, mice) [8, 15], human skin [20, 21], and 
human healthy retina [9]. In many cases the noise reduction 
methods were analyzed on nonmedical and synthetic images 
[11, 13, 15].

Furthermore, little information can be found in the literature 
about analysis of speckle noise on OCT images of pathological 
changes of the retina. One of the reports that used images from 
30 patients with 15 various retina pathologies was presented by 
Abbirame et al. [22].

Fig. 2. General scheme of biometric analysis of eye structures using 
OCT

Fig. 3. Example of 3D OCT retina cross-section (B-scan): (A) B-scan 
with expert’s manual segmentation, (B) B-scan with erroneous 
automatic segmentation of retina layers (places with erroneous seg-

mentation are indicated by arrows)
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Recent literature includes also papers describing applica-
tion of the wavelet thresholding method for a 3D set of human 
skin images [20, 21]. This method utilizes the information from 
neighboring frames to minimize the effect of blurring and em-
phasize the details in the image.

3. Denoising of 3D OCT scans

In this article we analyze the influence of selected denoising 
methods on the retina layers segmentation procedure. The tests 
include 3D sets of OCT images for both healthy and patho-
logical retinas. The inspected pathology is the vitreomacular 
traction syndrome. The group of investigated algorithms is pre-
sented in Fig. 4 and described below.

where ∆ represents the Laplace operator, and c(x, y) describes 
the diffusion coefficient dependent on the position (x, y) in the 
image space, according to the function
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After obtaining new detail and approximation 
coefficients with the above weights for all images, the 
coefficients are averaged and the inverse transform is 
calculated. 

This algorithm was developed for processing a set of 
frames of the same examined tissue area, as is in the case 
of multiple acquisition of a single B-scan across the fovea. 
Bearing in mind, that the distance between the subsequent 
B-scans in the 3D examination is about 50 μm, a little 
change in the tissue structure is observed in the 
neighboring cross-sections. Based on this, we propose to 
use 3 subsequent frames in the 3D OCT set as input 
images for this method. A general scheme of this 
approach is illustrated in Fig. 5B. 

4. Experiments 

4.1 Methodology  
As was mentioned earlier we measured effectiveness 

of the denoising methods by analysis of influence on the 
image segmentation accuracy. There are two reasons for 
this experiment. First, for OCT images a reference image 
(an ideal image without noise) does not exist, thus, it is 
difficult to calculate accuracy of denoising algorithms 

directly. Second, noise in OCT images is causing errors in 
the segmentation of the retina layers. The segmentation 
procedure is in turn a key step in defining the 
morphological structure of the retina during the diagnosis. 
Visualization and measurement of the retina layers 
thickness is the base line for the retina analysis.  

Current research concerning segmentation of medical 
images indicates methods based on the graph theory as the 
most accurate approach [27]. The algorithm selected for 
this study (reported by Chiu et al. [23]) treats a single 
OCT B-scan as a graph, in which every pixel is a node. 
For the created graph, with previously calculated weights, 
we use the shortest path to find the line representing the 
border between two neighboring layers in the image. In 
the conducted experiment we used a modified version of 
this algorithm [28][29]. The modified version takes 
continuity of tissues into account across all cross-sections 
and the signal quality in each column of the image.  

The 3D OCT scans used for testing were acquired with 
Avanti RTvue device (Optovue Inc., Freemont, USA [5]) 
from 10 patients with vitreomacular traction (VMT) 
pathology and 10 healthy volunteers. Average age for 
each group was 71 and 39 years, respectively. Every 
patient had a full 3D OCT examination of macular region 
of size 7×7×2 mm. The examined volume is represented 
by 141×640×385 data points (141 B-scans with 640×385 
resolution). Next, the acquired scans were manually 
segmented by experts from the Clinical Eye Unit at the 
Heliodor Święcicki Medical University Hospital in 
Poznań to annotate 7 retina layers (further used as 
reference data for evaluating investigated algorithms).  
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to find the line representing the border between two neigh-
boring layers in the image. In the conducted experiment we used 
a modified version of this algorithm [28, 29]. The modified ver-
sion takes continuity of tissues into account across all cross-sec-
tions and the signal quality in each column of the image.

The 3D OCT scans used for testing were acquired with 
Avanti RTvue device (Optovue Inc., Freemont, USA [5]) from 
10 patients with vitreomacular traction (VMT) pathology and 
10 healthy volunteers. Average age for each group was 71 
and 39 years, respectively. Every patient had a full 3D OCT 
examination of macular region of size 7£7£2 mm. The ex-
amined volume is represented by 141£640£385 data points 
(141 B-scans with 640£385 resolution). Next, the acquired 
scans were manually segmented by experts from the Clinical 
Eye Unit at the Heliodor Święcicki Medical University Hospital 
in Poznań to annotate 7 retina layers (further used as reference 
data for evaluating investigated algorithms).

In the next step, each image was denoised with the earlier 
described methods. For every method various parameter values 
were tested. Table 1 presents a list of the tested parameters and 
their values, with the best results obtained for values marked 
with gray shading. Also, as a part of subjective evaluation of 
the denoising algorithms, the ophthalmology experts were given 
an opportunity to select the best parameter values. It is worth 
mentioning that they have intuitively selected bigger values 
then those resulting from the tests (see Fig. 6).

Table 1 
Values of parameters chosen for tested denoising methods

AVG MED AD DSWT MWT

Parameter Mask size Mask size κ τ k

Value 1 3£3 3£3 1 1 0.1

Value 2 5£5 5£5 5 10 1

Value 3 7£7 7£7 10 30 10

Value 4 9£9 9£9 20 100 100

4.2. Comparison of denoising algorithms. Examples of 
B-scans obtained after application of each investigated de-
noising method are illustrated in Figs. 6 and 7. Fig. 6A pres-
ents an original B-scan, while an example of employing AVG 
and MED filtering is illustrated in Fig. 6B and 6C respectively. 
Fig. 6D, 6E and 6F illustrate the results of AD, DSWT and 
MWT algorithms.

The original single cross-section (A) has a visibly high 
noise content (a grainy structure). By comparing it with images 
(B) and (C) we can notice that these methods cause blurring 
of the image and the noise is still present. Method (E) also 
leads to blurring of the image, although the regions of indi-
vidual tissues are smoothed. Additionally, for bigger threshold 
values rectangular shaped artifacts appear in the image. The 
greatest unification and smoothing of tissues can be detected 
in method (D). Unfortunately, this algorithm reduces the line 
of the posterior vitreous cortex present in the upper left part of 

Fig. 6. Original B-scan (A), and illustration of results of analyzed noise 
reduction methods: (B) average filtering (3£3 mask), (C) median fil-
tering (3£3 mask), (D) anisotropic diffusion (κ = 20), (E) soft wavelet 
thresholding (τ = 20), (F) multiframe wavelet thresholding (k = 1)
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the image. This line is best revealed by method (F), thanks to 
which, it is possible to maintain most informative content about 
the pathology distribution. Method (F) also provides a good 
quality image with low noise content and visible retina tissue 
areas separation.

Next, each 3D scan was subjected to automatic image seg-
mentation based on the graph theory. Verification of effective-
ness of the implemented methods was based on calculation of 
the peak signal to noise ratio (PSNR):
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where MAX defines a maximum possible value of the 
annotation range (in our case it is equal to the height of 
the image), and MSE is a mean squared error between the 
automatic and manual segmentations. Due to divergence 
in annotating layer borders by experts and by computer, 
the difference between them lower than 5 pixels was 
classified as negligible (i.e., error equal to zero), what 
would give PSNR value over 45 dB.  

 

Fig. 6. Original B-scan (A), and illustration of results of analyzed noise 
reduction methods: (B) average filtering (3×3 mask), (C) median 
filtering (3×3 mask), (D) anisotropic diffusion (    ), (E) soft 
wavelet thresholding (    ), (F) multiframe wavelet 
thresholding (   ) 
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where MAX defines a maximum possible value of the annota-
tion range (in our case it is equal to the height of the image), 
and MSE is a mean squared error between the automatic and 
manual segmentations. Due to divergence in annotating layer 
borders by experts and by computer, the difference between 
them lower than 5 pixels was classified as negligible (i.e., error 
equal to zero), what would give PSNR value over 45 dB.

4.3. Analysis of segmentation accuracy. During the conducted 
experiment we used an image segmentation algorithm imple-
mented in the Matlab/Simulink R2014b environment [30] for 
annotating 7 borders between the retina layers: ILM, NFL/GCL, 
IPL/INL, INL/OPL, OPL/ONL, IS/OS, and RPE/Choroid using 
the procedure described in Section 4.1.

Figure 7 presents the segmentation results after each inves-
tigated denoising method. As can be seen, method (F) provides 

best accuracy for segmenting pathological tissue. Although still 
some inadequacies can be found, especially in places of shading 
caused by blood vessels or fluids (e.g. for IS/OS border).

The OCT device used for acquiring the image provides au-
tomatic segmentation of only 4 retina layers (i.e. ILM, IPL/INL, 
IS/OS and RPE/Choroid). Thus, comparison of the proposed 
method to this device is not applicable.

Results of automatic segmentation were calculated sepa-
rately for images of healthy volunteers and eyes with VMT 
pathology. Their comparisons for each evaluated method illus-
trate Figs. 8‒12. It is clearly visible that smaller filter masks for 
both averaging and median filtering provide better results, while 
bigger masks tend to blur the image. It can be also inferred, that 
lower values of κ parameter in the AD method and threshold τ 
for the WSDT method guarantee better performance.

Fig. 7. Illustration of manually segmented layers (A) and results of automatic analysis after noise reduction with selected methods: (B) average 
filtering (3£3 mask), (C) median filtering (3£3 mask), (D) anisotropic diffusion (κ = 20), (E) soft wavelet thresholding (τ = 10), (F) multiframe 

wavelet thresholding (k = 1). Data is presented in a section of the size 220£220 pixels cropped from the center of the image in Fig. 6
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4.3 Analysis of segmentation accuracy 
During the conducted experiment we used an image 

segmentation algorithm implemented in the 
Matlab/Simulink R2014b environment [30] for annotating 
7 borders between the retina layers: ILM, NFL/GCL, 
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fluids (e.g. for IS/OS border).  

The OCT device used for acquiring the image 
provides automatic segmentation of only 4 retina layers 
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4.3 Analysis of segmentation accuracy 
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segmentation algorithm implemented in the 
Matlab/Simulink R2014b environment [30] for annotating 
7 borders between the retina layers: ILM, NFL/GCL, 
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4.3 Analysis of segmentation accuracy 
During the conducted experiment we used an image 

segmentation algorithm implemented in the 
Matlab/Simulink R2014b environment [30] for annotating 
7 borders between the retina layers: ILM, NFL/GCL, 
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tissue. Although still some inadequacies can be found, 
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fluids (e.g. for IS/OS border).  
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eyes after averaging filtering
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Tables 2 and 3 contain PSNR results obtained for the best 
parameter values for each denoising method. It is worth men-
tioning, that for borders between hyper-reflective and dark re-
gions (i.e. ILM, IS/OS, and RPE/Choroid) the segmentation 
results for both groups of patients have higher scores, regardless 
of the denoising method.

Additionally, a severe VMT pathology, that affected one of 
the examined patients, has greatly lowered the calculated PSNR 
value for this group. For this patient the best results in each 
method gave a score in the range of 36.80 to 38.14 dB, while 

mean results for other patients in this group were in the range 
of 43.78 to 44.42 dB. For all patients with the VMT pathology 
the erroneous segmentation occurred in the area of pathology, 
and the biggest error was 49 px. This error may be caused by 
layers irregularities in the area of pathology, as the segmentation 
algorithm assumes smoothness of the layers borders. This conti-
nuity characteristic is expected by the experts and is noticeable 
in their manual annotations.

Table 2 
PSNR values for automatic segmentation of selected retina layers 

for patients with VMT [dB]

Method AVG MED AD DSWT MWT

All layers 37,40 37,40 37,75 37,70 37,88

ILM 49,28 49,34 48,54 48,56 49,23

NFL/GCL 38,35 38,24 40,12 40,14 39,11

IPL/INL 35,56 35,50 35,84 35,80 35,94

INL/OPL 33,82 33,79 33,90 33,85 34,17

OPL/ONL 34,87 34,98 35,02 34,91 35,45

IS/OS 41,64 41,84 42,35 42,38 42,24

RPE/Choroid 45,67 45,53 46,52 46,47 46,20

Table 3 
PSNR values for automatic segmentation of selected retina layers 

for healthy eyes [dB]

Method AVG MED AD DSWT MWT

All layers 43,58 43,29 44,60 44,56 43,15

ILM 55,66 55,42 55,45 55,55 54,49

NFL/GCL 40,09 39,95 42,74 42,72 40,84

IPL/INL 44,31 43,68 44,26 44,16 42,62

INL/OPL 43,44 42,54 41,79 41,68 40,58

OPL/ONL 44,62 43,95 44,13 44,04 42,31

IS/OS 43,08 43,44 48,76 48,68 46,14

RPE/Choroid 43,91 44,01 45,11 45,34 45,51

5. Conclusions

Manufacturers of OCT devices constantly try to overcome the 
problem of low quality of the acquired images. The denoising 
methods such as anisotropic diffusion and wavelet thresholding 
allow for better retina segmentation for both tested groups of pa-
tients. Additionally, in case of the VMT pathology we were able 
to improve accuracy by using the multiframe wavelet thresh-
olding algorithm. We have observed that this approach did not 
provide significant improvement for images of healthy retinas.

Our experiments confirmed that the proposed method of 
the multiframe wavelet thresholding improved segmentation 
accuracy for OCT images of pathological tissues, although 
change of the noise reduction parameter did not influence the 
segmentation process.

Fig. 9. PSNR of retina layers segmentation for healthy and pathological 
eyes after median filtering

Fig. 10. PSNR of retina layers segmentation for healthy and patholog-
ical eyes after filtering with anisotropic diffusion method

Fig. 11. PSNR of retina layers segmentation for healthy and patholog-
ical eyes after filtering with wavelet soft thresholding method

Fig. 12. PSNR of retina layers segmentation for healthy and patholog-
ical eyes after filtering with multiframe wavelet thresholding method
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For healthy data also soft wavelet thresholding of single 
B-scans and anisotropic diffusion methods are worth exploring, 
although for these methods it is worth setting the parameter 
value as small as possible.

The proposed solution can be applied to volumetric datasets 
to aid during the diagnostic procedure, since precise segmen-
tation allows for early detection of morphological changes and 
conduction of the thorough assessment of the pathology stage. 
Thanks to that, it could be possible to select and perform the 
proper therapy treatment.
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