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Abstract. This paper concerns the H� control problem of a coupled transport-diffusion system with Neumann boundary condition, related to 
parallel-flow heat exchange process. It is shown that, by using the previous approach for a single diffusion system, the H� control problem can 
be solved by constructing a residual mode filter (RMF)-based controller which is of finite-dimension. A numerical simulation result is given to 
demonstrate the validity of the proposed method.
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1.	 Introduction

Since the beginning of the 1980’s, the design method of dy-
namic stabilizing controllers for distributed parameter systems 
has been proposed by many researchers (see e.g. [20, 26, 3, 17, 
1, 8, 21, 2, 7, 11, 24], and the references therein). On the other 
hand, as for H� controllers for distributed parameter systems, 
the research has been progressed since the beginning of the 
1990’s. The design method of infinite-dimensional H� state 
feedback/output feedback controllers was first studied in [10]. 
However, the algorithm was not feasible, because one needed 
to solve two kinds of operator Riccati equations. In connection 
with infinite-dimensional H� state feedback, it was shown in 
[9] that the solutions to the finite-dimensional Riccati equa-
tions of high order approximately solve the original H� control 
problem. After that, the approach was extended to the case of 
H� output feedback in [16]. On the other hand, in [22] the de-
sign method of finite-dimensional H� controllers for a single 
diffusion system was given, in which the residual mode filter 
(RMF) (see [1]) was used in the output feedback controller 
design. Besides, in [4, 6] the frequency-domain approach was 
developed in the synthesis of robust controllers for distributed 
parameter systems. Also, for nonsmooth distributed parameter 
systems, the design method of H� controllers using linear ma-
trix inequalities (LMIs) was recently reported in [18].

The purpose of this paper is to show that the result of [22] 
is applicable to a coupled transport-diffusion system with 
Neumann boundary condition, related to parallel-flow heat ex-
change process. Under the boundary condition, the open-loop 
system is not exponentially stable. In this paper, we formulate 
the system as an abstract system in a Hilbert space and give the 
design method of finite-dimensional H� controllers. Moreover, 
we show the validity of the proposed method through a numer-

ical simulation. An advantage of our method is to make possible 
to construct H� controllers without solving operator Riccati 
equations in an infinite-dimensional space or in a finite-dimen-
sional space of higher order. That is, the problem results in the 
H� design problem for finite-dimensional systems of lower 
order. The key point is that we use the RMF which can coun-
teract control/observation spillover and is easy to construct. As 
a result, the use of the RMF of higher order assures the closed-
loop stability as well as a given H� norm bound.

This paper is organized as follows: In Section 2, we intro-
duce the PDE describing parallel-flow heat exchange process 
and formulate it in a Hilbert space. In Section 3, we partition 
the abstract system into three parts and give the design method 
of finite-dimensional H� controllers. In Section 4, a numerical 
simulation result is given, and finally, the paper is concluded 
in Section 5.

2.	 System description and formulation

2.1. System description. We shall consider the following cou-
pled transport-diffusion system related to parallel-flow heat 
exchange process over interval [0,1]:
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infinite-dimensional H∞ state feedback/output feedback con-
trollers was first studied in [10]. However, the algorithm was
not feasible, because one needed to solve two kinds of opera-
tor Riccati equations. In connection with infinite-dimensional
H∞ state feedback, it was shown in [9] that the solutions to
the finite-dimensional Riccati equations of high order approx-
imately solve the original H∞ control problem. After that, the
approach was extended to the case of H∞ output feedback in
[16]. On the other hand, in [22] the design method of finite-
dimensional H∞ controllers for a single diffusion system was
given, in which the residual mode filter (RMF) (see [1]) was
used in the output feedback controller design. Besides, in [4,
6] the frequency-domain approach was developed in the syn-
thesis of robust controllers for distributed parameter systems.
Also, for nonsmooth distributed parameter systems, the de-
sign method of H∞ controllers using linear matrix inequalities
(LMIs) was recently reported in [18].

The purpose of this paper is to show that the result of [22] is
applicable to a coupled transport-diffusion system with Neu-
mann boundary condition, related to parallel-flow heat ex-
change process. Under the boundary condition, the open-loop
system is not exponentially stable. In this paper, we formulate
the system as an abstract system in a Hilbert space and give
the design method of finite-dimensional H∞ controllers. More-
over, we show the validity of the proposed method through a
numerical simulation. An advantage of our method is to make
possible to construct H∞ controllers without solving operator
Riccati equations in an infinite-dimensional space or in a finite-
dimensional space of higher order. That is, the problem re-
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sults in the H∞ design problem for finite-dimensional systems
of lower order. The key point is that we use the RMF which
can counteract control/observation spillover and is easy to con-
struct. As a result, the use of the RMF of higher order assures
the closed-loop stability as well as a given H∞ norm bound.

This paper is organized as follows: In Section 2, we intro-
duce the PDE describing parallel-flow heat exchange process
and formulate it in a Hilbert space. In Section 3, we partition
the abstract system into three parts and give the design method
of finite-dimensional H∞ controllers. In Section 4, a numerical
simulation result is given, and finally, the paper is concluded
in Section 5.

2. System description and formulation

2.1. System description. We shall consider the following
coupled transport-diffusion system related to parallel-flow heat
exchange process over interval [0,1]:





∂ z1

∂ t
(t,x) = D

∂ 2z1

∂x2 (t,x)−α
∂ z1

∂x
(t,x)+h1(z2(t,x)− z1(t,x)),

∂ z2

∂ t
(t,x) = D

∂ 2z2

∂x2 (t,x)−α
∂ z2

∂x
(t,x)+h2(z1(t,x)− z2(t,x))

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)× (0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1],

(1)
where z1(t,x), z2(t,x) denote the temperatures of fluids at time
t and at the point x ∈ [0,1], and w1(t) ∈ R denotes the dis-
turbance added through the influence function b1(x), u(t) ∈ R
the control input added through the influence function b2(x).
D > 0 is the heat diffusion coefficient, α > 0 the fluid ve-
locity, h1, h2 > 0 the heat exchange rates between two tubes.
In general, the mathematical model of heat exchange process
does not contain diffusive terms. However, the diffusive terms
should be taken into account in the case of small flow rates of
gaseous/liquid medium. For the relevant model, see e.g. [19].
For system (1), we consider the following Neumann boundary
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simulation result is given, and finally, the paper is concluded
in Section 5.

2. System description and formulation

2.1. System description. We shall consider the following
coupled transport-diffusion system related to parallel-flow heat
exchange process over interval [0,1]:




∂ z1

∂ t
(t,x) = D

∂ 2z1

∂x2 (t,x)−α
∂ z1

∂x
(t,x)+h1(z2(t,x)− z1(t,x)),

∂ z2

∂ t
(t,x) = D

∂ 2z2

∂x2 (t,x)−α
∂ z2

∂x
(t,x)+h2(z1(t,x)− z2(t,x))

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)× (0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1],

(1)
where z1(t,x), z2(t,x) denote the temperatures of fluids at time
t and at the point x ∈ [0,1], and w1(t) ∈ R denotes the dis-
turbance added through the influence function b1(x), u(t) ∈ R
the control input added through the influence function b2(x).
D > 0 is the heat diffusion coefficient, α > 0 the fluid ve-
locity, h1, h2 > 0 the heat exchange rates between two tubes.
In general, the mathematical model of heat exchange process
does not contain diffusive terms. However, the diffusive terms
should be taken into account in the case of small flow rates of
gaseous/liquid medium. For the relevant model, see e.g. [19].
For system (1), we consider the following Neumann boundary
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1. Introduction
Since the beginning of the 1980’s, the design method of dy-
namic stabilizing controllers for distributed parameter systems
has been proposed by many researchers (see e.g. [20], [26],
[3], [17], [1], [8], [21], [2], [7], [11], [24], and the references
therein). On the other hand, as for H∞ controllers for dis-
tributed parameter systems, the research has been progressed
since the beginning of the 1990’s. The design method of
infinite-dimensional H∞ state feedback/output feedback con-
trollers was first studied in [10]. However, the algorithm was
not feasible, because one needed to solve two kinds of opera-
tor Riccati equations. In connection with infinite-dimensional
H∞ state feedback, it was shown in [9] that the solutions to
the finite-dimensional Riccati equations of high order approx-
imately solve the original H∞ control problem. After that, the
approach was extended to the case of H∞ output feedback in
[16]. On the other hand, in [22] the design method of finite-
dimensional H∞ controllers for a single diffusion system was
given, in which the residual mode filter (RMF) (see [1]) was
used in the output feedback controller design. Besides, in [4,
6] the frequency-domain approach was developed in the syn-
thesis of robust controllers for distributed parameter systems.
Also, for nonsmooth distributed parameter systems, the de-
sign method of H∞ controllers using linear matrix inequalities
(LMIs) was recently reported in [18].

The purpose of this paper is to show that the result of [22] is
applicable to a coupled transport-diffusion system with Neu-
mann boundary condition, related to parallel-flow heat ex-
change process. Under the boundary condition, the open-loop
system is not exponentially stable. In this paper, we formulate
the system as an abstract system in a Hilbert space and give
the design method of finite-dimensional H∞ controllers. More-
over, we show the validity of the proposed method through a
numerical simulation. An advantage of our method is to make
possible to construct H∞ controllers without solving operator
Riccati equations in an infinite-dimensional space or in a finite-
dimensional space of higher order. That is, the problem re-
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sults in the H∞ design problem for finite-dimensional systems
of lower order. The key point is that we use the RMF which
can counteract control/observation spillover and is easy to con-
struct. As a result, the use of the RMF of higher order assures
the closed-loop stability as well as a given H∞ norm bound.

This paper is organized as follows: In Section 2, we intro-
duce the PDE describing parallel-flow heat exchange process
and formulate it in a Hilbert space. In Section 3, we partition
the abstract system into three parts and give the design method
of finite-dimensional H∞ controllers. In Section 4, a numerical
simulation result is given, and finally, the paper is concluded
in Section 5.

2. System description and formulation

2.1. System description. We shall consider the following
coupled transport-diffusion system related to parallel-flow heat
exchange process over interval [0,1]:




∂ z1

∂ t
(t,x) = D

∂ 2z1

∂x2 (t,x)−α
∂ z1

∂x
(t,x)+h1(z2(t,x)− z1(t,x)),

∂ z2

∂ t
(t,x) = D

∂ 2z2

∂x2 (t,x)−α
∂ z2

∂x
(t,x)+h2(z1(t,x)− z2(t,x))

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)× (0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1],

(1)
where z1(t,x), z2(t,x) denote the temperatures of fluids at time
t and at the point x ∈ [0,1], and w1(t) ∈ R denotes the dis-
turbance added through the influence function b1(x), u(t) ∈ R
the control input added through the influence function b2(x).
D > 0 is the heat diffusion coefficient, α > 0 the fluid ve-
locity, h1, h2 > 0 the heat exchange rates between two tubes.
In general, the mathematical model of heat exchange process
does not contain diffusive terms. However, the diffusive terms
should be taken into account in the case of small flow rates of
gaseous/liquid medium. For the relevant model, see e.g. [19].
For system (1), we consider the following Neumann boundary
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1. Introduction
Since the beginning of the 1980’s, the design method of dy-
namic stabilizing controllers for distributed parameter systems
has been proposed by many researchers (see e.g. [20], [26],
[3], [17], [1], [8], [21], [2], [7], [11], [24], and the references
therein). On the other hand, as for H∞ controllers for dis-
tributed parameter systems, the research has been progressed
since the beginning of the 1990’s. The design method of
infinite-dimensional H∞ state feedback/output feedback con-
trollers was first studied in [10]. However, the algorithm was
not feasible, because one needed to solve two kinds of opera-
tor Riccati equations. In connection with infinite-dimensional
H∞ state feedback, it was shown in [9] that the solutions to
the finite-dimensional Riccati equations of high order approx-
imately solve the original H∞ control problem. After that, the
approach was extended to the case of H∞ output feedback in
[16]. On the other hand, in [22] the design method of finite-
dimensional H∞ controllers for a single diffusion system was
given, in which the residual mode filter (RMF) (see [1]) was
used in the output feedback controller design. Besides, in [4,
6] the frequency-domain approach was developed in the syn-
thesis of robust controllers for distributed parameter systems.
Also, for nonsmooth distributed parameter systems, the de-
sign method of H∞ controllers using linear matrix inequalities
(LMIs) was recently reported in [18].

The purpose of this paper is to show that the result of [22] is
applicable to a coupled transport-diffusion system with Neu-
mann boundary condition, related to parallel-flow heat ex-
change process. Under the boundary condition, the open-loop
system is not exponentially stable. In this paper, we formulate
the system as an abstract system in a Hilbert space and give
the design method of finite-dimensional H∞ controllers. More-
over, we show the validity of the proposed method through a
numerical simulation. An advantage of our method is to make
possible to construct H∞ controllers without solving operator
Riccati equations in an infinite-dimensional space or in a finite-
dimensional space of higher order. That is, the problem re-
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sults in the H∞ design problem for finite-dimensional systems
of lower order. The key point is that we use the RMF which
can counteract control/observation spillover and is easy to con-
struct. As a result, the use of the RMF of higher order assures
the closed-loop stability as well as a given H∞ norm bound.

This paper is organized as follows: In Section 2, we intro-
duce the PDE describing parallel-flow heat exchange process
and formulate it in a Hilbert space. In Section 3, we partition
the abstract system into three parts and give the design method
of finite-dimensional H∞ controllers. In Section 4, a numerical
simulation result is given, and finally, the paper is concluded
in Section 5.

2. System description and formulation

2.1. System description. We shall consider the following
coupled transport-diffusion system related to parallel-flow heat
exchange process over interval [0,1]:




∂ z1

∂ t
(t,x) = D

∂ 2z1

∂x2 (t,x)−α
∂ z1

∂x
(t,x)+h1(z2(t,x)− z1(t,x)),

∂ z2

∂ t
(t,x) = D

∂ 2z2

∂x2 (t,x)−α
∂ z2

∂x
(t,x)+h2(z1(t,x)− z2(t,x))

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)× (0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1],

(1)
where z1(t,x), z2(t,x) denote the temperatures of fluids at time
t and at the point x ∈ [0,1], and w1(t) ∈ R denotes the dis-
turbance added through the influence function b1(x), u(t) ∈ R
the control input added through the influence function b2(x).
D > 0 is the heat diffusion coefficient, α > 0 the fluid ve-
locity, h1, h2 > 0 the heat exchange rates between two tubes.
In general, the mathematical model of heat exchange process
does not contain diffusive terms. However, the diffusive terms
should be taken into account in the case of small flow rates of
gaseous/liquid medium. For the relevant model, see e.g. [19].
For system (1), we consider the following Neumann boundary
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1. Introduction
Since the beginning of the 1980’s, the design method of dy-
namic stabilizing controllers for distributed parameter systems
has been proposed by many researchers (see e.g. [20], [26],
[3], [17], [1], [8], [21], [2], [7], [11], [24], and the references
therein). On the other hand, as for H∞ controllers for dis-
tributed parameter systems, the research has been progressed
since the beginning of the 1990’s. The design method of
infinite-dimensional H∞ state feedback/output feedback con-
trollers was first studied in [10]. However, the algorithm was
not feasible, because one needed to solve two kinds of opera-
tor Riccati equations. In connection with infinite-dimensional
H∞ state feedback, it was shown in [9] that the solutions to
the finite-dimensional Riccati equations of high order approx-
imately solve the original H∞ control problem. After that, the
approach was extended to the case of H∞ output feedback in
[16]. On the other hand, in [22] the design method of finite-
dimensional H∞ controllers for a single diffusion system was
given, in which the residual mode filter (RMF) (see [1]) was
used in the output feedback controller design. Besides, in [4,
6] the frequency-domain approach was developed in the syn-
thesis of robust controllers for distributed parameter systems.
Also, for nonsmooth distributed parameter systems, the de-
sign method of H∞ controllers using linear matrix inequalities
(LMIs) was recently reported in [18].

The purpose of this paper is to show that the result of [22] is
applicable to a coupled transport-diffusion system with Neu-
mann boundary condition, related to parallel-flow heat ex-
change process. Under the boundary condition, the open-loop
system is not exponentially stable. In this paper, we formulate
the system as an abstract system in a Hilbert space and give
the design method of finite-dimensional H∞ controllers. More-
over, we show the validity of the proposed method through a
numerical simulation. An advantage of our method is to make
possible to construct H∞ controllers without solving operator
Riccati equations in an infinite-dimensional space or in a finite-
dimensional space of higher order. That is, the problem re-
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sults in the H∞ design problem for finite-dimensional systems
of lower order. The key point is that we use the RMF which
can counteract control/observation spillover and is easy to con-
struct. As a result, the use of the RMF of higher order assures
the closed-loop stability as well as a given H∞ norm bound.

This paper is organized as follows: In Section 2, we intro-
duce the PDE describing parallel-flow heat exchange process
and formulate it in a Hilbert space. In Section 3, we partition
the abstract system into three parts and give the design method
of finite-dimensional H∞ controllers. In Section 4, a numerical
simulation result is given, and finally, the paper is concluded
in Section 5.

2. System description and formulation

2.1. System description. We shall consider the following
coupled transport-diffusion system related to parallel-flow heat
exchange process over interval [0,1]:





∂ z1

∂ t
(t,x) = D

∂ 2z1

∂x2 (t,x)−α
∂ z1

∂x
(t,x)+h1(z2(t,x)− z1(t,x)),

∂ z2

∂ t
(t,x) = D

∂ 2z2

∂x2 (t,x)−α
∂ z2

∂x
(t,x)+h2(z1(t,x)− z2(t,x))

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)× (0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1],

(1)
where z1(t,x), z2(t,x) denote the temperatures of fluids at time
t and at the point x ∈ [0,1], and w1(t) ∈ R denotes the dis-
turbance added through the influence function b1(x), u(t) ∈ R
the control input added through the influence function b2(x).
D > 0 is the heat diffusion coefficient, α > 0 the fluid ve-
locity, h1, h2 > 0 the heat exchange rates between two tubes.
In general, the mathematical model of heat exchange process
does not contain diffusive terms. However, the diffusive terms
should be taken into account in the case of small flow rates of
gaseous/liquid medium. For the relevant model, see e.g. [19].
For system (1), we consider the following Neumann boundary
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1. Introduction
Since the beginning of the 1980’s, the design method of dy-
namic stabilizing controllers for distributed parameter systems
has been proposed by many researchers (see e.g. [20], [26],
[3], [17], [1], [8], [21], [2], [7], [11], [24], and the references
therein). On the other hand, as for H∞ controllers for dis-
tributed parameter systems, the research has been progressed
since the beginning of the 1990’s. The design method of
infinite-dimensional H∞ state feedback/output feedback con-
trollers was first studied in [10]. However, the algorithm was
not feasible, because one needed to solve two kinds of opera-
tor Riccati equations. In connection with infinite-dimensional
H∞ state feedback, it was shown in [9] that the solutions to
the finite-dimensional Riccati equations of high order approx-
imately solve the original H∞ control problem. After that, the
approach was extended to the case of H∞ output feedback in
[16]. On the other hand, in [22] the design method of finite-
dimensional H∞ controllers for a single diffusion system was
given, in which the residual mode filter (RMF) (see [1]) was
used in the output feedback controller design. Besides, in [4,
6] the frequency-domain approach was developed in the syn-
thesis of robust controllers for distributed parameter systems.
Also, for nonsmooth distributed parameter systems, the de-
sign method of H∞ controllers using linear matrix inequalities
(LMIs) was recently reported in [18].

The purpose of this paper is to show that the result of [22] is
applicable to a coupled transport-diffusion system with Neu-
mann boundary condition, related to parallel-flow heat ex-
change process. Under the boundary condition, the open-loop
system is not exponentially stable. In this paper, we formulate
the system as an abstract system in a Hilbert space and give
the design method of finite-dimensional H∞ controllers. More-
over, we show the validity of the proposed method through a
numerical simulation. An advantage of our method is to make
possible to construct H∞ controllers without solving operator
Riccati equations in an infinite-dimensional space or in a finite-
dimensional space of higher order. That is, the problem re-
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sults in the H∞ design problem for finite-dimensional systems
of lower order. The key point is that we use the RMF which
can counteract control/observation spillover and is easy to con-
struct. As a result, the use of the RMF of higher order assures
the closed-loop stability as well as a given H∞ norm bound.

This paper is organized as follows: In Section 2, we intro-
duce the PDE describing parallel-flow heat exchange process
and formulate it in a Hilbert space. In Section 3, we partition
the abstract system into three parts and give the design method
of finite-dimensional H∞ controllers. In Section 4, a numerical
simulation result is given, and finally, the paper is concluded
in Section 5.

2. System description and formulation

2.1. System description. We shall consider the following
coupled transport-diffusion system related to parallel-flow heat
exchange process over interval [0,1]:




∂ z1

∂ t
(t,x) = D

∂ 2z1

∂x2 (t,x)−α
∂ z1

∂x
(t,x)+h1(z2(t,x)− z1(t,x)),

∂ z2

∂ t
(t,x) = D

∂ 2z2

∂x2 (t,x)−α
∂ z2

∂x
(t,x)+h2(z1(t,x)− z2(t,x))

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)× (0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1],

(1)
where z1(t,x), z2(t,x) denote the temperatures of fluids at time
t and at the point x ∈ [0,1], and w1(t) ∈ R denotes the dis-
turbance added through the influence function b1(x), u(t) ∈ R
the control input added through the influence function b2(x).
D > 0 is the heat diffusion coefficient, α > 0 the fluid ve-
locity, h1, h2 > 0 the heat exchange rates between two tubes.
In general, the mathematical model of heat exchange process
does not contain diffusive terms. However, the diffusive terms
should be taken into account in the case of small flow rates of
gaseous/liquid medium. For the relevant model, see e.g. [19].
For system (1), we consider the following Neumann boundary
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where z1(t, x), z2(t, x) denote the temperatures of fluids at time t 
and at the point x 2 [0, 1], and w1(t) 2 R denotes the disturbance 
added through the influence function b1(x), u(t) 2 R the control 
input added through the influence function b2(x). D > 0 is the 
heat diffusion coefficient, α > 0 the fluid velocity, h1, h2 > 0 
the heat exchange rates between two tubes. In general, the 
mathematical model of heat exchange process does not contain 
diffusive terms. However, the diffusive terms should be taken 
into account in the case of small flow rates of gaseous/liquid 
medium. For the relevant model, see e.g. [19]. For system (1), 
we consider the following Neumann boundary condition1:
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condition1:

∂ z1

∂x
(t,0) =

∂ z1

∂x
(t,1) =

∂ z2

∂x
(t,0) =

∂ z2

∂x
(t,1) = 0. (2)

Here, the Neumann boundary condition imposed at the inlet
x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:




zc(t) =
[∫ 1

0
c1(x)z1(t,x)dx,u(t)

]T

,

y(t) =
∫ 1

0
c2(x)z1(t,x)dx+w2(t), t > 0,

(3)

where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
denotes the disturbance included to the measurement.

x = 0 x = 1

Heat

c (x)2c (x)1

b (x)1b (x)2
exchange

z (t,x)1

z (t,x)2

z (t,Δx)1

z (t,Δx)2

Fig. 1. Parallel-flow heat exchange process

Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as



∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2
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Hence, any f ∈ L2
β (0,1) is expressed as
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Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:


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(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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unbounded operator A as
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,
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Hereafter, for the initial condition and the influence
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
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without diffusive terms.
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Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+b1w1(t)+b2u(t), z2(0, ·) = z20.

(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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x(t, 1) = 
z2(t, 0) = 

H. Sano

condition1:

∂ z1

∂x
(t,0) =

∂ z1

∂x
(t,1) =

∂ z2

∂x
(t,0) =

∂ z2

∂x
(t,1) = 0. (2)

Here, the Neumann boundary condition imposed at the inlet
x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:




zc(t) =
[∫ 1

0
c1(x)z1(t,x)dx,u(t)

]T

,

y(t) =
∫ 1

0
c2(x)z1(t,x)dx+w2(t), t > 0,

(3)

where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
denotes the disturbance included to the measurement.
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Fig. 1. Parallel-flow heat exchange process

Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as



∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2

β (0,1).

A has a set of eigenpairs {λi,φi}∞
i=1 in L2

β (0,1) such that
{φi}∞

i=1 forms a complete orthonormal system in L2
β (0,1).

Hence, any f ∈ L2
β (0,1) is expressed as

f =
∞

∑
i=1

⟨ f ,φi⟩β φi.

Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+b1w1(t)+b2u(t), z2(0, ·) = z20.

(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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z2/

H. Sano

condition1:

∂ z1

∂x
(t,0) =

∂ z1

∂x
(t,1) =

∂ z2

∂x
(t,0) =

∂ z2

∂x
(t,1) = 0. (2)

Here, the Neumann boundary condition imposed at the inlet
x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:




zc(t) =
[∫ 1

0
c1(x)z1(t,x)dx,u(t)

]T

,

y(t) =
∫ 1

0
c2(x)z1(t,x)dx+w2(t), t > 0,

(3)

where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
denotes the disturbance included to the measurement.
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Fig. 1. Parallel-flow heat exchange process

Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as



∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2

β (0,1).

A has a set of eigenpairs {λi,φi}∞
i=1 in L2

β (0,1) such that
{φi}∞

i=1 forms a complete orthonormal system in L2
β (0,1).

Hence, any f ∈ L2
β (0,1) is expressed as

f =
∞

∑
i=1

⟨ f ,φi⟩β φi.

Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+b1w1(t)+b2u(t), z2(0, ·) = z20.

(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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x(t, 1) = 0 has been studied. In such case, the open-loop 
system is exponentially stable. On the other hand, system (1) with the 
boundary condition (2) is not exponentially stable (see Remark 2.2).

Remark 2.1. For the parallel-flow heat exchange process 
without diffusive terms, the exact transient solution was con-
cretely given in [12]. Also, the reachability/observability results 
of the process were given in [23, 13]. Furthermore, the problem 
of regulating the outlet fluid temperature to a desired one was 
treated in [14]. Recently, in [15] the analytical solution was 
given for the parallel-flow three-fluid heat exchange process 
without diffusive terms.

2.2. Formulation of the system. By defining the differential 
operator 

H. Sano

condition1:

∂ z1

∂x
(t,0) =

∂ z1

∂x
(t,1) =

∂ z2

∂x
(t,0) =

∂ z2

∂x
(t,1) = 0. (2)

Here, the Neumann boundary condition imposed at the inlet
x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:




zc(t) =
[∫ 1

0
c1(x)z1(t,x)dx,u(t)

]T

,

y(t) =
∫ 1

0
c2(x)z1(t,x)dx+w2(t), t > 0,

(3)

where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
denotes the disturbance included to the measurement.

x = 0 x = 1

Heat
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Fig. 1. Parallel-flow heat exchange process

Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as



∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2

β (0,1).

A has a set of eigenpairs {λi,φi}∞
i=1 in L2

β (0,1) such that
{φi}∞

i=1 forms a complete orthonormal system in L2
β (0,1).

Hence, any f ∈ L2
β (0,1) is expressed as

f =
∞

∑
i=1

⟨ f ,φi⟩β φi.

Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+b1w1(t)+b2u(t), z2(0, ·) = z20.

(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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 as

H. Sano

condition1:

∂ z1

∂x
(t,0) =

∂ z1

∂x
(t,1) =

∂ z2

∂x
(t,0) =

∂ z2

∂x
(t,1) = 0. (2)

Here, the Neumann boundary condition imposed at the inlet
x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:




zc(t) =
[∫ 1

0
c1(x)z1(t,x)dx,u(t)

]T

,

y(t) =
∫ 1

0
c2(x)z1(t,x)dx+w2(t), t > 0,

(3)

where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
denotes the disturbance included to the measurement.
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Fig. 1. Parallel-flow heat exchange process

Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as




∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2

β (0,1).

A has a set of eigenpairs {λi,φi}∞
i=1 in L2

β (0,1) such that
{φi}∞

i=1 forms a complete orthonormal system in L2
β (0,1).

Hence, any f ∈ L2
β (0,1) is expressed as

f =
∞

∑
i=1

⟨ f ,φi⟩β φi.

Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:
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(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
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Here, the Neumann boundary condition imposed at the inlet
x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:




zc(t) =
[∫ 1
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,

y(t) =
∫ 1

0
c2(x)z1(t,x)dx+w2(t), t > 0,

(3)

where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
denotes the disturbance included to the measurement.
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
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∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-
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condition (2) is not exponentially stable (see Remark 2.2).
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self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2
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Hence, any f ∈ L2
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the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
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out diffusive terms, the exact transient solution was concretely
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the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
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without diffusive terms.
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x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:
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,
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where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as



∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2

β (0,1).

A has a set of eigenpairs {λi,φi}∞
i=1 in L2

β (0,1) such that
{φi}∞

i=1 forms a complete orthonormal system in L2
β (0,1).

Hence, any f ∈ L2
β (0,1) is expressed as

f =
∞

∑
i=1

⟨ f ,φi⟩β φi.

Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:


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dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+b1w1(t)+b2u(t), z2(0, ·) = z20.

(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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x = 0 means that the boundary feedback loop such as
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is assumed at x = 0, where ∆x is a sufficiently small positive
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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operator L as
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dx2 +α
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1In [25], system (1) with the boundary condition z1(t,0) =
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,
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out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
measured output y(t) ∈ R as follows:




zc(t) =
[∫ 1

0
c1(x)z1(t,x)dx,u(t)

]T

,

y(t) =
∫ 1

0
c2(x)z1(t,x)dx+w2(t), t > 0,

(3)

where c1(x), c2(x) are the influence functions, and w2(t) ∈ R
denotes the disturbance included to the measurement.
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as



∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2

β (0,1).

A has a set of eigenpairs {λi,φi}∞
i=1 in L2

β (0,1) such that
{φi}∞

i=1 forms a complete orthonormal system in L2
β (0,1).

Hence, any f ∈ L2
β (0,1) is expressed as

f =
∞

∑
i=1

⟨ f ,φi⟩β φi.

Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+b1w1(t)+b2u(t), z2(0, ·) = z20.

(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:
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+b1w1(t)+b2u(t), z2(0, ·) = z20.
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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,
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x = 0 means that the boundary feedback loop such as

z1(t,0) = z1(t,∆x), z2(t,0) = z2(t,∆x)

is assumed at x = 0, where ∆x is a sufficiently small positive
constant (see Fig. 1). On the other hand, the Neumann bound-
ary condition imposed at the outlet x = 1 is a general one (see
e.g. [19]). Let us set the controlled output zc(t) ∈ R2 and the
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.
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Remark 2.1. For the parallel-flow heat exchange process with-
out diffusive terms, the exact transient solution was concretely
given in [12]. Also, the reachability/observability results of
the process were given in [23, 13]. Furthermore, the problem
of regulating the outlet fluid temperature to a desired one was
treated in [14]. Recently, in [15] the analytical solution was
given for the parallel-flow three-fluid heat exchange process
without diffusive terms.

2.2. Formulation of the system. By defining the differential
operator L as

L φ(x) =−D
d2φ(x)

dx2 +α
dφ(x)

dx
+h1φ(x), x ∈ (0,1),

1In [25], system (1) with the boundary condition z1(t,0) =
∂ z1
∂x (t,1) =

z2(t,0) =
∂ z2
∂x (t,1) = 0 has been studied. In such case, the open-loop sys-

tem is exponentially stable. On the other hand, system (1) with the boundary
condition (2) is not exponentially stable (see Remark 2.2).

system (1) is written as




∂ z1

∂ t
(t,x) =−L z1(t,x)+h1z2(t,x),

∂ z2

∂ t
(t,x) = (−L +h1 −h2)z2(t,x)+h2z1(t,x)

+b1(x)w1(t)+b2(x)u(t), (t,x) ∈ (0,∞)×(0,1),
z1(0,x) = z10(x), z2(0,x) = z20(x), x ∈ [0,1].

(4)
Here, by considering boundary condition (2), we define the
unbounded operator A as

Aφ = L φ, φ ∈ D(A),

D(A) = {φ ∈ H2(0,1) ; φ ′(0) = φ ′(1) = 0}.

Then, A is expressed as an operator of Sturm-Liouville type as
follows:

(Aφ)(x) =
1

w(x)

(
− d

dx
(p(x)

dφ(x)
dx

)+q(x)φ(x)
)
,

w(x) = e−βx, p(x) = De−βx, q(x) = h1e−βx,

where β := α/D(> 0). Therefore, the operator A becomes
self-adjoint in the weighted L2-space L2

β (0,1) whose inner
product is defined by

⟨φ ,ψ⟩β =
∫ 1

0
φ(x)ψ(x)e−βxdx, φ ,ψ ∈ L2

β (0,1).

A has a set of eigenpairs {λi,φi}∞
i=1 in L2

β (0,1) such that
{φi}∞

i=1 forms a complete orthonormal system in L2
β (0,1).

Hence, any f ∈ L2
β (0,1) is expressed as

f =
∞

∑
i=1

⟨ f ,φi⟩β φi.

Concretely, the eigenvalues and eigenfunctions of A are calcu-
lated as follows (see e.g. [24]):

λ1 = h1, λi+1 = i2π2D+
β 2

4
D+h1,

φ1(x) =
√

β (1− e−β )−
1
2 ,

φi+1(x) = µi

(
e

β
2 x cos iπx− β

2iπ
e

β
2 x sin iπx

)
,

µi :=
√

2
(

1+
β 2

4i2π2

)− 1
2

(≤
√

2), i ≥ 1.

Hereafter, for the initial condition and the influence
functions, we assume that z10,z20,b1,b2,c1,c2 ∈ L2

β (0,1)(=
L2(0,1)). Then, from (4) we have the following equation:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+b1w1(t)+b2u(t), z2(0, ·) = z20.

(5)

As for the output equation (3), we can formulate as follows:
{

zc(t) = [⟨eβ ·c1,z1(t, ·)⟩β ,u(t)]
T ,

y(t) = ⟨eβ ·c2,z1(t, ·)⟩β +w2(t), t > 0.
(6)
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Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

system (5, 6) is written as follows:

	

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
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]
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]
,
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=
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.
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Remark 2.2. The system operator

A =

[
−A h1
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]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2
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2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
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3.1. Partitioned system. In order to derive a finite-
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jection Pk defined by
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. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying
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θδ
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we first choose the minimal integer l (l ≥ 1) such that

0 <
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2
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(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
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A =
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,
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2 whose growth bound is equal
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

d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

� (7)

Moreover, by defining the unbounded operator 

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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 : [D(A)]2 ½ 
½ [L2

β(0, 1)]2 ! [L2
β(0, 1)]2, the bounded operators 

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

1 : R2 ! 
! [L2

β(0, 1)]2, 

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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2 : R ! [L2
β(0, 1)]2, 

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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1 : [L2
β(0, 1)]2 ! R2,  

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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2 : [L2
β(0, 1)]2 ! R and the matrices D12, D21 as

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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system (7) is written as follows:

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),
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L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2
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[
0

B2

]
, C1 :=
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Remark 2.2. The system operator

A =
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which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2
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ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
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,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.
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3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by
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,
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0 <
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variables z1(t, ·) and z2(t, ·) as follows:
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(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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First, we define the following constant.

	

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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Let δ > 0 and θ 2 (0, 1) be given positive numbers.
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(S1)	 For a positive number ε satisfying

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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,

	 we first choose the minimal integer l(l ¸ 1) such that

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.

(S2)	 Next, we choose another integer n larger than l.
Using the operators Pl and Pn(n > l), we decompose the state 
variables z1(t, ¢) and z2(t, ¢) as follows:

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
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]
, B1 :=
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A =
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−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
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DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.
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Therefore, system (7) is equivalently expressed as




dz1,1(t)
dt

=−A1z1,1(t)+h1z2,1(t), z1,1(0) = z1
10,

dz1,2(t)
dt

=−A2z1,2(t)+h1z2,2(t), z1,2(0) = z2
10,

dz1,3(t)
dt

=−A3z1,3(t)+h1z2,3(t), z1,3(0) = z3
10,

dz2,1(t)
dt

= (−A1 +h1 −h2)z2,1(t)+h2z1,1(t)

+B1,1w1(t)+B2,1u(t), z2,1(0) = z1
20,

dz2,2(t)
dt

= (−A2 +h1 −h2)z2,2(t)+h2z1,2(t)

+B1,2w1(t)+B2,2u(t), z2,2(0) = z2
20,

dz2,3(t)
dt

= (−A3 +h1 −h2)z2,3(t)+h2z1,3(t)

+B1,3w1(t)+B2,3u(t), z2,3(0) = z3
20,

zc(t) =

[
C1,1z1,1(t)+C1,2z1,2(t)+C1,3z1,3(t)

u(t)

]
,

y(t) =C2,1z1,1(t)+C2,2z1,2(t)+C2,3z1,3(t)+w2(t),
(10)

where




A1 := PlAPl ,

B1,1 := PlB1, B2,1 := PlB2,

C1,1 :=C1Pl , C2,1 :=C2Pl ,

z1
10 := Plz10, z1

20 := Plz20,


A2 := (Pn −Pl)A(Pn −Pl),

B1,2 := (Pn −Pl)B1, B2,2 := (Pn −Pl)B2,

C1,2 :=C1(Pn −Pl), C2,2 :=C2(Pn −Pl),

z2
10 := (Pn −Pl)z10, z2

20 := (Pn −Pl)z20,


A3 := (I −Pn)A(I −Pn),

B1,3 := (I −Pn)B1, B2,3 := (I −Pn)B2,

C1,3 :=C1(I −Pn), C2,3 :=C2(I −Pn),

z3
10 := (I −Pn)z10, z3

20 := (I −Pn)z20.

In the above, the operator A3 is unbounded, whereas all the
other operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space
PlL2

β (0,1) with the Euclidean space Rl with respect to the ba-
sis {φ1, φ2, . . . ,φl}. In this way, each element in PlL2

β (0,1) is
identified with an l-dimensional vector, and the operators A1,
B1,1, B2,1, C1,1 and C2,1 are identified with matrices with ap-
propriate size. Similarly, each element in (Pn −Pl)L2

β (0,1) is
identified with an (n− l)-dimensional vector, and the opera-
tors A2, B1,2, B2,2, C1,2 and C2,2 are identified with matrices
with appropriate size.

Combining the first and fourth equations, and the second
and fifth equations, and further the third and sixth equations

for system (10), we have the following equation:


dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t), x1(0) = x10,

dx2(t)
dt

= A2x2(t)+B1,2w(t)+B2,2u(t), x2(0) = x20,

dx3(t)
dt

= A3x3(t)+B1,3w(t)+B2,3u(t), x3(0) = x30,

zc(t) =C1,1x1(t)+C1,2x2(t)+C1,3x3(t)+D12u(t),

y(t) =C2,1x1(t)+C2,2x2(t)+C2,3x3(t)+D21w(t),
(11)

where the state variables xi(t) (i = 1,2,3) and the disturbance
w(t) are

x1(t) :=

[
z1,1(t)
z2,1(t)

]
∈ R2l ,

x2(t) :=

[
z1,2(t)
z2,2(t)

]
∈ R2(n−l),

x3(t) :=

[
z1,3(t)
z2,3(t)

]
∈ [(I −Pn)L2

β (0,1)]
2,

w(t) :=

[
w1(t)
w2(t)

]
∈ R2,

and the matrices and operators are as follows:

A1 :=

[
−A1 h1Il

h2Il −A1 +(h1 −h2)Il

]
,

B1,1 :=

[
0 0

B1,1 0

]
, B2,1 :=

[
0

B2,1

]
,

C1,1 :=

[
C1,1 0

0 0

]
, C2,1 :=

[
C2,1 0

]
,

A2 :=

[
−A2 h1In−l

h2In−l −A2 +(h1 −h2)In−l

]
,

B1,2 :=

[
0 0

B1,2 0

]
, B2,2 :=

[
0

B2,2

]
,

C1,2 :=

[
C1,2 0

0 0

]
, C2,2 :=

[
C2,2 0

]
,

A3 :=

[
−A3 h1I
h2I −A3 +(h1 −h2)I

]
,

B1,3 :=

[
0 0

B1,3 0

]
, B2,3 :=

[
0

B2,3

]
,

C1,3 :=

[
C1,3 0

0 0

]
, C2,3 :=

[
C2,3 0

]
,

D12 =

[
0
1

]
, D21 :=

[
0 1

]
.

3.2. Finite-dimensional H∞ controllers using RMFs. By the
partitioned system (11), we consider the finite-dimensional
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dz1,1(t)
dt

=−A1z1,1(t)+h1z2,1(t), z1,1(0) = z1
10,

dz1,2(t)
dt

=−A2z1,2(t)+h1z2,2(t), z1,2(0) = z2
10,

dz1,3(t)
dt

=−A3z1,3(t)+h1z2,3(t), z1,3(0) = z3
10,

dz2,1(t)
dt

= (−A1 +h1 −h2)z2,1(t)+h2z1,1(t)

+B1,1w1(t)+B2,1u(t), z2,1(0) = z1
20,

dz2,2(t)
dt

= (−A2 +h1 −h2)z2,2(t)+h2z1,2(t)

+B1,2w1(t)+B2,2u(t), z2,2(0) = z2
20,

dz2,3(t)
dt

= (−A3 +h1 −h2)z2,3(t)+h2z1,3(t)

+B1,3w1(t)+B2,3u(t), z2,3(0) = z3
20,

zc(t) =

[
C1,1z1,1(t)+C1,2z1,2(t)+C1,3z1,3(t)

u(t)

]
,

y(t) =C2,1z1,1(t)+C2,2z1,2(t)+C2,3z1,3(t)+w2(t),
(10)

where




A1 := PlAPl ,

B1,1 := PlB1, B2,1 := PlB2,

C1,1 :=C1Pl , C2,1 :=C2Pl ,

z1
10 := Plz10, z1

20 := Plz20,


A2 := (Pn −Pl)A(Pn −Pl),

B1,2 := (Pn −Pl)B1, B2,2 := (Pn −Pl)B2,

C1,2 :=C1(Pn −Pl), C2,2 :=C2(Pn −Pl),

z2
10 := (Pn −Pl)z10, z2

20 := (Pn −Pl)z20,


A3 := (I −Pn)A(I −Pn),

B1,3 := (I −Pn)B1, B2,3 := (I −Pn)B2,

C1,3 :=C1(I −Pn), C2,3 :=C2(I −Pn),

z3
10 := (I −Pn)z10, z3

20 := (I −Pn)z20.

In the above, the operator A3 is unbounded, whereas all the
other operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space
PlL2

β (0,1) with the Euclidean space Rl with respect to the ba-
sis {φ1, φ2, . . . ,φl}. In this way, each element in PlL2

β (0,1) is
identified with an l-dimensional vector, and the operators A1,
B1,1, B2,1, C1,1 and C2,1 are identified with matrices with ap-
propriate size. Similarly, each element in (Pn −Pl)L2

β (0,1) is
identified with an (n− l)-dimensional vector, and the opera-
tors A2, B1,2, B2,2, C1,2 and C2,2 are identified with matrices
with appropriate size.

Combining the first and fourth equations, and the second
and fifth equations, and further the third and sixth equations

for system (10), we have the following equation:


dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t), x1(0) = x10,

dx2(t)
dt

= A2x2(t)+B1,2w(t)+B2,2u(t), x2(0) = x20,

dx3(t)
dt

= A3x3(t)+B1,3w(t)+B2,3u(t), x3(0) = x30,

zc(t) =C1,1x1(t)+C1,2x2(t)+C1,3x3(t)+D12u(t),

y(t) =C2,1x1(t)+C2,2x2(t)+C2,3x3(t)+D21w(t),
(11)

where the state variables xi(t) (i = 1,2,3) and the disturbance
w(t) are

x1(t) :=

[
z1,1(t)
z2,1(t)

]
∈ R2l ,

x2(t) :=

[
z1,2(t)
z2,2(t)

]
∈ R2(n−l),

x3(t) :=

[
z1,3(t)
z2,3(t)

]
∈ [(I −Pn)L2

β (0,1)]
2,

w(t) :=

[
w1(t)
w2(t)

]
∈ R2,

and the matrices and operators are as follows:

A1 :=

[
−A1 h1Il

h2Il −A1 +(h1 −h2)Il

]
,

B1,1 :=

[
0 0

B1,1 0

]
, B2,1 :=

[
0

B2,1

]
,

C1,1 :=

[
C1,1 0

0 0

]
, C2,1 :=

[
C2,1 0

]
,

A2 :=

[
−A2 h1In−l

h2In−l −A2 +(h1 −h2)In−l

]
,

B1,2 :=

[
0 0

B1,2 0

]
, B2,2 :=

[
0

B2,2

]
,

C1,2 :=

[
C1,2 0

0 0

]
, C2,2 :=

[
C2,2 0

]
,

A3 :=

[
−A3 h1I
h2I −A3 +(h1 −h2)I

]
,

B1,3 :=

[
0 0

B1,3 0

]
, B2,3 :=

[
0

B2,3

]
,

C1,3 :=

[
C1,3 0

0 0

]
, C2,3 :=

[
C2,3 0

]
,

D12 =

[
0
1

]
, D21 :=

[
0 1

]
.

3.2. Finite-dimensional H∞ controllers using RMFs. By the
partitioned system (11), we consider the finite-dimensional
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Therefore, system (7) is equivalently expressed as



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dz1,1(t)
dt

=−A1z1,1(t)+h1z2,1(t), z1,1(0) = z1
10,

dz1,2(t)
dt

=−A2z1,2(t)+h1z2,2(t), z1,2(0) = z2
10,

dz1,3(t)
dt

=−A3z1,3(t)+h1z2,3(t), z1,3(0) = z3
10,

dz2,1(t)
dt

= (−A1 +h1 −h2)z2,1(t)+h2z1,1(t)

+B1,1w1(t)+B2,1u(t), z2,1(0) = z1
20,

dz2,2(t)
dt

= (−A2 +h1 −h2)z2,2(t)+h2z1,2(t)

+B1,2w1(t)+B2,2u(t), z2,2(0) = z2
20,

dz2,3(t)
dt

= (−A3 +h1 −h2)z2,3(t)+h2z1,3(t)

+B1,3w1(t)+B2,3u(t), z2,3(0) = z3
20,

zc(t) =

[
C1,1z1,1(t)+C1,2z1,2(t)+C1,3z1,3(t)

u(t)

]
,

y(t) =C2,1z1,1(t)+C2,2z1,2(t)+C2,3z1,3(t)+w2(t),
(10)

where





A1 := PlAPl ,

B1,1 := PlB1, B2,1 := PlB2,

C1,1 :=C1Pl , C2,1 :=C2Pl ,

z1
10 := Plz10, z1

20 := Plz20,


A2 := (Pn −Pl)A(Pn −Pl),

B1,2 := (Pn −Pl)B1, B2,2 := (Pn −Pl)B2,

C1,2 :=C1(Pn −Pl), C2,2 :=C2(Pn −Pl),

z2
10 := (Pn −Pl)z10, z2

20 := (Pn −Pl)z20,


A3 := (I −Pn)A(I −Pn),

B1,3 := (I −Pn)B1, B2,3 := (I −Pn)B2,

C1,3 :=C1(I −Pn), C2,3 :=C2(I −Pn),

z3
10 := (I −Pn)z10, z3

20 := (I −Pn)z20.

In the above, the operator A3 is unbounded, whereas all the
other operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space
PlL2

β (0,1) with the Euclidean space Rl with respect to the ba-
sis {φ1, φ2, . . . ,φl}. In this way, each element in PlL2

β (0,1) is
identified with an l-dimensional vector, and the operators A1,
B1,1, B2,1, C1,1 and C2,1 are identified with matrices with ap-
propriate size. Similarly, each element in (Pn −Pl)L2

β (0,1) is
identified with an (n− l)-dimensional vector, and the opera-
tors A2, B1,2, B2,2, C1,2 and C2,2 are identified with matrices
with appropriate size.

Combining the first and fourth equations, and the second
and fifth equations, and further the third and sixth equations

for system (10), we have the following equation:



dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t), x1(0) = x10,

dx2(t)
dt

= A2x2(t)+B1,2w(t)+B2,2u(t), x2(0) = x20,

dx3(t)
dt

= A3x3(t)+B1,3w(t)+B2,3u(t), x3(0) = x30,

zc(t) =C1,1x1(t)+C1,2x2(t)+C1,3x3(t)+D12u(t),

y(t) =C2,1x1(t)+C2,2x2(t)+C2,3x3(t)+D21w(t),
(11)

where the state variables xi(t) (i = 1,2,3) and the disturbance
w(t) are

x1(t) :=

[
z1,1(t)
z2,1(t)

]
∈ R2l ,

x2(t) :=

[
z1,2(t)
z2,2(t)

]
∈ R2(n−l),

x3(t) :=

[
z1,3(t)
z2,3(t)

]
∈ [(I −Pn)L2

β (0,1)]
2,

w(t) :=

[
w1(t)
w2(t)

]
∈ R2,

and the matrices and operators are as follows:

A1 :=

[
−A1 h1Il

h2Il −A1 +(h1 −h2)Il

]
,

B1,1 :=

[
0 0

B1,1 0

]
, B2,1 :=

[
0

B2,1

]
,

C1,1 :=

[
C1,1 0

0 0

]
, C2,1 :=

[
C2,1 0

]
,

A2 :=

[
−A2 h1In−l

h2In−l −A2 +(h1 −h2)In−l

]
,

B1,2 :=

[
0 0

B1,2 0

]
, B2,2 :=

[
0

B2,2

]
,

C1,2 :=

[
C1,2 0

0 0

]
, C2,2 :=

[
C2,2 0

]
,

A3 :=

[
−A3 h1I
h2I −A3 +(h1 −h2)I

]
,

B1,3 :=

[
0 0

B1,3 0

]
, B2,3 :=

[
0

B2,3

]
,

C1,3 :=

[
C1,3 0

0 0

]
, C2,3 :=

[
C2,3 0

]
,

D12 =

[
0
1

]
, D21 :=

[
0 1

]
.

3.2. Finite-dimensional H∞ controllers using RMFs. By the
partitioned system (11), we consider the finite-dimensional
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In the above, the operator A3 is unbounded, whereas all the other 
operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space 
Pl L2

β(0, 1) with the Euclidean space Rl with respect to the basis 
fφ1, φ2, …, φlg. In this way, each element in Pl L2

β(0, 1) is identi-
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C1,1 and C2,1 are identified with matrices with appropriate size. 
Similarly, each element in (Pn ¡ Pl)L2
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C1,2 and C2,2 are identified with matrices with appropriate size.

Combining the first and fourth equations, and the second 
and fifth equations, and further the third and sixth equations 
for system (10), we have the following equation:
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Therefore, system (7) is equivalently expressed as




dz1,1(t)
dt

=−A1z1,1(t)+h1z2,1(t), z1,1(0) = z1
10,

dz1,2(t)
dt

=−A2z1,2(t)+h1z2,2(t), z1,2(0) = z2
10,

dz1,3(t)
dt

=−A3z1,3(t)+h1z2,3(t), z1,3(0) = z3
10,

dz2,1(t)
dt

= (−A1 +h1 −h2)z2,1(t)+h2z1,1(t)

+B1,1w1(t)+B2,1u(t), z2,1(0) = z1
20,

dz2,2(t)
dt

= (−A2 +h1 −h2)z2,2(t)+h2z1,2(t)

+B1,2w1(t)+B2,2u(t), z2,2(0) = z2
20,

dz2,3(t)
dt

= (−A3 +h1 −h2)z2,3(t)+h2z1,3(t)

+B1,3w1(t)+B2,3u(t), z2,3(0) = z3
20,

zc(t) =

[
C1,1z1,1(t)+C1,2z1,2(t)+C1,3z1,3(t)

u(t)

]
,

y(t) =C2,1z1,1(t)+C2,2z1,2(t)+C2,3z1,3(t)+w2(t),
(10)

where




A1 := PlAPl ,

B1,1 := PlB1, B2,1 := PlB2,

C1,1 :=C1Pl , C2,1 :=C2Pl ,

z1
10 := Plz10, z1

20 := Plz20,


A2 := (Pn −Pl)A(Pn −Pl),

B1,2 := (Pn −Pl)B1, B2,2 := (Pn −Pl)B2,

C1,2 :=C1(Pn −Pl), C2,2 :=C2(Pn −Pl),

z2
10 := (Pn −Pl)z10, z2

20 := (Pn −Pl)z20,


A3 := (I −Pn)A(I −Pn),

B1,3 := (I −Pn)B1, B2,3 := (I −Pn)B2,

C1,3 :=C1(I −Pn), C2,3 :=C2(I −Pn),

z3
10 := (I −Pn)z10, z3

20 := (I −Pn)z20.

In the above, the operator A3 is unbounded, whereas all the
other operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space
PlL2

β (0,1) with the Euclidean space Rl with respect to the ba-
sis {φ1, φ2, . . . ,φl}. In this way, each element in PlL2

β (0,1) is
identified with an l-dimensional vector, and the operators A1,
B1,1, B2,1, C1,1 and C2,1 are identified with matrices with ap-
propriate size. Similarly, each element in (Pn −Pl)L2

β (0,1) is
identified with an (n− l)-dimensional vector, and the opera-
tors A2, B1,2, B2,2, C1,2 and C2,2 are identified with matrices
with appropriate size.

Combining the first and fourth equations, and the second
and fifth equations, and further the third and sixth equations

for system (10), we have the following equation:


dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t), x1(0) = x10,

dx2(t)
dt

= A2x2(t)+B1,2w(t)+B2,2u(t), x2(0) = x20,

dx3(t)
dt

= A3x3(t)+B1,3w(t)+B2,3u(t), x3(0) = x30,

zc(t) =C1,1x1(t)+C1,2x2(t)+C1,3x3(t)+D12u(t),

y(t) =C2,1x1(t)+C2,2x2(t)+C2,3x3(t)+D21w(t),
(11)

where the state variables xi(t) (i = 1,2,3) and the disturbance
w(t) are

x1(t) :=

[
z1,1(t)
z2,1(t)

]
∈ R2l ,

x2(t) :=

[
z1,2(t)
z2,2(t)

]
∈ R2(n−l),

x3(t) :=

[
z1,3(t)
z2,3(t)

]
∈ [(I −Pn)L2

β (0,1)]
2,

w(t) :=

[
w1(t)
w2(t)

]
∈ R2,

and the matrices and operators are as follows:

A1 :=

[
−A1 h1Il

h2Il −A1 +(h1 −h2)Il

]
,

B1,1 :=

[
0 0

B1,1 0

]
, B2,1 :=

[
0

B2,1

]
,

C1,1 :=

[
C1,1 0

0 0

]
, C2,1 :=

[
C2,1 0

]
,

A2 :=

[
−A2 h1In−l

h2In−l −A2 +(h1 −h2)In−l

]
,

B1,2 :=

[
0 0

B1,2 0

]
, B2,2 :=

[
0

B2,2

]
,

C1,2 :=

[
C1,2 0

0 0

]
, C2,2 :=

[
C2,2 0

]
,

A3 :=

[
−A3 h1I
h2I −A3 +(h1 −h2)I

]
,

B1,3 :=

[
0 0

B1,3 0

]
, B2,3 :=

[
0

B2,3

]
,

C1,3 :=

[
C1,3 0

0 0

]
, C2,3 :=

[
C2,3 0

]
,

D12 =

[
0
1

]
, D21 :=

[
0 1

]
.

3.2. Finite-dimensional H∞ controllers using RMFs. By the
partitioned system (11), we consider the finite-dimensional
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Therefore, system (7) is equivalently expressed as




dz1,1(t)
dt

=−A1z1,1(t)+h1z2,1(t), z1,1(0) = z1
10,

dz1,2(t)
dt

=−A2z1,2(t)+h1z2,2(t), z1,2(0) = z2
10,

dz1,3(t)
dt

=−A3z1,3(t)+h1z2,3(t), z1,3(0) = z3
10,

dz2,1(t)
dt

= (−A1 +h1 −h2)z2,1(t)+h2z1,1(t)

+B1,1w1(t)+B2,1u(t), z2,1(0) = z1
20,

dz2,2(t)
dt

= (−A2 +h1 −h2)z2,2(t)+h2z1,2(t)

+B1,2w1(t)+B2,2u(t), z2,2(0) = z2
20,

dz2,3(t)
dt

= (−A3 +h1 −h2)z2,3(t)+h2z1,3(t)

+B1,3w1(t)+B2,3u(t), z2,3(0) = z3
20,

zc(t) =

[
C1,1z1,1(t)+C1,2z1,2(t)+C1,3z1,3(t)

u(t)

]
,

y(t) =C2,1z1,1(t)+C2,2z1,2(t)+C2,3z1,3(t)+w2(t),
(10)

where




A1 := PlAPl ,

B1,1 := PlB1, B2,1 := PlB2,

C1,1 :=C1Pl , C2,1 :=C2Pl ,

z1
10 := Plz10, z1

20 := Plz20,


A2 := (Pn −Pl)A(Pn −Pl),

B1,2 := (Pn −Pl)B1, B2,2 := (Pn −Pl)B2,

C1,2 :=C1(Pn −Pl), C2,2 :=C2(Pn −Pl),

z2
10 := (Pn −Pl)z10, z2

20 := (Pn −Pl)z20,


A3 := (I −Pn)A(I −Pn),

B1,3 := (I −Pn)B1, B2,3 := (I −Pn)B2,

C1,3 :=C1(I −Pn), C2,3 :=C2(I −Pn),

z3
10 := (I −Pn)z10, z3

20 := (I −Pn)z20.

In the above, the operator A3 is unbounded, whereas all the
other operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space
PlL2

β (0,1) with the Euclidean space Rl with respect to the ba-
sis {φ1, φ2, . . . ,φl}. In this way, each element in PlL2

β (0,1) is
identified with an l-dimensional vector, and the operators A1,
B1,1, B2,1, C1,1 and C2,1 are identified with matrices with ap-
propriate size. Similarly, each element in (Pn −Pl)L2

β (0,1) is
identified with an (n− l)-dimensional vector, and the opera-
tors A2, B1,2, B2,2, C1,2 and C2,2 are identified with matrices
with appropriate size.

Combining the first and fourth equations, and the second
and fifth equations, and further the third and sixth equations

for system (10), we have the following equation:


dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t), x1(0) = x10,

dx2(t)
dt

= A2x2(t)+B1,2w(t)+B2,2u(t), x2(0) = x20,

dx3(t)
dt

= A3x3(t)+B1,3w(t)+B2,3u(t), x3(0) = x30,

zc(t) =C1,1x1(t)+C1,2x2(t)+C1,3x3(t)+D12u(t),

y(t) =C2,1x1(t)+C2,2x2(t)+C2,3x3(t)+D21w(t),
(11)

where the state variables xi(t) (i = 1,2,3) and the disturbance
w(t) are

x1(t) :=

[
z1,1(t)
z2,1(t)

]
∈ R2l ,

x2(t) :=

[
z1,2(t)
z2,2(t)

]
∈ R2(n−l),

x3(t) :=

[
z1,3(t)
z2,3(t)

]
∈ [(I −Pn)L2

β (0,1)]
2,

w(t) :=

[
w1(t)
w2(t)

]
∈ R2,

and the matrices and operators are as follows:

A1 :=

[
−A1 h1Il

h2Il −A1 +(h1 −h2)Il

]
,

B1,1 :=

[
0 0

B1,1 0

]
, B2,1 :=

[
0

B2,1

]
,

C1,1 :=

[
C1,1 0

0 0

]
, C2,1 :=

[
C2,1 0

]
,

A2 :=

[
−A2 h1In−l

h2In−l −A2 +(h1 −h2)In−l

]
,

B1,2 :=

[
0 0

B1,2 0

]
, B2,2 :=

[
0

B2,2

]
,

C1,2 :=

[
C1,2 0

0 0

]
, C2,2 :=

[
C2,2 0

]
,

A3 :=

[
−A3 h1I
h2I −A3 +(h1 −h2)I

]
,

B1,3 :=

[
0 0

B1,3 0

]
, B2,3 :=

[
0

B2,3

]
,

C1,3 :=

[
C1,3 0

0 0

]
, C2,3 :=

[
C2,3 0

]
,

D12 =

[
0
1

]
, D21 :=

[
0 1

]
.

3.2. Finite-dimensional H∞ controllers using RMFs. By the
partitioned system (11), we consider the finite-dimensional
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� (11)

where the state variables x–i(t)(i = 1, 2, 3) and the disturbance 
w(t) are

H. Sano

Therefore, system (7) is equivalently expressed as




dz1,1(t)
dt

=−A1z1,1(t)+h1z2,1(t), z1,1(0) = z1
10,

dz1,2(t)
dt

=−A2z1,2(t)+h1z2,2(t), z1,2(0) = z2
10,

dz1,3(t)
dt

=−A3z1,3(t)+h1z2,3(t), z1,3(0) = z3
10,

dz2,1(t)
dt

= (−A1 +h1 −h2)z2,1(t)+h2z1,1(t)

+B1,1w1(t)+B2,1u(t), z2,1(0) = z1
20,

dz2,2(t)
dt

= (−A2 +h1 −h2)z2,2(t)+h2z1,2(t)

+B1,2w1(t)+B2,2u(t), z2,2(0) = z2
20,

dz2,3(t)
dt

= (−A3 +h1 −h2)z2,3(t)+h2z1,3(t)

+B1,3w1(t)+B2,3u(t), z2,3(0) = z3
20,

zc(t) =

[
C1,1z1,1(t)+C1,2z1,2(t)+C1,3z1,3(t)

u(t)

]
,

y(t) =C2,1z1,1(t)+C2,2z1,2(t)+C2,3z1,3(t)+w2(t),
(10)

where




A1 := PlAPl ,

B1,1 := PlB1, B2,1 := PlB2,

C1,1 :=C1Pl , C2,1 :=C2Pl ,

z1
10 := Plz10, z1

20 := Plz20,


A2 := (Pn −Pl)A(Pn −Pl),

B1,2 := (Pn −Pl)B1, B2,2 := (Pn −Pl)B2,

C1,2 :=C1(Pn −Pl), C2,2 :=C2(Pn −Pl),

z2
10 := (Pn −Pl)z10, z2

20 := (Pn −Pl)z20,


A3 := (I −Pn)A(I −Pn),

B1,3 := (I −Pn)B1, B2,3 := (I −Pn)B2,

C1,3 :=C1(I −Pn), C2,3 :=C2(I −Pn),

z3
10 := (I −Pn)z10, z3

20 := (I −Pn)z20.

In the above, the operator A3 is unbounded, whereas all the
other operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space
PlL2

β (0,1) with the Euclidean space Rl with respect to the ba-
sis {φ1, φ2, . . . ,φl}. In this way, each element in PlL2

β (0,1) is
identified with an l-dimensional vector, and the operators A1,
B1,1, B2,1, C1,1 and C2,1 are identified with matrices with ap-
propriate size. Similarly, each element in (Pn −Pl)L2

β (0,1) is
identified with an (n− l)-dimensional vector, and the opera-
tors A2, B1,2, B2,2, C1,2 and C2,2 are identified with matrices
with appropriate size.

Combining the first and fourth equations, and the second
and fifth equations, and further the third and sixth equations

for system (10), we have the following equation:


dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t), x1(0) = x10,

dx2(t)
dt

= A2x2(t)+B1,2w(t)+B2,2u(t), x2(0) = x20,

dx3(t)
dt

= A3x3(t)+B1,3w(t)+B2,3u(t), x3(0) = x30,

zc(t) =C1,1x1(t)+C1,2x2(t)+C1,3x3(t)+D12u(t),

y(t) =C2,1x1(t)+C2,2x2(t)+C2,3x3(t)+D21w(t),
(11)

where the state variables xi(t) (i = 1,2,3) and the disturbance
w(t) are

x1(t) :=

[
z1,1(t)
z2,1(t)

]
∈ R2l ,

x2(t) :=

[
z1,2(t)
z2,2(t)

]
∈ R2(n−l),

x3(t) :=

[
z1,3(t)
z2,3(t)

]
∈ [(I −Pn)L2

β (0,1)]
2,

w(t) :=

[
w1(t)
w2(t)

]
∈ R2,

and the matrices and operators are as follows:

A1 :=

[
−A1 h1Il

h2Il −A1 +(h1 −h2)Il

]
,

B1,1 :=

[
0 0

B1,1 0

]
, B2,1 :=

[
0

B2,1

]
,

C1,1 :=

[
C1,1 0

0 0

]
, C2,1 :=

[
C2,1 0

]
,

A2 :=

[
−A2 h1In−l

h2In−l −A2 +(h1 −h2)In−l

]
,

B1,2 :=

[
0 0

B1,2 0

]
, B2,2 :=

[
0

B2,2

]
,

C1,2 :=

[
C1,2 0

0 0

]
, C2,2 :=

[
C2,2 0

]
,

A3 :=

[
−A3 h1I
h2I −A3 +(h1 −h2)I

]
,

B1,3 :=

[
0 0

B1,3 0

]
, B2,3 :=

[
0

B2,3

]
,

C1,3 :=

[
C1,3 0

0 0

]
, C2,3 :=

[
C2,3 0

]
,

D12 =

[
0
1

]
, D21 :=

[
0 1

]
.

3.2. Finite-dimensional H∞ controllers using RMFs. By the
partitioned system (11), we consider the finite-dimensional
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Therefore, system (7) is equivalently expressed as




dz1,1(t)
dt

=−A1z1,1(t)+h1z2,1(t), z1,1(0) = z1
10,

dz1,2(t)
dt

=−A2z1,2(t)+h1z2,2(t), z1,2(0) = z2
10,

dz1,3(t)
dt

=−A3z1,3(t)+h1z2,3(t), z1,3(0) = z3
10,

dz2,1(t)
dt

= (−A1 +h1 −h2)z2,1(t)+h2z1,1(t)

+B1,1w1(t)+B2,1u(t), z2,1(0) = z1
20,

dz2,2(t)
dt

= (−A2 +h1 −h2)z2,2(t)+h2z1,2(t)

+B1,2w1(t)+B2,2u(t), z2,2(0) = z2
20,

dz2,3(t)
dt

= (−A3 +h1 −h2)z2,3(t)+h2z1,3(t)

+B1,3w1(t)+B2,3u(t), z2,3(0) = z3
20,

zc(t) =

[
C1,1z1,1(t)+C1,2z1,2(t)+C1,3z1,3(t)

u(t)

]
,

y(t) =C2,1z1,1(t)+C2,2z1,2(t)+C2,3z1,3(t)+w2(t),
(10)

where




A1 := PlAPl ,

B1,1 := PlB1, B2,1 := PlB2,

C1,1 :=C1Pl , C2,1 :=C2Pl ,

z1
10 := Plz10, z1

20 := Plz20,


A2 := (Pn −Pl)A(Pn −Pl),

B1,2 := (Pn −Pl)B1, B2,2 := (Pn −Pl)B2,

C1,2 :=C1(Pn −Pl), C2,2 :=C2(Pn −Pl),

z2
10 := (Pn −Pl)z10, z2

20 := (Pn −Pl)z20,


A3 := (I −Pn)A(I −Pn),

B1,3 := (I −Pn)B1, B2,3 := (I −Pn)B2,

C1,3 :=C1(I −Pn), C2,3 :=C2(I −Pn),

z3
10 := (I −Pn)z10, z3

20 := (I −Pn)z20.

In the above, the operator A3 is unbounded, whereas all the
other operators are bounded.

Hereafter, we identify the finite-dimensional Hilbert space
PlL2

β (0,1) with the Euclidean space Rl with respect to the ba-
sis {φ1, φ2, . . . ,φl}. In this way, each element in PlL2

β (0,1) is
identified with an l-dimensional vector, and the operators A1,
B1,1, B2,1, C1,1 and C2,1 are identified with matrices with ap-
propriate size. Similarly, each element in (Pn −Pl)L2

β (0,1) is
identified with an (n− l)-dimensional vector, and the opera-
tors A2, B1,2, B2,2, C1,2 and C2,2 are identified with matrices
with appropriate size.

Combining the first and fourth equations, and the second
and fifth equations, and further the third and sixth equations

for system (10), we have the following equation:



dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t), x1(0) = x10,

dx2(t)
dt

= A2x2(t)+B1,2w(t)+B2,2u(t), x2(0) = x20,

dx3(t)
dt

= A3x3(t)+B1,3w(t)+B2,3u(t), x3(0) = x30,

zc(t) =C1,1x1(t)+C1,2x2(t)+C1,3x3(t)+D12u(t),

y(t) =C2,1x1(t)+C2,2x2(t)+C2,3x3(t)+D21w(t),
(11)

where the state variables xi(t) (i = 1,2,3) and the disturbance
w(t) are

x1(t) :=

[
z1,1(t)
z2,1(t)

]
∈ R2l ,

x2(t) :=

[
z1,2(t)
z2,2(t)

]
∈ R2(n−l),

x3(t) :=

[
z1,3(t)
z2,3(t)

]
∈ [(I −Pn)L2

β (0,1)]
2,

w(t) :=

[
w1(t)
w2(t)

]
∈ R2,

and the matrices and operators are as follows:

A1 :=

[
−A1 h1Il

h2Il −A1 +(h1 −h2)Il

]
,

B1,1 :=
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Finite-dimensional H∞ control of a parallel-flow heat exchange process

system



dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t),

zc(t) =C1,1x1(t)+D12u(t),

y(t) =C2,1x1(t)+D21w(t)

(12)

as a finite-dimensional model for system (8). Here, note that
this model also satisfies the orthogonal condition

DT
12C1,1 = 0, DT

12D12 = 1, B1,1DT
21 = 0, D21DT

21 = 1.

Here, we set the following assumptions for the model (12):

(A1) The pair (A1,B1,1) is stabilizable, and the pair
(C1,1,A1) is detectable.

(A2) The pair (A1,B2,1) is stabilizable, and the pair
(C2,1,A1) is detectable.

For the finite-dimensional model (12), we denote the closed-
loop transfer function from w to zc by Tzcw(s). For the given
positive numbers δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ

b ), let us de-
fine the postive number γ by

γ :=
1

(1+ ε)2

(
θδ
b

− ε
)
∈ (0,δ ). (13)

Then, from the result given by Doyle et al., under the assump-
tions (A1)–(A2), the necessary and sufficient condition for the
controller u = K̃(s)y such that

(i) it internally stabilizes the model (12), and
(ii) ∥Tzcw(·)∥H∞(L (C2,C2)) < γ

to exist for the model (12) is given, by using the matrices H∞
and J∞ defined by

H∞ :=

[
A1 γ−2B1,1BT

1,1 −B2,1BT
2,1

−CT
1,1C1,1 −AT

1

]
,

J∞ :=

[
AT

1 γ−2CT
1,1C1,1 −CT

2,1C2,1

−B1,1BT
1,1 −A1

]
,

as the following (B1)–(B3):

(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞)≥ 0,
(B2) J∞ ∈ dom(Ric), Y∞ := Ric(J∞)≥ 0,
(B3) ρ(X∞Y∞)< γ2,

where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).

Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
that satisfy ∥Tzcw(·)∥H∞(L (C2,C2)) < γ are given as follows:




dq(t)
dt

= Â∞q(t)−Z∞L∞y(t)+Z∞B2,1v(t), q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t),

(14)




dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t)+DΛr(t),
(15)

System (8)

RMF (18)

(16)

(17)
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Fig. 2. Finite-dimensional H∞ controller ΣK

where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)




dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):



dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)




dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):



dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)




dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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Then, from the result given by Doyle et al., under the assump-
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(12)
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DT
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21 = 1.

Here, we set the following assumptions for the model (12):

(A1) The pair (A1,B1,1) is stabilizable, and the pair
(C1,1,A1) is detectable.

(A2) The pair (A1,B2,1) is stabilizable, and the pair
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For the finite-dimensional model (12), we denote the closed-
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tions (A1)–(A2), the necessary and sufficient condition for the
controller u = K̃(s)y such that

(i) it internally stabilizes the model (12), and
(ii) ∥Tzcw(·)∥H∞(L (C2,C2)) < γ

to exist for the model (12) is given, by using the matrices H∞
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H∞ :=
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as the following (B1)–(B3):

(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞)≥ 0,
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where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).

Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
that satisfy ∥Tzcw(·)∥H∞(L (C2,C2)) < γ are given as follows:
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

dλ (t)
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where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):


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dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)
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
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= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,
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Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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(C1,1,A1) is detectable.
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(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞)≥ 0,
(B2) J∞ ∈ dom(Ric), Y∞ := Ric(J∞)≥ 0,
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where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).

Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
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where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):
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dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)
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

dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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21 = 0, D21DT

21 = 1.
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positive numbers δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ

b ), let us de-
fine the postive number γ by

γ :=
1

(1+ ε)2

(
θδ
b

− ε
)
∈ (0,δ ). (13)

Then, from the result given by Doyle et al., under the assump-
tions (A1)–(A2), the necessary and sufficient condition for the
controller u = K̃(s)y such that

(i) it internally stabilizes the model (12), and
(ii) ∥Tzcw(·)∥H∞(L (C2,C2)) < γ

to exist for the model (12) is given, by using the matrices H∞
and J∞ defined by

H∞ :=

[
A1 γ−2B1,1BT

1,1 −B2,1BT
2,1

−CT
1,1C1,1 −AT

1

]
,

J∞ :=

[
AT

1 γ−2CT
1,1C1,1 −CT

2,1C2,1

−B1,1BT
1,1 −A1

]
,

as the following (B1)–(B3):

(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞)≥ 0,
(B2) J∞ ∈ dom(Ric), Y∞ := Ric(J∞)≥ 0,
(B3) ρ(X∞Y∞)< γ2,

where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).

Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
that satisfy ∥Tzcw(·)∥H∞(L (C2,C2)) < γ are given as follows:




dq(t)
dt
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where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT
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∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)
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

dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):
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(16)
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b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):
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Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)




dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):




dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)




dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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= A1x1(t)+B1,1w(t)+B2,1u(t),

zc(t) =C1,1x1(t)+D12u(t),

y(t) =C2,1x1(t)+D21w(t)

(12)

as a finite-dimensional model for system (8). Here, note that
this model also satisfies the orthogonal condition

DT
12C1,1 = 0, DT

12D12 = 1, B1,1DT
21 = 0, D21DT

21 = 1.

Here, we set the following assumptions for the model (12):

(A1) The pair (A1,B1,1) is stabilizable, and the pair
(C1,1,A1) is detectable.

(A2) The pair (A1,B2,1) is stabilizable, and the pair
(C2,1,A1) is detectable.

For the finite-dimensional model (12), we denote the closed-
loop transfer function from w to zc by Tzcw(s). For the given
positive numbers δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ

b ), let us de-
fine the postive number γ by

γ :=
1

(1+ ε)2

(
θδ
b

− ε
)
∈ (0,δ ). (13)

Then, from the result given by Doyle et al., under the assump-
tions (A1)–(A2), the necessary and sufficient condition for the
controller u = K̃(s)y such that

(i) it internally stabilizes the model (12), and
(ii) ∥Tzcw(·)∥H∞(L (C2,C2)) < γ

to exist for the model (12) is given, by using the matrices H∞
and J∞ defined by

H∞ :=

[
A1 γ−2B1,1BT

1,1 −B2,1BT
2,1

−CT
1,1C1,1 −AT

1

]
,

J∞ :=

[
AT

1 γ−2CT
1,1C1,1 −CT

2,1C2,1

−B1,1BT
1,1 −A1

]
,

as the following (B1)–(B3):

(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞)≥ 0,
(B2) J∞ ∈ dom(Ric), Y∞ := Ric(J∞)≥ 0,
(B3) ρ(X∞Y∞)< γ2,

where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).

Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
that satisfy ∥Tzcw(·)∥H∞(L (C2,C2)) < γ are given as follows:
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= Â∞q(t)−Z∞L∞y(t)+Z∞B2,1v(t), q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t),

(14)




dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t)+DΛr(t),
(15)
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where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):
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dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)
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dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).
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where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):
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dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)
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dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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ŷ2

+ −

v r ∑K

Fig. 2. Finite-dimensional H∞ controller ΣK

where
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where σ(AΛ) denotes the spectrum of AΛ (see [5]).
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

dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):
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ŷ2

+ −

v r ∑K

Fig. 2. Finite-dimensional H∞ controller ΣK

where
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troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):



dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
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
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ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
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where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):
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dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)


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

dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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ŷ2

+ −

v r ∑K

Fig. 2. Finite-dimensional H∞ controller ΣK

where
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is chosen sufficiently large.

Proof. Introducing the variable e–2(t) := x–2(t) ¡ x ̂ 2(t), the closed-
loop system from w to zc is written as follows:

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0


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,

B :=


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, ∆B :=
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0
0
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,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
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denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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(where p(t) := [q(t)T, λ(t)T]T ) takes value in the real Hilbert space 
X := R2l£(R2l£RS)£R2(n–l)£[(I ¡ Pn)L2

β(0, 1)]2£R2(n–l) (where 
the state space of the free parameter (17) is set to be RS), and 
the operators 

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,
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Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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system



dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t),

zc(t) =C1,1x1(t)+D12u(t),

y(t) =C2,1x1(t)+D21w(t)

(12)

as a finite-dimensional model for system (8). Here, note that
this model also satisfies the orthogonal condition

DT
12C1,1 = 0, DT

12D12 = 1, B1,1DT
21 = 0, D21DT

21 = 1.

Here, we set the following assumptions for the model (12):

(A1) The pair (A1,B1,1) is stabilizable, and the pair
(C1,1,A1) is detectable.

(A2) The pair (A1,B2,1) is stabilizable, and the pair
(C2,1,A1) is detectable.

For the finite-dimensional model (12), we denote the closed-
loop transfer function from w to zc by Tzcw(s). For the given
positive numbers δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ

b ), let us de-
fine the postive number γ by

γ :=
1

(1+ ε)2

(
θδ
b

− ε
)
∈ (0,δ ). (13)

Then, from the result given by Doyle et al., under the assump-
tions (A1)–(A2), the necessary and sufficient condition for the
controller u = K̃(s)y such that

(i) it internally stabilizes the model (12), and
(ii) ∥Tzcw(·)∥H∞(L (C2,C2)) < γ

to exist for the model (12) is given, by using the matrices H∞
and J∞ defined by

H∞ :=

[
A1 γ−2B1,1BT

1,1 −B2,1BT
2,1

−CT
1,1C1,1 −AT

1

]
,

J∞ :=

[
AT

1 γ−2CT
1,1C1,1 −CT

2,1C2,1

−B1,1BT
1,1 −A1

]
,

as the following (B1)–(B3):

(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞)≥ 0,
(B2) J∞ ∈ dom(Ric), Y∞ := Ric(J∞)≥ 0,
(B3) ρ(X∞Y∞)< γ2,

where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).

Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
that satisfy ∥Tzcw(·)∥H∞(L (C2,C2)) < γ are given as follows:




dq(t)
dt

= Â∞q(t)−Z∞L∞y(t)+Z∞B2,1v(t), q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t),

(14)





dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t)+DΛr(t),
(15)

System (8)

RMF (18)

(16)

(17)

�
��

� � �

�

� �
�

�

w
u

zc
y

ŷ2

+ −

v r ∑K

Fig. 2. Finite-dimensional H∞ controller ΣK

where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):



dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)





dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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In the above, the operator 

Finite-dimensional H∞ control of a parallel-flow heat exchange process

Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:



dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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 is unbounded since it contains the 
unbounded operator A–3.

By the same discussion as in [22], and further by using the 
inequality

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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we can prove that, for sufficiently large n, the C0-semigroup  
et
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controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:



dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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system



dx1(t)
dt

= A1x1(t)+B1,1w(t)+B2,1u(t),

zc(t) =C1,1x1(t)+D12u(t),

y(t) =C2,1x1(t)+D21w(t)

(12)

as a finite-dimensional model for system (8). Here, note that
this model also satisfies the orthogonal condition

DT
12C1,1 = 0, DT

12D12 = 1, B1,1DT
21 = 0, D21DT

21 = 1.

Here, we set the following assumptions for the model (12):

(A1) The pair (A1,B1,1) is stabilizable, and the pair
(C1,1,A1) is detectable.

(A2) The pair (A1,B2,1) is stabilizable, and the pair
(C2,1,A1) is detectable.

For the finite-dimensional model (12), we denote the closed-
loop transfer function from w to zc by Tzcw(s). For the given
positive numbers δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ

b ), let us de-
fine the postive number γ by

γ :=
1

(1+ ε)2

(
θδ
b

− ε
)
∈ (0,δ ). (13)

Then, from the result given by Doyle et al., under the assump-
tions (A1)–(A2), the necessary and sufficient condition for the
controller u = K̃(s)y such that

(i) it internally stabilizes the model (12), and
(ii) ∥Tzcw(·)∥H∞(L (C2,C2)) < γ

to exist for the model (12) is given, by using the matrices H∞
and J∞ defined by

H∞ :=

[
A1 γ−2B1,1BT

1,1 −B2,1BT
2,1

−CT
1,1C1,1 −AT

1

]
,

J∞ :=

[
AT

1 γ−2CT
1,1C1,1 −CT

2,1C2,1

−B1,1BT
1,1 −A1

]
,

as the following (B1)–(B3):

(B1) H∞ ∈ dom(Ric), X∞ := Ric(H∞)≥ 0,
(B2) J∞ ∈ dom(Ric), Y∞ := Ric(J∞)≥ 0,
(B3) ρ(X∞Y∞)< γ2,

where the notation ρ(X∞Y∞) denotes the spectral radius of the
matrix X∞Y∞ (see [5]).

Hereafter, it is supposed that the assumptions (B1)–(B3) are
satisfied. Then, all stabilizing controllers for the model (12)
that satisfy ∥Tzcw(·)∥H∞(L (C2,C2)) < γ are given as follows:




dq(t)
dt

= Â∞q(t)−Z∞L∞y(t)+Z∞B2,1v(t), q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t),

(14)




dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t)+DΛr(t),
(15)

System (8)

RMF (18)

(16)

(17)

�
��

� � �

�

� �
�

�

w
u

zc
y

ŷ2

+ −

v r ∑K

Fig. 2. Finite-dimensional H∞ controller ΣK

where

Â∞ := A1 + γ−2B1,1BT
1,1X∞ +B2,1F∞ +Z∞L∞C2,1,

F∞ :=−BT
2,1X∞, L∞ :=−Y∞CT

2,1,

Z∞ := (I − γ−2Y∞X∞)
−1.

In this, (15) is a free parameter that satisfies Reσ(AΛ)< 0 and

∥CΛ((·)I −AΛ)
−1BΛ +DΛ∥H∞(L (C,C)) < γ,

where σ(AΛ) denotes the spectrum of AΛ (see [5]).
In the above, we especially set DΛ = 0 and consider a con-

troller to which the residual mode filter (RMF)



dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t)

is added. In this paper, we show that the proposed
controller becomes a stabilizing controller that satisfies
∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system (8). Then, the whole
controller ΣK is described as follows (Fig. 2):



dq(t)
dt

= Â∞q(t)−Z∞L∞(y(t)− ŷ2(t))+Z∞B2,1v(t),

q(0) = q0,

u(t) = F∞q(t)+ v(t),

r(t) =−C2,1q(t)+ y(t)− ŷ2(t),

(16)

ΣK :


dλ (t)
dt

= AΛλ (t)+BΛr(t), λ (0) = λ0,

v(t) =CΛλ (t),
(17)




dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(18)

Then, we have the following theorem.

Theorem 3.1. Let δ > 0, θ ∈ (0,1), and ε ∈ (0, θδ
b ) be given

positive numbers, where the constant b is defined by (9), and
choose the integers l and n according to the steps (S1)–(S2).
Suppose that the assumptions (A1)–(A2) are satisfied, and fur-
ther that the assumptions (B1)–(B3) are satisfied for the pos-
itive constant γ given by (13). Then, the controller ΣK con-
sisting of (16)–(18) becomes a finite-dimensional stabilizing
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Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0

]
, C2 :=

[
C2 0

]
,

D12 :=

[
0
1

]
, D21 :=

[
0 1

]
,

system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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Here, by defining the bounded operators Bi : R → L2
β (0,1),

Ci : L2
β (0,1)→ R (i = 1,2) as

Biv = biv, v ∈ R,

Ciφ = ⟨eβ ·ci,φ⟩β , φ ∈ L2
β (0,1),

system (5), (6) is written as follows:


dz1(t, ·)
dt

=−Az1(t, ·)+h1z2(t, ·), z1(0, ·) = z10,

dz2(t, ·)
dt

= (−A+h1 −h2)z2(t, ·)+h2z1(t, ·)

+B1w1(t)+B2u(t), z2(0, ·) = z20,

zc(t) =

[
C1z1(t, ·)

u(t)

]
,

y(t) =C2z1(t, ·)+w2(t).

(7)

Moreover, by defining the unbounded operator A : [D(A)]2 ⊂
[L2

β (0,1)]
2 → [L2

β (0,1)]
2, the bounded operators B1 : R2 →

[L2
β (0,1)]

2, B2 : R → [L2
β (0,1)]

2, C1 : [L2
β (0,1)]

2 → R2, C2 :
[L2

β (0,1)]
2 → R and the matrices D12, D21 as

A :=

[
−A h1

h2 −A+h1 −h2

]
, B1 :=

[
0 0

B1 0

]
,

B2 :=

[
0

B2

]
, C1 :=

[
C1 0
0 0
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, C2 :=

[
C2 0

]
,

D12 :=

[
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1
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system (7) is written as follows:


d
dt

[
z1(t, ·)
z2(t, ·)

]
= A

[
z1(t, ·)
z2(t, ·)

]
+B1

[
w1(t)
w2(t)

]

+B2u(t),
[

z1(0, ·)
z2(0, ·)

]
=

[
z10

z20

]
,

zc(t) = C1

[
z1(t, ·)
z2(t, ·)

]
+D12u(t),

y(t) = C2

[
z1(t, ·)
z2(t, ·)

]
+D21

[
w1(t)
w2(t)

]
.

(8)

Remark 2.2. The system operator

A =

[
−A h1

h2 −A+h1 −h2

]
,

which describes (8), generates an analytic semigroup etA on
the Hilbert space X := [L2

β (0,1)]
2 whose growth bound is equal

to −λ1+h1 = 0. Therefore, system (8) is not exponentially sta-
ble. The purpose of this paper is to construct finite-dimensional
H∞ controllers for system (8). Here, note that the orthogonal
condition

DT
12C1 = 0, DT

12D12 = 1, B1DT
21 = 0, D21DT

21 = 1

is satisfied, where DT
12 denotes the transpose of D12.

3. Finite-dimensional H∞ controllers

3.1. Partitioned system. In order to derive a finite-
dimensional model for system (7), we use the orthogonal pro-
jection Pk defined by

Pk f =
k

∑
i=1

⟨ f ,φi⟩β φi.

First, we define the following constant.

b := max
{

1, ∥C1∥∥B2∥∥DT
12∥,

∥C1∥∥B1∥, ∥DT
21∥∥C2∥∥B1∥,

∥C1∥∥B2∥∥DT
12∥∥DT

21∥∥C2∥∥B1∥
}
. (9)

Let δ > 0 and θ ∈ (0,1) be given positive numbers.

(S1) For a positive number ε satisfying

0 < ε <
θδ
b
,

we first choose the minimal integer l (l ≥ 1) such that

0 <
(2+h1 +h2)

2

(h1 +h2)(λl+1 −h1)
< ε.

(S2) Next, we choose another integer n larger than l.

Using the operators Pl and Pn (n > l), we decompose the state
variables z1(t, ·) and z2(t, ·) as follows:

z1(t, ·) = z1,1(t)+ z1,2(t)+ z1,3(t),

z2(t, ·) = z2,1(t)+ z2,2(t)+ z2,3(t),

where

z1,1(t) := Plz1(t, ·), z1,2(t) := (Pn −Pl)z1(t, ·),
z1,3(t) := (I −Pn)z1(t, ·),

z2,1(t) := Plz2(t, ·), z2,2(t) := (Pn −Pl)z2(t, ·),
z2,3(t) := (I −Pn)z2(t, ·).

Also, the space L2
β (0,1) is expressed as

L2
β (0,1) = PlL2

β (0,1)⊕ (Pn −Pl)L2
β (0,1)⊕ (I −Pn)L2

β (0,1),

and their dimensions are given by

dimPlL2
β (0,1) = l, dim(Pn −Pl)L2

β (0,1) = n− l,

dim(I −Pn)L2
β (0,1) = ∞.
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which describes (8), generates an analytic semigroup etA on
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Remark 3.1. When θ ! 1 and ε ! 0, it is easy to see that γ ! δ–b 
and n > l ! �. Especially, when the influence functions b1(x), 
b2(x), c1(x), and c2(x) are chosen such that the L2

β-norm satisfies

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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it follows that b = 1, which implies that γ ! δ as θ ! 1 and 
ε ! 0. However, the restriction with respect to L2

β-norm is some-
what strong when we consider the other control objectives. For 
example, for stability-enhancing control, the following choice 
will be more effective:

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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4.	 Numerical simulation

Let D = 0.1, α = 0.25, β = α/D = 2.5, h1 = 0.7, h2 = 0.8, 
b1(x) = e–βx2/

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.

0

0.5

1

0

5

10

-2
0
2

xt

z 1(t,
 x)

0

0.5

1

0

5

10

-5
0
5

xt

z 2(t,
 x)

0 5 10

-0.8

-0.6

-0.4

-0.2

0

t

In
pu

t  
u(

t) u(t)

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

t

Ou
tp

ut
s  

z(
t) 

 an
d 

 y(
t) z(t)

y(t)

Fig. 3. Evolution of the states, input, and outputs

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

1[0.3,0.9](x), b2(x) = e–βx2/

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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1[0.1,0.2](x), c1(x) =  
Qe– –βx2/

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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1[0.1,0.7](x), and c2(x) = e– –βx2/

H. Sano

controller that satisfies ∥Gzcw(·)∥H∞(L (C2,C2)) < δ for system
(8), if the integer n is chosen sufficiently large.

Proof. Introducing the variable e2(t) := x2(t)− x̂2(t), the
closed-loop system from w to zc is written as follows:


dξ (t)
dt

= (A +∆A )ξ (t)+(B+∆B)w(t), ξ (0) = ξ0,

z(t) = (C +∆C )ξ (t),

where

ξ (t) := [x1(t)T , p(t)T ,x2(t)T ,x3(t),e2(t)T ]T

(where p(t) := [q(t)T ,λ (t)T ]T ) takes value in the real Hilbert
space X := R2l × (R2l ×RS)×R2(n−l)× [(I −Pn)L2

β (0,1)]
2 ×

R2(n−l) (where the state space of the free parameter (17) is set
to be RS), and the operators A , ∆A , B, ∆B, C , and ∆C are
defined as follows:

A :=




A1 B2,1L 0 0 0
NC2,1 M 0 0 NC2,2

0 B2,2L A2 0 0
0 0 0 A3 0
0 0 0 0 A2



,

∆A :=




0 0 0 0 0
0 0 0 NC2,3 0
0 0 0 0 0
0 B2,3L 0 0 0
0 0 0 0 0



,

B :=




B1,1

ND21

B1,2

0
B1,2



, ∆B :=




0
0
0

B1,3

0



,

C :=
[

C1,1 D12L C1,2 0 0
]
,

∆C :=
[

0 0 0 C1,3 0
]
,

M :=

[
Â∞ Z∞B2,1CΛ

−BΛC2,1 AΛ

]
, N :=

[
−Z∞L∞

BΛ

]
,

L :=
[

F∞ CΛ

]
.

In the above, the operator A is unbounded since it contains the
unbounded operator A3.

By the same discussion as in [22], and further by using the
inequality

∥((·)I −A2)
−1∥H∞(L (C2(n−l))) ≤

(2+h1 +h2)
2

(h1 +h2)(λl+1 −h1)
,

we can prove that, for sufficiently large n, the C0-
semigroup et(A +∆A ) generated by the operator A + ∆A
becomes exponentially stable and the norm condition
∥Gzcw(·)∥H∞(L (C2,C2)) < δ is satisfied, where Gzcw(s) := (C +

∆C )
(
sI − (A +∆A )

)−1
(B+∆B). □

Remark 3.1. When θ → 1 and ε → 0, it is easy to see that
γ → δ

b and n> l →∞. Especially, when the influence functions
b1(x), b2(x), c1(x), and c2(x) are chosen such that the L2

β -norm
satisfies

∥b1∥β = ∥b2∥β = ∥c1∥β = ∥c2∥β = 1,

it follows that b = 1, which implies that γ → δ as θ → 1 and
ε → 0. However, the restriction with respect to L2

β -norm is
somewhat strong when we consider the other control objec-
tives. For example, for stability-enhancing control, the follow-
ing choice will be more effective:

∥b1∥β = ∥b2∥β = ∥c2∥β = 1, ∥c1∥β = Q (≥ 1).

4. Numerical simulation
Let D = 0.1, α = 0.25, β = α

D = 2.5, h1 = 0.7, h2 =

0.8, b1(x) = e
βx
2√
0.6

1[0.3,0.9](x), b2(x) = e
βx
2√
0.1

1[0.1,0.2](x), c1(x) =

Qe−
βx
2√

0.6
1[0.1,0.7](x), and c2(x) = e−

βx
2√

0.1
1[0.8,0.9](x), where 1[ · , · ](x)

denotes the characteristic function, and Q is a constant larger
than 1. Then, we have ∥b1∥β = ∥b2∥β = ∥c2∥β = 1 and
∥c1∥β = Q, as a result, we have b = max{1,Q} = Q. Also,
we set the initial conditions and the disturbances as follows:
z1(0,x) ≡ 0, z2(0,x) ≡ 0, q(0) = 0, λ (0) = 0, x̂2(0) = 0,
w1(t) = 7.5e−35(t−0.3)2

, and w2(t) = 0.02e−0.8t sin40t. In this
section, let us set z(t) =

∫ 1
0 c1(x)z1(t,x)dx, which is the first

element of the controlled output zc(t) ∈ R2 (see (3)).
By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and

ε = 0.52. Then, we can choose the integer l as l = 4. The
assumptions (A1)–(A2) are satisfied, since

• (A1,B1,1) is controllable and (C1,1,A1) is observable,
• (A1,B2,1) is controllable and (C2,1,A1) is observable.

Also, the assumptions (B1)–(B3) are satisfied when γ =
8.97247. In the simulation, we set AΛ = −( 1

γ + 0.01) =
−0.121452, BΛ = 1, CΛ = −1, and n = 10. In this case, the
open-loop system is not exponentially stable, since the spec-
tra of the system contains zero eigenvalue (see Remark 2.2).
Figs. 3 and 4 show that the system is stabilized by the proposed
control law.
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1[0.8,0.9](x), where 1[¢, ¢](x) 
denotes the characteristic function, and Q is a constant larger 
than 1. Then, we have kb1kβ = kb2kβ = kc2kβ = 1 and kc1kβ = Q, 
as a result, we have b = maxf1, Qg = Q. Also, we set the initial 
conditions and the disturbances as follows: z1(0, x) ´ 0, 
z2(0, x) ´ 0, q(0) = 0, λ(0) = 0, x ̂ 2(0) = 0, w1(t) = 7.5e–35(t¡0.3)2, 
and w2(t) = 0.02e –0.8tsin40t. In this section, let us set 
z(t) = s01c1(x)z1(t, x)dx, which is the first element of the con-
trolled output zc(t) 2 R2 (see (3)).

By setting Q = 2, we have b = 2. Let δ = 85, θ = 0.5, and 
ε = 0.52. Then, we can choose the integer l as l = 4. The as-
sumptions (A1–A2) are satisfied, since

●● (A–1, B
–

1,1) is controllable and (C–1,1, A
–

1) is observable,
●● (A–1, B

–
2,1) is controllable and (C–2,1, A

–
1) is observable.

Also, the assumptions (B1–B3) are satisfied when γ = 8.97247. 
In the simulation, we set AΛ = ¡(1–γ + 0.01) = ¡0.121452, 
BΛ = 1, CΛ = ¡1, and n = 10. In this case, the open-loop 
system is not exponentially stable, since the spectra of the 
system contains zero eigenvalue (see Remark 2.2). Figs. 3 
and 4 show that the system is stabilized by the proposed con-
trol law.

Finally, to compare with the other finite-dimensional con-
trollers, we consider the case where the observer-based con-
troller is used instead of the proposed one. The observer-based 
controller is described as follows:

Finite-dimensional H∞ control of a parallel-flow heat exchange process
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Finally, to compare with the other finite-dimensional con-
trollers, we consider the case where the observer-based con-
troller is used instead of the proposed one. The observer-based
controller is described as follows:



dq(t)
dt

= (A1 −G1C2,1)q(t)+G1(y(t)− ŷ2(t))

+B2,1u(t), q(0) = q0,

u(t) =−F1q(t),

(19)





dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(20)

If the assumption (A2) is satisfied, the closed-loop stabil-
ity with system (8) is assured, if the integer n is cho-
sen sufficiently large. The proof is the almost same as
that of internal stability in Theorem 3.1. Let l = 4 and
n = 10. From the setting of actuator and sensor influence
functions, since (A1,B2,1) is controllable, we can choose
a matrix F1 such that a set of eigenvalues of A1 − B2,1F1
is equal to {−0.5,−1,−1.5,−2,−2.5,−3,−3.5,−4}. Also,
since (C2,1,A1) is observable, we can choose a matrix G1
such that a set of eigenvalues of A1 − G1C2,1 is equal to
{−5,−5.5,−6,−6.5,−7,−7.5,−8,−8.5}. The matrices F1
and G1 can be solved by using MATLAB Control System Tool-
box. Figs. 5 and 6 show that the stabilization of the system is
fast accomplished, however, the input u(t) uses much larger
power than that of the proposed controller (see Fig. 3).
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To solve the two linear transport-diffusion equations numeri-
cally, we used the finite difference method with mesh width
∆x = 0.02, and the Runge-Kutta method of the fourth or-
der with time step ∆ t = 0.0001 for its time integration. For
the finite-dimensional controllers, we used the Runge-Kutta
method of the fourth order with the same time step ∆ t.

5. Conclusions
In this paper, we treated a coupled transport-diffusion system
related to parallel-flow heat exchange process, and gave a de-
sign method of finite-dimensional H∞ controllers under dis-
tributed control and distributed observation. We could success-
fully apply the result of [22] to the coupled transport-diffusion
system. As shown in the numerical simulation, H∞ control is
effective in the situation where the input to the system is re-
stricted. Also, it is important to set the parameter Q contained
in the influence function c1(x) suitably according to the con-
trol objective. In the practical point of view, the heat exchange
processes of counter-flow type are more frequently used in in-
dustrial systems, since it is possible to make the output temper-
ature of the heated medium much higher than that of the heat-
ing medium [27]. Also, time lag in the control input should be
taken into account, since it is generally difficult to adjust heat
quickly. In the future, we plan to study the similar problem
for the heat exchange processes of counter-flow type as well as
with input delay.
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Finally, to compare with the other finite-dimensional con-
trollers, we consider the case where the observer-based con-
troller is used instead of the proposed one. The observer-based
controller is described as follows:



dq(t)
dt

= (A1 −G1C2,1)q(t)+G1(y(t)− ŷ2(t))

+B2,1u(t), q(0) = q0,

u(t) =−F1q(t),

(19)




dx̂2(t)
dt

= A2x̂2(t)+B2,2u(t), x̂2(0) = x̂20,

ŷ2(t) =C2,2x̂2(t).
(20)

If the assumption (A2) is satisfied, the closed-loop stabil-
ity with system (8) is assured, if the integer n is cho-
sen sufficiently large. The proof is the almost same as
that of internal stability in Theorem 3.1. Let l = 4 and
n = 10. From the setting of actuator and sensor influence
functions, since (A1,B2,1) is controllable, we can choose
a matrix F1 such that a set of eigenvalues of A1 − B2,1F1
is equal to {−0.5,−1,−1.5,−2,−2.5,−3,−3.5,−4}. Also,
since (C2,1,A1) is observable, we can choose a matrix G1
such that a set of eigenvalues of A1 − G1C2,1 is equal to
{−5,−5.5,−6,−6.5,−7,−7.5,−8,−8.5}. The matrices F1
and G1 can be solved by using MATLAB Control System Tool-
box. Figs. 5 and 6 show that the stabilization of the system is
fast accomplished, however, the input u(t) uses much larger
power than that of the proposed controller (see Fig. 3).
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Fig. 5. Evolution of the states, input, and outputs
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Fig. 6. Evolution of the output z(t)

To solve the two linear transport-diffusion equations numeri-
cally, we used the finite difference method with mesh width
∆x = 0.02, and the Runge-Kutta method of the fourth or-
der with time step ∆ t = 0.0001 for its time integration. For
the finite-dimensional controllers, we used the Runge-Kutta
method of the fourth order with the same time step ∆ t.

5. Conclusions
In this paper, we treated a coupled transport-diffusion system
related to parallel-flow heat exchange process, and gave a de-
sign method of finite-dimensional H∞ controllers under dis-
tributed control and distributed observation. We could success-
fully apply the result of [22] to the coupled transport-diffusion
system. As shown in the numerical simulation, H∞ control is
effective in the situation where the input to the system is re-
stricted. Also, it is important to set the parameter Q contained
in the influence function c1(x) suitably according to the con-
trol objective. In the practical point of view, the heat exchange
processes of counter-flow type are more frequently used in in-
dustrial systems, since it is possible to make the output temper-
ature of the heated medium much higher than that of the heat-
ing medium [27]. Also, time lag in the control input should be
taken into account, since it is generally difficult to adjust heat
quickly. In the future, we plan to study the similar problem
for the heat exchange processes of counter-flow type as well as
with input delay.
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If the assumption (A2) is satisfied, the closed-loop stability 
with system (8) is assured, if the integer n is chosen sufficiently 
large. The proof is the almost same as that of internal stability 
in Theorem 3.1. Let l = 4 and n = 10. From the setting of 
actuator and sensor influence functions, since (A–1, B

–
2,1) is con-

trollable, we can choose a matrix F1 such that a set of eigen-
values of A–1 ¡ B–2,1F1 is equal to f–0.5, –1, –1.5, –2, –2.5, –3,  
–3.5, –4g. Also, since (C–2,1, A

–
1) is observable, we can choose 

a matrix G1 such that a set of eigenvalues of A–1 ¡ G1C
–

2,1 is equal 
to f–5, –5.5, –6, –6.5, –7, –7.5, –8, –8.5g. The matrices F1 and 
G1 can be solved by using MATLAB Control System Toolbox. 
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Figs. 5 and 6 show that the stabilization of the system is fast 
accomplished, however, the input u(t) uses much larger power 
than that of the proposed controller (see Fig. 3).
To solve the two linear transport-diffusion equations numer-
ically, we used the finite difference method with mesh width 
∆x = 0.02, and the Runge-Kutta method of the fourth order with 
time step ∆t = 0.0001 for its time integration. For the finite-di-
mensional controllers, we used the Runge-Kutta method of the 
fourth order with the same time step ∆t.

5.	 Conclusions

In this paper, we treated a coupled transport-diffusion system 
related to parallel-flow heat exchange process, and provided 
a design method of finite-dimensional H� controllers under dis-
tributed control and distributed observation. We could success-

fully apply the result of [22] to the coupled transport-diffusion 
system. As shown in the numerical simulation, H� control is 
effective in the situation where the input to the system is re-
stricted. Also, it is important to set the parameter Q contained 
in the influence function c1(x) suitably according to the control 
objective. From the practical point of view, the heat exchange 
processes of counter-flow type are more frequently used in in-
dustrial systems, since it is possible to make the output tem-
perature of the heated medium much higher than that of the 
heating medium [27]. Also, time lag in the control input should 
be taken into account, since it is generally difficult to adjust 
heat quickly. In the future, we plan to study the similar problem 
for the heat exchange processes of counter-flow type as well 
as with input delay.
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