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Abstract. In this paper a repeatable inverse kinematic task was solved via an approximation of a pseudo-inverse Jacobian matrix of a robot 
manipulator. An entry configuration to the task was optimized and a task-dependent definition of an approximation region, in a configuration 
space, was utilized. As a side effect, a relationship between manipulability and optimally augmented forward kinematics was established and 
independence of approximation task solutions on rotations in augmented components of kinematics was proved. A simulation study was per-
formed on planar pendula manipulators. It was demonstrated that selection of an initial configuration to the repeatable inverse kinematic task 
heavily impacts solvability of the task and its quality. Some remarks on a formulation of the approximation task and its numerical aspects were 
also provided.
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volving partial derivatives of augmenting functions. Following 
this line, Tchon and coworkers [8] reformulated the repeatable 
kinematic task in the language of distributions and used some 
tools of differential geometry. Also in this case partial differen-
tial equations have to be solved. In order to avoid dealing with 
difficult partial differential equations and to transform the op-
timization task into parametric domain, augmenting kinematic 
functions are usually searched for as linear combinations of 
unknown parameters and some basis (polynomial, harmonic) 
functions [4].

Recently, an alternative approach to repeatable inverse kine-
matics was proposed which avoids a construction of augmented 
kinematics and designs an appropriate loop straightforward in 
a configuration space [1]. The approach extensively uses ideas 
of continuation methods [9].

In this paper we will concentrate on an optimization of 
the length of a loop in a configuration space for repeatable in-
verse kinematic task using a classical framework of augmented 
kinematics. The outline of the paper follows. In Section 2 a re-
peatable inverse kinematic task is defined and the Newton al-
gorithm of inverse kinematics for redundant manipulators is 
recalled. Then, two approaches are discussed for orthonormal 
extensions of the Jacobian matrix at a given configuration. The 
first one, numerical in nature, is based on the singular value 
decomposition (SVD) algorithm. The second one offers analytic 
formulas for the extension and can be considered as an appli-
cation of the Gramm-Schmidt (G-S) orthogonalization proce-
dure applied to vectors expressed in a symbolic form. In both 
cases, it was observed that the extensions are not unique and 
all of them can be immersed into a parametric orthogonal space 
of appropriate size. The relationship between an augmented 
Jacobian matrix (resulting from the augmented kinematics) and 
the pseudo-inverse Jacobian matrix is recalled. In Section 2 an 
example is also given which illustrates why there is no ideal 

1.	 Introduction

A repeatable inverse kinematic task is to plan a loop in a config-
uration space of a manipulator mapped, via forward kinematics, 
into a given loop in a taskspace. The task belongs to a broad 
family of robotic tasks aimed at planning and executing paths 
for stationary and mobile robots [7]. Repeatability offers some 
advantages while performing cyclic tasks (only once a collision 
of resulting trajectory with obstacles should be checked and 
gains from one-cycle trajectory optimization are multiplied). 
A standard technique to obtain the desirable repeatability prop-
erty for redundant manipulators is to augment its kinematics [5] 
with extra coordinates to get nonredundant (augmented) kine-
matics. Because, locally and outside singular configurations, the 
inverse mapping of augmented kinematics is unique, a resulting 
trajectory forms a loop in a configuration space while tracing 
a loop in a task-space. Robotic researchers have tried to get 
even more and to couple advantages of repeatability with ad-
vantages of pseudo-inverse inverse kinematics. It is known [6] 
that Moore-Penrose (pseudo-) inverse, locally, minimizes ve-
locity (displacement) in a configuration space when a velocity 
(displacement) in a task-space is fixed. Thus, a local motion 
is the most effective when planned using a pseudo-inverse of 
the Jacobian matrix.

This line was initialized by Roberts and Maciejewski 
seminal works [10]. Their approach relies on searching for 
functions augmenting original kinematics in quite a general 
form which generate a part (first columns) of the inverse of the 
augmented Jacobian matrix as close as possible to the pseu-
do-inverse matrix over a prescribed region in a configuration 
space. The resulting minimization task leads to equations in-
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augmented kinematics that emulates the pseudo-inverse Jaco-
bian matrix and a useful relationship is established between 
a determinant of the augmented Jacobian matrix and a manip-
ulability index. In Section 3 quality functions are constructed 
that evaluate a distance between the pseudo-inverse Jacobian 
matrix and an appropriate part of the augmented Jacobian 
matrix at a given configuration and, then, they are extended 
on a given region in a configuration space. The minimization 
of the distance between the two Jacobian matrices defines an 
approximation task. The proposed quality functions differ in 
a complexity of optimization tasks generated and an accuracy of 
the approximation. In practical cases, an approximation region, 
in a configuration space, for repeatable inverse kinematic tasks 
is not known explicitly (typically assumed to be known and 
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided. 
Simulation results of the proposed algorithm are collected in 
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check 
various aspects of the algorithm and its parameters. Section 6 
summarizes the paper.

2.	 Theory

2.1. Repeatable inverse kinematics task. Forward kinematics 
k maps a configuration q of a manipulator from a configuration 
space Q, into a generalized position x in a task-space X [11]
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied
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aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
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·V T =
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where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
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][
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]
·V T =
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(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.
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uration space Q, into a generalized position x in a task-space
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k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
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ration space which corresponds to X-loop (2)
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x(0) although in this paper also a free-entry configuration will
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tors, thus only redundant manipulators will be considered with
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apply the Newton algorithm
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where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).
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ics (1) is augmented with extra r components kadd(q) =
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Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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matic task is to find a cyclic path (Q-loop) q(¢) in the configu-
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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A classical repeatable inverse kinematic task assumes that an 
entry configuration qinit to the loop is given k(qinit) = x0 = x(0) 
although in this paper also a free-entry configuration will be 
allowed. The task is trivial for non-redundant manipulators, 
thus only redundant manipulators will be considered with re-
dundancy index r equal to n ¡ m ¸ 1.

A standard way to solve the inverse kinematic task [6] is to 
apply the Newton algorithm
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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where ξ is a small, real and positive parameter, J # = JT(J ¢ JT)–1 
is a pseudo-inverse of the Jacobian matrix J and an initial con-

figuration q0 is fixed (k(q0) = x(0)). Unfortunately, typically 
algorithm (4) does not generate a loop in a configuration space 
(3) when applied to consecutive points of X-loop (2).

In order to solve the cyclic inverse task, kinematics (1) is aug-
mented with extra r components kadd(q) = (km+1(q), …, km+r(q))
T to get non-redundant kinematics kaug(q) = (k(q)T, kadd(q)T) and 
the following version of the Newton algorithm is applied
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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where R 2 SO(r) is any rotational matrix, Ũ 2 SO(n). The or-
thonormal augmentation means that added vectors are not only 
perpendicular to each other and to rows of matrix [D, 0r,m] but 
they are also a unit-length, (in the matrix D̃, cf. (9), matrices 
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed only 
numerically at a given configuration q. When solving a repeat-
able inverse kinematics, cf. Eq. (4), the SVD procedure has to 
be applied many times (for numerous values of s) as the Newton 
algorithm of inverse kinematics progresses. Therefore, it is de-
sirable to have the orthonormal extension of the Jacobian matrix 
in a symbolic form. For this purpose, the G-S orthogonaliza-
tion procedure can be modified to process vectors composed of 
functions rather than real-valued vectors.

Observation 2. Similarly to the augmented SVD, cf.  (9), also the 
G-S orthogonalization procedure, at a given configuration q, does 
generate a unique basis of the r-dimensional (r ¸ 2) null space of 
the Jacobian matrix. To generate each orthonormal basis is is 
enough to take any orthonormal basis and rotate it within SO(r).

Note, however, that for practical robots computations using 
G-S are really difficult as Jacobian matrices are complicated 
due to many items composed of multi-term trigonometric func-
tions (sine and cosine functions appear for rotational degrees of 
freedom). Moreover, in most cases transformations of coordi-
nates q̃ = f(q) simplifying Jacobian matrices and, consequently, 
G-S procedure, are not permitted for two reasons:
1.	 either perpendicularity between vectors can be lost (i.e. per-

pendicular vectors in transformed coordinates may not dis-
play the property in the original coordinates),

2.	 or minimization of the energy q ̇ Tq ̇  (a crucial assumption in 
deriving the pseudo-inverse Jacobian matrix) can give a dif-
ferent solution than minimization of q̃ ̇ Tq̃ ̇ .
To sum up: each of the augmenting vectors that span a basis 

in the null space of the Jacobian matrix should display the fol-
lowing properties
Property 1: to have a unit length,
Property 2: to be perpendicular to others,
Property 3: �to be perpendicular to any row of the Jacobian 

matrix.
An important natural question arises: are there any func-

tions augmenting the original kinematics with derivative w.r.t. 
the configuration corresponding to the added rows of the aug-
mented Jacobian matrix and satisfying Properties 1–3?

If so, the problem of an approximation of the Jacobian ma-
trix with appropriately defined kinematic functions would be 
trivial and the approximation would be exact. However, the 
following simple example prompts that this is not the case and 
ideal augmenting functions are over-constrained.

Example 1: for 2D planar pendulum q = (q1, q2) with one di-
mensional taskspace (k1 coordinate in (40)) its Jacobian matrix 
equals
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the Jacobian matrix in a symbolic form. For this purpose, the
G-S orthogonalization procedure can be modified to process
vectors composed of functions rather than real-valued vectors.
Observation 2: Similarly to the augmented SVD, cf. Eq. (9),
also the G-S orthogonalization procedure, at a given config-
uration q, does generate a unique basis of the r-dimensional
(r ≥ 2) null space of the Jacobian matrix. To generate each
orthonormal basis is is enough to take any orthonormal basis
and rotate it within SO(r).

Note, however, that for practical robots computations using
G-S are really difficult as Jacobian matrices are complicated
due to many items composed of multi-term trigonometric func-
tions (sine and cosine functions appear for rotational degrees
of freedom). Moreover, in most cases transformations of co-
ordinates q̃ = f (q) simplifying Jacobian matrices and, conse-
quently, G-S procedure, are not permitted for two reasons:

1. either perpendicularity between vectors can be lost (i.e. per-
pendicular vectors in transformed coordinates may not dis-
play the property in the original coordinates),

2. or minimization of the energy q̇T q̇ (a crucial assumption in
deriving the pseudo-inverse Jacobian matrix) can give a dif-
ferent solution than minimization of ˙̃qT ˙̃q.

To sum up: each of the augmenting vectors that span a ba-
sis in the null space of the Jacobian matrix should display the
following properties

Property 1: to have a unit length,
Property 2: to be perpendicular to others,
Property 3: to be perpendicular to any row of the Jacobian

matrix.

An important natural question arises: are there any func-
tions augmenting the original kinematics with derivative w.r.t.
the configuration corresponding to the added rows of the aug-
mented Jacobian matrix and satisfying Properties 1–3?

If so, the problem of an approximation of the Jacobian ma-
trix with appropriately defined kinematic functions would be
trivial and the approximation would be exact. However, the
following simple example prompts that this is not the case and
ideal augmenting functions are over-constrained.
Example 1: for 2D planar pendulum q = (q1,q2) with one
dimensional taskspace (k1 coordinate in Eq. (40)) its Jacobian
matrix equals

J(q) = [−a1s1 −a2s12,−a2s12] = ∂k1/∂q. (10)

The only augmenting k2(q) function should satisfy[
∂k2

∂q1
,

∂k2

∂q2

]
= [−a2s12,a1s1 +a2s12], ‖∂k2

∂q
‖= 1. (11)

From the first condition in (11)

k2 =−a2

∫
s12dq1 = a2 c12 +C1(q2) (12)

while the second condition (11) takes the form

k2 =
∫
(a1s1 +a2s12)dq2 = a1 s1 ·q2 −a2 c12 +C2(q1), (13)

where Cp are some functions. From Eq. (12), (13) it can be
deduced that there is no admissible augmenting function k2(q).

This example confirms an obvious fact that, in a typical case,
more constraints imposed on a given task (loopiness in the con-
figuration space in our case) may give worse (sometimes even
no) solutions than for an un-constrained or a less constrained
task.

2.3. A relationship between an inverse of orthonormally
augmented J and pseudo-inverse J# The relationship will
be established based on SVD. Using (6), the pseudo-inverse
matrix J# can be expressed as follows

J# =V ·

[
D−1

0r,m

]
·UT , (14)

where (m×m) matrix D−1 = diag(1/di). Taking inverse of
Jaug, cf. Eq. (9), exploiting properties of matrices from SO(k),
one gets

J−1
aug =V · D̃−1 ·ŨT =V ·

[
D−1 0

0 Ir

]
·

[
UT 0
0 RT

]

=V ·

[
D−1 0

0 RT

]
·

[
UT 0
0 Ir

]
.

(15)

Comparing Eq. (14) with Eq. (15) one can deduce that J# is
formed with first m columns of the inverse of the orthonor-
mally augmented Jacobian matrix.

3. Optimal augmenting the Jacobian matrix
In this section an optimal approximation of the pseudo-inverse
Jacobian matrix with a part of an inverse of the Jacobian ma-
trix based on augmented kinematics will be formulated over
a given region in a configuration space. Then, the task will be
reformulated to simplify the optimization task and to split it
into r independent, low dimensional tasks. For special aug-
mented kinematics, described by linear or special quadratic
functions, optimal solutions will be given explicitly. Some re-
marks will be formulated on uniqueness of the solution of the
approximation task in a parametric space and on permitted
transformations of coordinates.

When desirable Properties 1–3 of vectors augmenting Jaco-
bian matrix are known, an optimization (approximation) task
can be sketched: let us assume augmenting kinematic func-
tions kadd(p,q) = (km+i(p,q)), i = 1, . . . ,r in a parametric
form, compute their differentials ∂km+i(p,q)/∂q and mini-
mize

f (p,q) = ‖J#(q)− J−1
aug,trunc(p,q)‖ (16)

(here and later on ‖ · ‖ denotes the Euclidean norm) w.r.t.
parameters p over a given region in the configuration space
A ⊂ Q. However, the minimization of Eq. (16) seems to be too
computationally involved.

The other, and equivalent, approach is to formulate analyti-
cally the required Properties 1–3 to construct and to optimize
a criterion function that punishes solutions violating the prop-
erties. At first, let us formally formulate required properties
at one particular configuration q. The orthogonality within the
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the Jacobian matrix in a symbolic form. For this purpose, the
G-S orthogonalization procedure can be modified to process
vectors composed of functions rather than real-valued vectors.
Observation 2: Similarly to the augmented SVD, cf. Eq. (9),
also the G-S orthogonalization procedure, at a given config-
uration q, does generate a unique basis of the r-dimensional
(r ≥ 2) null space of the Jacobian matrix. To generate each
orthonormal basis is is enough to take any orthonormal basis
and rotate it within SO(r).

Note, however, that for practical robots computations using
G-S are really difficult as Jacobian matrices are complicated
due to many items composed of multi-term trigonometric func-
tions (sine and cosine functions appear for rotational degrees
of freedom). Moreover, in most cases transformations of co-
ordinates q̃ = f (q) simplifying Jacobian matrices and, conse-
quently, G-S procedure, are not permitted for two reasons:

1. either perpendicularity between vectors can be lost (i.e. per-
pendicular vectors in transformed coordinates may not dis-
play the property in the original coordinates),

2. or minimization of the energy q̇T q̇ (a crucial assumption in
deriving the pseudo-inverse Jacobian matrix) can give a dif-
ferent solution than minimization of ˙̃qT ˙̃q.

To sum up: each of the augmenting vectors that span a ba-
sis in the null space of the Jacobian matrix should display the
following properties

Property 1: to have a unit length,
Property 2: to be perpendicular to others,
Property 3: to be perpendicular to any row of the Jacobian

matrix.

An important natural question arises: are there any func-
tions augmenting the original kinematics with derivative w.r.t.
the configuration corresponding to the added rows of the aug-
mented Jacobian matrix and satisfying Properties 1–3?

If so, the problem of an approximation of the Jacobian ma-
trix with appropriately defined kinematic functions would be
trivial and the approximation would be exact. However, the
following simple example prompts that this is not the case and
ideal augmenting functions are over-constrained.
Example 1: for 2D planar pendulum q = (q1,q2) with one
dimensional taskspace (k1 coordinate in Eq. (40)) its Jacobian
matrix equals

J(q) = [−a1s1 −a2s12,−a2s12] = ∂k1/∂q. (10)

The only augmenting k2(q) function should satisfy[
∂k2

∂q1
,

∂k2

∂q2

]
= [−a2s12,a1s1 +a2s12], ‖∂k2

∂q
‖= 1. (11)

From the first condition in (11)

k2 =−a2

∫
s12dq1 = a2 c12 +C1(q2) (12)

while the second condition (11) takes the form

k2 =
∫
(a1s1 +a2s12)dq2 = a1 s1 ·q2 −a2 c12 +C2(q1), (13)

where Cp are some functions. From Eq. (12), (13) it can be
deduced that there is no admissible augmenting function k2(q).

This example confirms an obvious fact that, in a typical case,
more constraints imposed on a given task (loopiness in the con-
figuration space in our case) may give worse (sometimes even
no) solutions than for an un-constrained or a less constrained
task.

2.3. A relationship between an inverse of orthonormally
augmented J and pseudo-inverse J# The relationship will
be established based on SVD. Using (6), the pseudo-inverse
matrix J# can be expressed as follows

J# =V ·

[
D−1

0r,m

]
·UT , (14)

where (m×m) matrix D−1 = diag(1/di). Taking inverse of
Jaug, cf. Eq. (9), exploiting properties of matrices from SO(k),
one gets

J−1
aug =V · D̃−1 ·ŨT =V ·

[
D−1 0

0 Ir

]
·

[
UT 0
0 RT

]

=V ·

[
D−1 0

0 RT

]
·

[
UT 0
0 Ir

]
.

(15)

Comparing Eq. (14) with Eq. (15) one can deduce that J# is
formed with first m columns of the inverse of the orthonor-
mally augmented Jacobian matrix.

3. Optimal augmenting the Jacobian matrix
In this section an optimal approximation of the pseudo-inverse
Jacobian matrix with a part of an inverse of the Jacobian ma-
trix based on augmented kinematics will be formulated over
a given region in a configuration space. Then, the task will be
reformulated to simplify the optimization task and to split it
into r independent, low dimensional tasks. For special aug-
mented kinematics, described by linear or special quadratic
functions, optimal solutions will be given explicitly. Some re-
marks will be formulated on uniqueness of the solution of the
approximation task in a parametric space and on permitted
transformations of coordinates.

When desirable Properties 1–3 of vectors augmenting Jaco-
bian matrix are known, an optimization (approximation) task
can be sketched: let us assume augmenting kinematic func-
tions kadd(p,q) = (km+i(p,q)), i = 1, . . . ,r in a parametric
form, compute their differentials ∂km+i(p,q)/∂q and mini-
mize

f (p,q) = ‖J#(q)− J−1
aug,trunc(p,q)‖ (16)

(here and later on ‖ · ‖ denotes the Euclidean norm) w.r.t.
parameters p over a given region in the configuration space
A ⊂ Q. However, the minimization of Eq. (16) seems to be too
computationally involved.

The other, and equivalent, approach is to formulate analyti-
cally the required Properties 1–3 to construct and to optimize
a criterion function that punishes solutions violating the prop-
erties. At first, let us formally formulate required properties
at one particular configuration q. The orthogonality within the

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.� (11)

From the first condition in (11)

	

Suboptimal approximations in repeatable inverse kinematics for robot manipulators

the Jacobian matrix in a symbolic form. For this purpose, the
G-S orthogonalization procedure can be modified to process
vectors composed of functions rather than real-valued vectors.
Observation 2: Similarly to the augmented SVD, cf. Eq. (9),
also the G-S orthogonalization procedure, at a given config-
uration q, does generate a unique basis of the r-dimensional
(r ≥ 2) null space of the Jacobian matrix. To generate each
orthonormal basis is is enough to take any orthonormal basis
and rotate it within SO(r).

Note, however, that for practical robots computations using
G-S are really difficult as Jacobian matrices are complicated
due to many items composed of multi-term trigonometric func-
tions (sine and cosine functions appear for rotational degrees
of freedom). Moreover, in most cases transformations of co-
ordinates q̃ = f (q) simplifying Jacobian matrices and, conse-
quently, G-S procedure, are not permitted for two reasons:

1. either perpendicularity between vectors can be lost (i.e. per-
pendicular vectors in transformed coordinates may not dis-
play the property in the original coordinates),

2. or minimization of the energy q̇T q̇ (a crucial assumption in
deriving the pseudo-inverse Jacobian matrix) can give a dif-
ferent solution than minimization of ˙̃qT ˙̃q.

To sum up: each of the augmenting vectors that span a ba-
sis in the null space of the Jacobian matrix should display the
following properties

Property 1: to have a unit length,
Property 2: to be perpendicular to others,
Property 3: to be perpendicular to any row of the Jacobian

matrix.

An important natural question arises: are there any func-
tions augmenting the original kinematics with derivative w.r.t.
the configuration corresponding to the added rows of the aug-
mented Jacobian matrix and satisfying Properties 1–3?

If so, the problem of an approximation of the Jacobian ma-
trix with appropriately defined kinematic functions would be
trivial and the approximation would be exact. However, the
following simple example prompts that this is not the case and
ideal augmenting functions are over-constrained.
Example 1: for 2D planar pendulum q = (q1,q2) with one
dimensional taskspace (k1 coordinate in Eq. (40)) its Jacobian
matrix equals

J(q) = [−a1s1 −a2s12,−a2s12] = ∂k1/∂q. (10)

The only augmenting k2(q) function should satisfy[
∂k2

∂q1
,

∂k2

∂q2

]
= [−a2s12,a1s1 +a2s12], ‖∂k2

∂q
‖= 1. (11)

From the first condition in (11)

k2 =−a2

∫
s12dq1 = a2 c12 +C1(q2) (12)

while the second condition (11) takes the form

k2 =
∫
(a1s1 +a2s12)dq2 = a1 s1 ·q2 −a2 c12 +C2(q1), (13)

where Cp are some functions. From Eq. (12), (13) it can be
deduced that there is no admissible augmenting function k2(q).

This example confirms an obvious fact that, in a typical case,
more constraints imposed on a given task (loopiness in the con-
figuration space in our case) may give worse (sometimes even
no) solutions than for an un-constrained or a less constrained
task.

2.3. A relationship between an inverse of orthonormally
augmented J and pseudo-inverse J# The relationship will
be established based on SVD. Using (6), the pseudo-inverse
matrix J# can be expressed as follows

J# =V ·

[
D−1

0r,m

]
·UT , (14)

where (m×m) matrix D−1 = diag(1/di). Taking inverse of
Jaug, cf. Eq. (9), exploiting properties of matrices from SO(k),
one gets

J−1
aug =V · D̃−1 ·ŨT =V ·

[
D−1 0

0 Ir

]
·

[
UT 0
0 RT

]

=V ·

[
D−1 0

0 RT

]
·

[
UT 0
0 Ir

]
.

(15)

Comparing Eq. (14) with Eq. (15) one can deduce that J# is
formed with first m columns of the inverse of the orthonor-
mally augmented Jacobian matrix.

3. Optimal augmenting the Jacobian matrix
In this section an optimal approximation of the pseudo-inverse
Jacobian matrix with a part of an inverse of the Jacobian ma-
trix based on augmented kinematics will be formulated over
a given region in a configuration space. Then, the task will be
reformulated to simplify the optimization task and to split it
into r independent, low dimensional tasks. For special aug-
mented kinematics, described by linear or special quadratic
functions, optimal solutions will be given explicitly. Some re-
marks will be formulated on uniqueness of the solution of the
approximation task in a parametric space and on permitted
transformations of coordinates.

When desirable Properties 1–3 of vectors augmenting Jaco-
bian matrix are known, an optimization (approximation) task
can be sketched: let us assume augmenting kinematic func-
tions kadd(p,q) = (km+i(p,q)), i = 1, . . . ,r in a parametric
form, compute their differentials ∂km+i(p,q)/∂q and mini-
mize

f (p,q) = ‖J#(q)− J−1
aug,trunc(p,q)‖ (16)

(here and later on ‖ · ‖ denotes the Euclidean norm) w.r.t.
parameters p over a given region in the configuration space
A ⊂ Q. However, the minimization of Eq. (16) seems to be too
computationally involved.

The other, and equivalent, approach is to formulate analyti-
cally the required Properties 1–3 to construct and to optimize
a criterion function that punishes solutions violating the prop-
erties. At first, let us formally formulate required properties
at one particular configuration q. The orthogonality within the
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while the second condition (11) takes the form

k2 =
Z

(a1s1 + a2s12)dq2 = a1s1¢ q2 ¡ a2c12 + C2(q1),� (13)

where Cp are some functions. From (12, 13) it can be deduced 
that there is no admissible augmenting function k2(q).

This example confirms an obvious fact that, in a typical 
case, more constraints imposed on a given task (loopiness in 
the configuration space in our case) may give worse (some-
times even no) solutions than for an un-constrained or a less 
constrained task.

2.3. A relationship between an inverse of orthonormally 
augmented J and pseudo-inverse J #. The relationship will 
be established based on SVD. Using (6), the pseudo-inverse 
matrix J # can be expressed as follows
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the Jacobian matrix in a symbolic form. For this purpose, the
G-S orthogonalization procedure can be modified to process
vectors composed of functions rather than real-valued vectors.
Observation 2: Similarly to the augmented SVD, cf. Eq. (9),
also the G-S orthogonalization procedure, at a given config-
uration q, does generate a unique basis of the r-dimensional
(r ≥ 2) null space of the Jacobian matrix. To generate each
orthonormal basis is is enough to take any orthonormal basis
and rotate it within SO(r).

Note, however, that for practical robots computations using
G-S are really difficult as Jacobian matrices are complicated
due to many items composed of multi-term trigonometric func-
tions (sine and cosine functions appear for rotational degrees
of freedom). Moreover, in most cases transformations of co-
ordinates q̃ = f (q) simplifying Jacobian matrices and, conse-
quently, G-S procedure, are not permitted for two reasons:

1. either perpendicularity between vectors can be lost (i.e. per-
pendicular vectors in transformed coordinates may not dis-
play the property in the original coordinates),

2. or minimization of the energy q̇T q̇ (a crucial assumption in
deriving the pseudo-inverse Jacobian matrix) can give a dif-
ferent solution than minimization of ˙̃qT ˙̃q.

To sum up: each of the augmenting vectors that span a ba-
sis in the null space of the Jacobian matrix should display the
following properties

Property 1: to have a unit length,
Property 2: to be perpendicular to others,
Property 3: to be perpendicular to any row of the Jacobian

matrix.

An important natural question arises: are there any func-
tions augmenting the original kinematics with derivative w.r.t.
the configuration corresponding to the added rows of the aug-
mented Jacobian matrix and satisfying Properties 1–3?

If so, the problem of an approximation of the Jacobian ma-
trix with appropriately defined kinematic functions would be
trivial and the approximation would be exact. However, the
following simple example prompts that this is not the case and
ideal augmenting functions are over-constrained.
Example 1: for 2D planar pendulum q = (q1,q2) with one
dimensional taskspace (k1 coordinate in Eq. (40)) its Jacobian
matrix equals

J(q) = [−a1s1 −a2s12,−a2s12] = ∂k1/∂q. (10)

The only augmenting k2(q) function should satisfy[
∂k2

∂q1
,

∂k2

∂q2

]
= [−a2s12,a1s1 +a2s12], ‖∂k2

∂q
‖= 1. (11)

From the first condition in (11)

k2 =−a2

∫
s12dq1 = a2 c12 +C1(q2) (12)

while the second condition (11) takes the form

k2 =
∫
(a1s1 +a2s12)dq2 = a1 s1 ·q2 −a2 c12 +C2(q1), (13)

where Cp are some functions. From Eq. (12), (13) it can be
deduced that there is no admissible augmenting function k2(q).

This example confirms an obvious fact that, in a typical case,
more constraints imposed on a given task (loopiness in the con-
figuration space in our case) may give worse (sometimes even
no) solutions than for an un-constrained or a less constrained
task.

2.3. A relationship between an inverse of orthonormally
augmented J and pseudo-inverse J# The relationship will
be established based on SVD. Using (6), the pseudo-inverse
matrix J# can be expressed as follows

J# =V ·

[
D−1

0r,m

]
·UT , (14)

where (m×m) matrix D−1 = diag(1/di). Taking inverse of
Jaug, cf. Eq. (9), exploiting properties of matrices from SO(k),
one gets

J−1
aug =V · D̃−1 ·ŨT =V ·

[
D−1 0

0 Ir

]
·

[
UT 0
0 RT

]

=V ·

[
D−1 0

0 RT

]
·

[
UT 0
0 Ir

]
.

(15)

Comparing Eq. (14) with Eq. (15) one can deduce that J# is
formed with first m columns of the inverse of the orthonor-
mally augmented Jacobian matrix.

3. Optimal augmenting the Jacobian matrix
In this section an optimal approximation of the pseudo-inverse
Jacobian matrix with a part of an inverse of the Jacobian ma-
trix based on augmented kinematics will be formulated over
a given region in a configuration space. Then, the task will be
reformulated to simplify the optimization task and to split it
into r independent, low dimensional tasks. For special aug-
mented kinematics, described by linear or special quadratic
functions, optimal solutions will be given explicitly. Some re-
marks will be formulated on uniqueness of the solution of the
approximation task in a parametric space and on permitted
transformations of coordinates.

When desirable Properties 1–3 of vectors augmenting Jaco-
bian matrix are known, an optimization (approximation) task
can be sketched: let us assume augmenting kinematic func-
tions kadd(p,q) = (km+i(p,q)), i = 1, . . . ,r in a parametric
form, compute their differentials ∂km+i(p,q)/∂q and mini-
mize

f (p,q) = ‖J#(q)− J−1
aug,trunc(p,q)‖ (16)

(here and later on ‖ · ‖ denotes the Euclidean norm) w.r.t.
parameters p over a given region in the configuration space
A ⊂ Q. However, the minimization of Eq. (16) seems to be too
computationally involved.

The other, and equivalent, approach is to formulate analyti-
cally the required Properties 1–3 to construct and to optimize
a criterion function that punishes solutions violating the prop-
erties. At first, let us formally formulate required properties
at one particular configuration q. The orthogonality within the
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the Jacobian matrix in a symbolic form. For this purpose, the
G-S orthogonalization procedure can be modified to process
vectors composed of functions rather than real-valued vectors.
Observation 2: Similarly to the augmented SVD, cf. Eq. (9),
also the G-S orthogonalization procedure, at a given config-
uration q, does generate a unique basis of the r-dimensional
(r ≥ 2) null space of the Jacobian matrix. To generate each
orthonormal basis is is enough to take any orthonormal basis
and rotate it within SO(r).

Note, however, that for practical robots computations using
G-S are really difficult as Jacobian matrices are complicated
due to many items composed of multi-term trigonometric func-
tions (sine and cosine functions appear for rotational degrees
of freedom). Moreover, in most cases transformations of co-
ordinates q̃ = f (q) simplifying Jacobian matrices and, conse-
quently, G-S procedure, are not permitted for two reasons:

1. either perpendicularity between vectors can be lost (i.e. per-
pendicular vectors in transformed coordinates may not dis-
play the property in the original coordinates),

2. or minimization of the energy q̇T q̇ (a crucial assumption in
deriving the pseudo-inverse Jacobian matrix) can give a dif-
ferent solution than minimization of ˙̃qT ˙̃q.

To sum up: each of the augmenting vectors that span a ba-
sis in the null space of the Jacobian matrix should display the
following properties

Property 1: to have a unit length,
Property 2: to be perpendicular to others,
Property 3: to be perpendicular to any row of the Jacobian

matrix.

An important natural question arises: are there any func-
tions augmenting the original kinematics with derivative w.r.t.
the configuration corresponding to the added rows of the aug-
mented Jacobian matrix and satisfying Properties 1–3?

If so, the problem of an approximation of the Jacobian ma-
trix with appropriately defined kinematic functions would be
trivial and the approximation would be exact. However, the
following simple example prompts that this is not the case and
ideal augmenting functions are over-constrained.
Example 1: for 2D planar pendulum q = (q1,q2) with one
dimensional taskspace (k1 coordinate in Eq. (40)) its Jacobian
matrix equals

J(q) = [−a1s1 −a2s12,−a2s12] = ∂k1/∂q. (10)

The only augmenting k2(q) function should satisfy[
∂k2

∂q1
,

∂k2

∂q2

]
= [−a2s12,a1s1 +a2s12], ‖∂k2

∂q
‖= 1. (11)

From the first condition in (11)

k2 =−a2

∫
s12dq1 = a2 c12 +C1(q2) (12)

while the second condition (11) takes the form

k2 =
∫
(a1s1 +a2s12)dq2 = a1 s1 ·q2 −a2 c12 +C2(q1), (13)

where Cp are some functions. From Eq. (12), (13) it can be
deduced that there is no admissible augmenting function k2(q).

This example confirms an obvious fact that, in a typical case,
more constraints imposed on a given task (loopiness in the con-
figuration space in our case) may give worse (sometimes even
no) solutions than for an un-constrained or a less constrained
task.

2.3. A relationship between an inverse of orthonormally
augmented J and pseudo-inverse J# The relationship will
be established based on SVD. Using (6), the pseudo-inverse
matrix J# can be expressed as follows

J# =V ·

[
D−1

0r,m

]
·UT , (14)

where (m×m) matrix D−1 = diag(1/di). Taking inverse of
Jaug, cf. Eq. (9), exploiting properties of matrices from SO(k),
one gets

J−1
aug =V · D̃−1 ·ŨT =V ·

[
D−1 0

0 Ir

]
·

[
UT 0
0 RT

]

=V ·

[
D−1 0

0 RT

]
·

[
UT 0
0 Ir

]
.

(15)

Comparing Eq. (14) with Eq. (15) one can deduce that J# is
formed with first m columns of the inverse of the orthonor-
mally augmented Jacobian matrix.

3. Optimal augmenting the Jacobian matrix
In this section an optimal approximation of the pseudo-inverse
Jacobian matrix with a part of an inverse of the Jacobian ma-
trix based on augmented kinematics will be formulated over
a given region in a configuration space. Then, the task will be
reformulated to simplify the optimization task and to split it
into r independent, low dimensional tasks. For special aug-
mented kinematics, described by linear or special quadratic
functions, optimal solutions will be given explicitly. Some re-
marks will be formulated on uniqueness of the solution of the
approximation task in a parametric space and on permitted
transformations of coordinates.

When desirable Properties 1–3 of vectors augmenting Jaco-
bian matrix are known, an optimization (approximation) task
can be sketched: let us assume augmenting kinematic func-
tions kadd(p,q) = (km+i(p,q)), i = 1, . . . ,r in a parametric
form, compute their differentials ∂km+i(p,q)/∂q and mini-
mize

f (p,q) = ‖J#(q)− J−1
aug,trunc(p,q)‖ (16)

(here and later on ‖ · ‖ denotes the Euclidean norm) w.r.t.
parameters p over a given region in the configuration space
A ⊂ Q. However, the minimization of Eq. (16) seems to be too
computationally involved.

The other, and equivalent, approach is to formulate analyti-
cally the required Properties 1–3 to construct and to optimize
a criterion function that punishes solutions violating the prop-
erties. At first, let us formally formulate required properties
at one particular configuration q. The orthogonality within the
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r independent, low dimensional tasks. For special augmented 
kinematics, described by linear or special quadratic functions, 
optimal solutions will be given explicitly. Some remarks will be 
formulated on uniqueness of the solution of the approximation 
task in a parametric space and on permitted transformations of 
coordinates.

When desirable Properties 1–3 of vectors augmenting Jaco-
bian matrix are known, an optimization (approximation) task 
can be sketched: let us assume augmenting kinematic functions 
kadd(p, q) = (km+i(p, q)), i = 1, …, r in a parametric form, com-
pute their differentials 

I. Duleba, I. Karcz-Duleba

plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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the Jacobian matrix in a symbolic form. For this purpose, the
G-S orthogonalization procedure can be modified to process
vectors composed of functions rather than real-valued vectors.
Observation 2: Similarly to the augmented SVD, cf. Eq. (9),
also the G-S orthogonalization procedure, at a given config-
uration q, does generate a unique basis of the r-dimensional
(r ≥ 2) null space of the Jacobian matrix. To generate each
orthonormal basis is is enough to take any orthonormal basis
and rotate it within SO(r).

Note, however, that for practical robots computations using
G-S are really difficult as Jacobian matrices are complicated
due to many items composed of multi-term trigonometric func-
tions (sine and cosine functions appear for rotational degrees
of freedom). Moreover, in most cases transformations of co-
ordinates q̃ = f (q) simplifying Jacobian matrices and, conse-
quently, G-S procedure, are not permitted for two reasons:

1. either perpendicularity between vectors can be lost (i.e. per-
pendicular vectors in transformed coordinates may not dis-
play the property in the original coordinates),

2. or minimization of the energy q̇T q̇ (a crucial assumption in
deriving the pseudo-inverse Jacobian matrix) can give a dif-
ferent solution than minimization of ˙̃qT ˙̃q.

To sum up: each of the augmenting vectors that span a ba-
sis in the null space of the Jacobian matrix should display the
following properties

Property 1: to have a unit length,
Property 2: to be perpendicular to others,
Property 3: to be perpendicular to any row of the Jacobian

matrix.

An important natural question arises: are there any func-
tions augmenting the original kinematics with derivative w.r.t.
the configuration corresponding to the added rows of the aug-
mented Jacobian matrix and satisfying Properties 1–3?

If so, the problem of an approximation of the Jacobian ma-
trix with appropriately defined kinematic functions would be
trivial and the approximation would be exact. However, the
following simple example prompts that this is not the case and
ideal augmenting functions are over-constrained.
Example 1: for 2D planar pendulum q = (q1,q2) with one
dimensional taskspace (k1 coordinate in Eq. (40)) its Jacobian
matrix equals

J(q) = [−a1s1 −a2s12,−a2s12] = ∂k1/∂q. (10)

The only augmenting k2(q) function should satisfy[
∂k2

∂q1
,

∂k2

∂q2

]
= [−a2s12,a1s1 +a2s12], ‖∂k2

∂q
‖= 1. (11)

From the first condition in (11)

k2 =−a2

∫
s12dq1 = a2 c12 +C1(q2) (12)

while the second condition (11) takes the form

k2 =
∫
(a1s1 +a2s12)dq2 = a1 s1 ·q2 −a2 c12 +C2(q1), (13)

where Cp are some functions. From Eq. (12), (13) it can be
deduced that there is no admissible augmenting function k2(q).

This example confirms an obvious fact that, in a typical case,
more constraints imposed on a given task (loopiness in the con-
figuration space in our case) may give worse (sometimes even
no) solutions than for an un-constrained or a less constrained
task.

2.3. A relationship between an inverse of orthonormally
augmented J and pseudo-inverse J# The relationship will
be established based on SVD. Using (6), the pseudo-inverse
matrix J# can be expressed as follows

J# =V ·

[
D−1

0r,m

]
·UT , (14)

where (m×m) matrix D−1 = diag(1/di). Taking inverse of
Jaug, cf. Eq. (9), exploiting properties of matrices from SO(k),
one gets

J−1
aug =V · D̃−1 ·ŨT =V ·

[
D−1 0

0 Ir

]
·

[
UT 0
0 RT

]

=V ·

[
D−1 0

0 RT

]
·

[
UT 0
0 Ir

]
.

(15)

Comparing Eq. (14) with Eq. (15) one can deduce that J# is
formed with first m columns of the inverse of the orthonor-
mally augmented Jacobian matrix.

3. Optimal augmenting the Jacobian matrix
In this section an optimal approximation of the pseudo-inverse
Jacobian matrix with a part of an inverse of the Jacobian ma-
trix based on augmented kinematics will be formulated over
a given region in a configuration space. Then, the task will be
reformulated to simplify the optimization task and to split it
into r independent, low dimensional tasks. For special aug-
mented kinematics, described by linear or special quadratic
functions, optimal solutions will be given explicitly. Some re-
marks will be formulated on uniqueness of the solution of the
approximation task in a parametric space and on permitted
transformations of coordinates.

When desirable Properties 1–3 of vectors augmenting Jaco-
bian matrix are known, an optimization (approximation) task
can be sketched: let us assume augmenting kinematic func-
tions kadd(p,q) = (km+i(p,q)), i = 1, . . . ,r in a parametric
form, compute their differentials ∂km+i(p,q)/∂q and mini-
mize

f (p,q) = ‖J#(q)− J−1
aug,trunc(p,q)‖ (16)

(here and later on ‖ · ‖ denotes the Euclidean norm) w.r.t.
parameters p over a given region in the configuration space
A ⊂ Q. However, the minimization of Eq. (16) seems to be too
computationally involved.

The other, and equivalent, approach is to formulate analyti-
cally the required Properties 1–3 to construct and to optimize
a criterion function that punishes solutions violating the prop-
erties. At first, let us formally formulate required properties
at one particular configuration q. The orthogonality within the
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j
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w=1 qw

j ∑N
w=1(q

w
j )

2
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pi, j

pi, j j
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=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2
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∑
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∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
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X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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in the optimized function.

The minimization task (21), (22) is primarily defined over 
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvantage 
as explained in the following example.

Example 2. Assume that, at some configuration q, the optimal 
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(ϕ), sin(ϕ),0), ṽ2 = (–sin(ϕ), 
cos(ϕ),0) (for small values of ϕ) approximating v1, v2, seems to 
be better than the pair v ̂ 1 = ṽ1, v ̂ 2 = (sin(ϕ),cos(ϕ),0). Versors 
of the first pair are perpendicular to each other contrary to the 
other pair although for both pairs their pairwise distance to 
versors v1, v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian 
will begin with linear augmenting functions (a constant term 
can be omitted as it is annihilated while taking derivatives)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given 
explicitly
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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When the region A = fq1, …, qNg is composed of N configura-
tions, the final solution is also given explicitly
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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A slightly more complicated case appears for quadratic opti-
mized functions, i = 1, …, r
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi, st = 0 for s  6= t, the 
solution can be obtained explicitly as computations for each 
functions km+i(p, q), i = 1, …, r can be performed coordi-
nate-wise, j = 1, …, n and the resulting linear equations are 
two dimensional only (below the optimization over the region 
A composed of N configurations qw, w = 1, …, N was used)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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where qj
w denotes the jth component of vector qw and Jaug, m+i, j(qw) 

is the jth component of the (m + i)th row of the augmented Jaco-
bian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be 
highlighted.

Theorem 1. Let us assume that an approximation task has been 
solved, i.e. functions kadd(q) = (km+i(q)), i = 1, …, r were de-
termined. Then also functions k̃add(q) = (k̃m+i(q)), i = 1, …, r
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null space of the Jacobian matrix sets the constraint〈
∂km+i/∂q,∂km+ j/∂q

〉
= δi j, i, j = 1, . . . ,r, i ≤ j (17)

where δi j = 1 for i = j and 0 otherwise. Perpendicularity to
rows of the Jacobian matrix adds more constraints

〈∂km+i/∂q,Js〉= 0, i = 1, . . . ,r, s = 1, . . . ,m. (18)

As optimal values of extra rows augmenting J to Jaug are
known, (either from SVD or the G-S procedure) a simpler ver-
sion of condition (17) is proposed〈

∂km+i/∂q,Jaug,m+ j
〉
= δi j, i, j = 1, . . . ,r, i ≤ j, (19)

to avoid using twice unknown ∂km+i/∂q. In fact the condi-
tion (18) is redundant one (and can be omitted) because in an
ideal case ∂km+i/∂q are the same as rows Jaug,m+i, i = 1, . . . ,r,
thus automatically are perpendicular to rows of J (because
Jaug,m+i ⊥ J). Finally, the only active condition is given by
Eq. (19) or expressed in a simpler form as

‖∂km+i

∂q
− Jaug,m+i(q)‖2 = 0, i = 1, . . . ,r. (20)

Note that by definition ‖Jaug,m+i(q)‖ = 1, so ‖∂km+i/∂q‖ =
1 to meet condition (20). As condition (20) can not be met
exactly, a criterion function

f (p,q) =
r

∑
i=1

‖∂km+i(p,q)/∂q− Jaug,m+i(q)‖2, (21)

is to be optimized over some region A ⊂ Q

F(p�) = min
p

∫

A⊂Q
f (p,q)dq. (22)

In Eq. (21) the Euclidean norm is squared to avoid the square
root in the optimized function.

The minimization task (21), (22) is primarily defined over
a continuous region A ⊂ Q. In a practical implementation the
region A can be composed of finitely many configurations in
Q. In this case integral (22) is replaced with a sum. Moreover,
because there is no need to have an augmented Jacobian matrix
in a symbolic form, then the SVD procedure can be used to
derive necessary rows of Jaug(q) at each configuration q.

One more useful property of the optimization task (21), (22)
can be noticed. In fact it can be decomposed into r indepen-
dent minimization tasks where km+i(p,q) is searched for that
minimizes the i-th quality function

fi(pi,q) = ‖∂km+i(pi,q)
∂q

−Jaug,m+i(q)‖2, i = 1, . . . ,r, (23)

over a given region A

Fi(p�i ) = min
pi

∫

A⊂Q
fi(pi,q)dq. (24)

However, one must be aware that the simplification, due to de-
composition into r independent tasks, has also one disadvan-
tage as explained in the following example.
Example 2: Assume that, at some configuration q, the optimal
null space in R3 is spanned by v1 = (1,0,0) and v2 = (0,1,0).

Apparently, the pair ṽ1 = (cos(φ),sin(φ),0), ṽ2 =
(−sin(φ),cos(φ),0) (for small values of φ ) approximat-
ing v1,v2, seems to be better than the pair v̂1 = ṽ1, v̂2 =

(sin(φ),cos(φ),0). Versors of the first pair are perpendicular
to each other contrary to the other pair although for both pairs
their pairwise distance to versors v1,v2 is the same.

The optimal approximation of the pseudo-inverse Jacobian
will begin with linear augmenting functions (a constant term
can be omitted as it is annihilated while taking derivatives)

km+i(p,q) =
n

∑
s=1

pi,sqs ⇒ ∂km+i

∂q
= (pi,1, . . . , pi,n). (25)

When an approximation region A includes only one configu-
ration qw, the solution of optimization task (23), (24) is given
explicitly

pi,s = Jaug,m+i,s(qw), s = 1, . . . ,n. (26)

When the region A = {q1, . . . ,qN} is composed of N configu-
rations, the final solution is also given explicitly

pi,s =
1
N

N

∑
w=1

Jaug,m+i,s(qw), s = 1, . . . ,n. (27)

A little bit more complicated case appears for quadratic opti-
mized functions, i = 1, . . . ,r

km+i(pi,q) =
n

∑
s=1

pi,sqs+
1
2

n

∑
s=1

n

∑
t=1

pi,stqsqt , pi,st = pi,ts (28)

with their derivatives

∂km+i(pi,q)
∂q j

= pi, j +
n

∑
s=1

pi,s jqs, j = 1, . . . ,n. (29)

The vector of unknown variables pi collects variables from the
linear and quadratic part pi = (pi,s, pi,st). This time, the op-
timization task (23), (24) is reduced to solving a set of linear
equations w.r.t. vector pi variables resulting from equilibrium
conditions, cf. (23)

∂ fi(pi,q)
∂ pi

= 0, i = 1, . . . ,r. (30)

The set may involve many items. However, for particular func-
tions (28) with cross variables neglected pi,st = 0 for s �= t, the
solution can be obtained explicitly as computations for each
functions km+i(pi,q), i = 1, . . . ,r can be performed coordinate-
wise, j = 1, . . . ,n and the resulting linear equations are two
dimensional only (below the optimization over the region A
composed of N configurations qw, w = 1, . . . ,N was used)
[

N ∑N
w=1 qw

j

∑N
w=1 qw

j ∑N
w=1(q

w
j )

2

][
pi, j

pi, j j

]
=

[
∑N

w=1 Jaug,m+i, j(qw)

∑N
w=1 Jaug,m+i, j(qw)qw

j

]
,

(31)
where qw

j denotes the jth component of vector qw and
Jaug,m+i, j(qw) is the jth component of the (m+ i)th row of the
augmented Jacobian matrix evaluated at configuration qw.

Now some facts concerning the optimal solution will be
highlighted.
Theorem 1: Let us assume that an approximation task has
been solved, i.e. functions kadd(q) = (km+i(q)), i = 1, . . . ,r
were determined. Then also functions k̃add(q) = (k̃m+i(q)),
i = 1, . . . ,r

k̃add(q) = R · kadd(q) (32)
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for any constant matrix R 2 SO(r), are also the solutions of the 
approximation task.
Proof. A simple exercise

Suboptimal approximations in repeatable inverse kinematics for robot manipulators

for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Suboptimal approximations in repeatable inverse kinematics for robot manipulators

for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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q explicitly depends on forward ki-
nematics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates 
tightly related with a construction of a manipulator. A redefi-
nition of coordinates may simplify the form or complexity of 
the Jacobian matrix. Therefore, while searching for augmenting 
functions it is worth considering to redefine (transform) natural 
coordinates. However, this approach has its own disadvantages 
as illustrated with the following example.

Example 3. Forward kinematics of the 3D planar pendulum, cf. 
Fig. 1, in natural coordinates is given by (40). When consec-
utive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with respect 
to the previous link but rather with respect to the x-axis of the 
global coordinate frame, the Jacobian matrix (for positional 
coordinates (x, y)) takes a form
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Suboptimal approximations in repeatable inverse kinematics for robot manipulators

for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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while designing an algorithm of the optimal approximation of 
pseudo-inverse J # based on the Jacobian matrix J, cf. (4), one 
must be aware that the algorithm optimizes locally an energy 
in natural coordinates (∑n

i=1q ̇ i
2) and in the considered example
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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apparently increases the energy ∑n
i=1q̃ ̇ 2 > ∑n

i=1q ̇ i
2. In the new 

coordinates varied q1 coordinate changes all components of q̃.

4.	 A sub-optimal solution of a repeatable inverse 
kinematic task

A clear disadvantage of optimization tasks presented previously 
is that the region A, over which the quality function is evalu-
ated, is usually given explicitly (frequently as an n-dimensional 
cuboid in the configuration space [4, 10]). In practical situations, 
the region may not contain many (the most) of configurations 
generated when tracing a given loop in the task-space and it is 
not given explicitly but rather implicitly and ambiguously via 
inverse kinematics. Therefore, we propose an original algorithm 
to construct the region A iteratively to make the optimization 
dedicated for a given, traced loop in the task-space.

Formally: given kinematics k(q), a loop in the task-space 
(2) and initial configuration qinit such that k(qinit) = x(0), find 
the shortest possible loop in the configuration space q(¢) cor-
responding to the loop x(¢), cf. (2). The following algorithm 
solves the task iteratively using iterative approximations of the 
pseudo-inverse of the Jacobian matrix:

Step 1. Initialize the algorithm: an iteration counter c   1, con-
figurations forming the set A1 = fqinitg, and the initial loop 
length in the configuration space L0   �.

Step 2. Express each augmented kinematic function km+i(pi, q), 
i = 1, …, r in a parametric form (i.e. select a class of ad-
missible functions and the number of elements for each 
km+i(pi, q).

Step 3. Compute Jaug(q) for configurations from the set Ac, cf. 
(6), (9).

Step 4. Solve r optimization tasks, i = 1, …, r in the current 
iteration c

	

Suboptimal approximations in repeatable inverse kinematics for robot manipulators

for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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with fi(pi, q) defined by Eq. (23). For special optimized func-
tions derived either from Eq. (27) or Eq. (31).

Step 5. For the optimal p = (p1, …, pr), which determines aug-
mented kinematics, compute the resulting Q-loop q(¢) (using 
algorithm (5)) and its length
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q

−RJaug,add‖= ‖ k̃add(q)
∂q

− J̃aug,add‖,
(33)

where Jaug,add collects r added rows of the Jacobian augmented
matrix, and J̃aug,add is another orthonormal basis within the
null space of J. �

Theorem 1 reflects the fact that infinite many orthonormal
bases can be defined in, at least, a two-dimensional null space
and the bases are equivalent to each other. The theorem may
also prompt to search for augmenting kinematic functions in-
variant to rotations.

Let us also observe that a constant rotation matrix R is an
important assumption of Theorem 1. Otherwise, the first term
in the following equation

∂ k̃add(q)
∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)

will spoil the thesis of Theorem 1 as the added part of the Jaco-
bian matrix ∂ k̃add(q)/∂q explicitly depends on forward kine-
matics of augmenting coordinates kadd(q).

Forward kinematics is usually defined in natural coordinates
tightly related with a construction of a manipulator. A redefini-
tion of coordinates may simplify the form or complexity of the
Jacobian matrix. Therefore, while searching for augmenting
functions it is worth considering to redefine (transform) natural
coordinates. However, this approach has its own disadvantages
as illustrated with the following example.
Example 3: Forward kinematics of the 3D planar pendulum,
cf. Fig. 1, in natural coordinates is given by Eq. (40). When
consecutive coordinates (q̃1, q̃2, q̃3) = q̃ are not defined with
respect to the previous link but rather with respect to the x-
axis of the global coordinate frame, the Jacobian matrix (for
positional coordinates (x,y)) takes a form

J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),

c̃i = cos(q̃i).

(35)
It is easy to check, via straightforward calculations, that the
Jacobian matrix J̃ is much simpler than Jacobian J of kinemat-
ics (40) with a configuration vector qqq = (q1,q2,q3). Unfortu-
nately, while designing an algorithm of the optimal approxi-
mation of pseudo-inverse J# based on the Jacobian matrix J,
cf. Eq. (4), one must be aware that the algorithm optimizes
locally an energy in natural coordinates (∑n

i=1 q̇2
i ) and in the

considered example

q̃ = (q̃1, q̃2, q̃3) = (q1,q1 +q2,q1 +q2 +q3), (36)

apparently increases the energy ∑n
i=1

˙̃q2
i > ∑n

i=1 q̇2
i . In the new

coordinates varied q1 coordinate changes all components of q̃.

4. A sub-optimal solution of a repeatable inverse
kinematic task

A clear disadvantage of optimization tasks presented previ-
ously is that the region A, over which the quality function
is evaluated, is usually given explicitly (frequently as an n-
dimensional cuboid in the configuration space [4, 10]). In prac-
tical situations, the region may not contain many (the most) of
configurations generated when tracing a given loop in the task-
space and it is not given explicitly but rather implicitly and
ambiguously via inverse kinematics. Therefore, we propose
an original algorithm to construct the region A iteratively to
make the optimization dedicated for a given, traced loop in the
task-space.

Formally: given kinematics k(q), a loop in the task-
space (2) and initial configuration qinit such that k(qinit) = x(0),
find the shortest possible loop in the configuration space q(·)
corresponding to the loop x(·), cf. Eq. (2). The following algo-
rithm solves the task iteratively using iterative approximations
of the pseudo-inverse of the Jacobian matrix:

Step 1 Initialize the algorithm: an iteration counter c ← 1,
configurations forming the set A1 = {qinit}, and the initial
loop length in the configuration space L0 ← ∞.

Step 2 Express each augmented kinematic function
km+i(pi,q), i = 1, . . . ,r in a parametric form (i.e. se-
lect a class of admissible functions and the number of
elements for each km+i(pi,q).

Step 3 Compute Jaug(q) for configurations from the set Ac,
cf. (6), (9).

Step 4 Solve r optimization tasks, i = 1, . . . ,r in the current
iteration c

Fc
i (pi) =

∫

Ac

fi(pi,q)dq, Fc
i (p�i ) = min

pi
Fc

i (pi), (37)

with fi(pi,q) defined by Eq. (23). For special optimized
functions derived either from Eq. (27) or Eq. (31).

Step 5 For the optimal p� = (p�1, . . . , p�r ), which determines
augmented kinematics, compute the resulting Q-loop q(·)
(using algorithm (5)) and its length

Lc(p�) =
∫ smax

s=0

√
〈∂q(s)/∂ s,∂q(s)/∂ s〉ds. (38)

Step 6 Check the stop condition: if

Lc−1 −Lc ≤ δ (39)

where δ is a given, positive-valued threshold, then stop the
algorithm and output the loop q(·) from the previous itera-
tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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for any constant matrix R ∈ SO(r), are also the solutions of the
approximation task.

Proof: A simple exercise

‖∂kadd(q)
∂q

− Jaug,add‖= ‖R
∂kadd(q)

∂q
−RJaug,add‖=

‖ k̃add(q)
∂q
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∂q

− J̃aug,add‖,
(33)
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∂q

=
∂R(q)

∂q
· kadd(q)+R · ∂kadd(q)

∂q
(34)
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J̃ =

[
−a1s̃1 −a2s̃2 −a3s̃3

a1c̃1 a2c̃2 a3c̃3

]
, where

s̃i = sin(q̃i),
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i > ∑n

i=1 q̇2
i . In the new
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tion. Otherwise progress with Step 7.

Step 7 Discretize uniformly the loop q(·) with N points to
form the set Ac+1 for the next iteration Ac+1 = {q(s j)} where
s j = j · smax/N, j = 0, . . . ,N − 1. Increase the iteration
counter c ← c+1 and go to Step 3.

To increase the optimization potential of the algorithm, an
outer loop can be added to the algorithm aimed at varying the
initial value of qinit . The selection of qinit can be implemented
with any method described in [2].

Some remarks concerning the algorithm follow:
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algorithm and output the loop q(¢) from the previous iteration. 
Otherwise progress with Step 7.
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To increase the optimization potential of the algorithm, an outer 
loop can be added to the algorithm aimed at varying the initial 
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method described in [2].

Some remarks concerning the algorithm follow:
●	 As the region Ac is composed of finite number of points, 

thus integrals in (37, 38), are replaced with sums and ve-
locity 
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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s at each particular configuration is interpolated 
based on its neighboring configurations.

●	 An initial region Ac = A1 was selected as a single, given, 
configuration qinit because no other information about 
Q-loop is known when the algorithm begins. As the algo-
rithm progresses, new approximations give rise to consec-
utive (known) Q-loops and discretization of the current 
Q-loop generated new regions Ac. It is also interesting to 
start A1 with any other configuration.

●	 Linear augmented functions (25) are the simplest possible 
and very useful as a solution of the approximation task is 
given explicitly. However, they may not be so efficient 
when the region A is larger. In this case, it may rarely 
happen that the vector of coefficients pi, cf. (27), is very 
short to cause some numerical problems and to warn that 
linear augmenting functions are not rich enough. Moreover, 
as the quality function prefers augmented function km+i(q) 
with k
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.
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trix M(q) = J(q) · JT (q) [6] is called a manipulability index
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An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
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]
·V T =
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where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

km+i(q)/

I. Duleba, I. Karcz-Duleba

plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.
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2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

qk ' 1 some other bases (like harmonic 
ones) can be used to search for desired augmented func-
tions.

●	 In a general case, any standard optimization method can be 
applied to derive a vector of parameters pi in Step 4. How-
ever, by selecting appropriate quality functions (linear or 
some special quadratic) the solution can be given explicitly 
to speed-up computations significantly as the optimization 
is performed many times.

●	 It is expected that only a few (two or three iterations, counted 
by variable c) are required to complete the algorithm as 
a variation of resulting trajectory (due to varying parame-
ters p from one iteration to another) is smaller and smaller 
over iterations.

5.	 Simulations

In order to test the proposed algorithm, planar pendulum ma-
nipulators, Fig. 1, up-to five degrees of freedom were selected. 
The manipulators are easy to visualize and a high degree of re-
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dundancy can be obtained easily. Forward positional kinematics 
of the pendula are given by
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Fig. 1. Planar pendula up to 5 dofs

• As the region Ac is composed of finite number of points,
thus integrals in Eq. (37), Eq. (38), are replaced with sums
and velocity ∂q/∂ s at each particular configuration is inter-
polated based on its neighboring configurations.

• An initial region Ac = A1 was selected as a single, given,
configuration qinit because no other information about Q-
loop is known when the algorithm begins. As the algo-
rithm progresses, new approximations give rise to consec-
utive (known) Q-loops and discretization of the current Q-
loop generated new regions Ac. It is also interesting to start
A1 with any other configuration.

• Linear augmented functions (25) are the simplest possible
and very useful as a solution of the approximation task is
given explicitly. However, they may not be so efficient when
the region A is larger. In this case, it may rarely happen
that the vector of coefficients pi, cf. (27), is very short to
cause some numerical problems and to warn that linear aug-
menting functions are not rich enough. Moreover, as the
quality function prefers augmented function km+i(q) with
‖∂km+i(q)/∂q‖ � 1 some other bases (like harmonic ones)
can be used to search for desired augmented functions.

• In a general case, any standard optimization method can be
applied to derive a vector of parameters p�i in Step 4. How-
ever, by selecting appropriate quality functions (linear or
some special quadratic) the solution can be given explicitly
to speed-up computations significantly as the optimization is
performed many times.

• It is expected that only a few (two or three iterations, counted
by variable c) are required to complete the algorithm as
a variation of resulting trajectory (due to varying parame-
ters p from one iteration to another) is smaller and smaller
over iterations.

5. Simulations

In order to test the proposed algorithm, planar pendulum ma-
nipulators, Fig. 1, up-to five degrees of freedom were selected.
The manipulators are easy to visualize and a high degree of
redundancy can be obtained easily. Forward positional kine-
matics of the pendula are given by
[

x
y

]
=

[
k1(q)
k2(q)

]
=

[
a1c1,1 +a2c1,2 +a3c1,3 +a4c1,4 +a5c1,5

a1s1,1 +a2s1,2 +a3s1,3 +a4s1,4 +a5s1,5

]
,

(40)
where aaa = (ai, i = 1, . . . ,n) is a vector of links’ lengths set to 1
in all simulations. A standard robotic convention was used
to abbreviate trigonometric functions, c1,i = cos(∑i

j=1 q j), and
s1,i = sin(∑i

j=1 q j). A circle centered at (xc,yc) with the radius
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Fig. 2. Length of a Q-loop as a function of a circle radius R
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Fig. 3. Stroboscopic views of postures of 4D pendulum corresponding
to the shortest and the longest path for qinit varied, R and (xc,yc) fixed.

R was a path to follow

x(s)= xc+Rcos(2πs),y(s)= yc+Rsin(2πs), s∈ [0,1]. (41)

If not stated otherwise, the linear approximation (25) was used.
In the first simulation, for the 4D-pendulum, fixed (xc,yc) =

(2.5,0.5), the length of resulting loop in the configuration
space was computed as a function of radius R. The initial
configuration qinit was also varied [2] and the plot depicted in
Fig. 2 presents the shortest Q-loop for each R. It appears that
the characteristics is almost linear. So one can expect that the
length of the Q-loop scales linearly with the length of the given
X-loop if only an initial configuration is free to choose.

In the second simulation (the same manipulator, and the cen-
ter of the circle) and fixed radius R = 1.25, it was checked
how the length of Q-loop depends on qinit . The set of possible
qinit was discretized (214 items generated). The shortest loop
started at qqq0 = (28.3◦,−6.7◦,−21.6◦,−20◦) (length 242.3◦),
while the longest one at qqq0 = (29.7◦,−49.4◦,39.7◦,−20◦)
(length 411.8◦). Both solutions were presented in Fig. 3. As
expected, cf. Eq. (19), augmenting functions that correspond
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• As the region Ac is composed of finite number of points,
thus integrals in Eq. (37), Eq. (38), are replaced with sums
and velocity ∂q/∂ s at each particular configuration is inter-
polated based on its neighboring configurations.

• An initial region Ac = A1 was selected as a single, given,
configuration qinit because no other information about Q-
loop is known when the algorithm begins. As the algo-
rithm progresses, new approximations give rise to consec-
utive (known) Q-loops and discretization of the current Q-
loop generated new regions Ac. It is also interesting to start
A1 with any other configuration.

• Linear augmented functions (25) are the simplest possible
and very useful as a solution of the approximation task is
given explicitly. However, they may not be so efficient when
the region A is larger. In this case, it may rarely happen
that the vector of coefficients pi, cf. (27), is very short to
cause some numerical problems and to warn that linear aug-
menting functions are not rich enough. Moreover, as the
quality function prefers augmented function km+i(q) with
‖∂km+i(q)/∂q‖ � 1 some other bases (like harmonic ones)
can be used to search for desired augmented functions.

• In a general case, any standard optimization method can be
applied to derive a vector of parameters p�i in Step 4. How-
ever, by selecting appropriate quality functions (linear or
some special quadratic) the solution can be given explicitly
to speed-up computations significantly as the optimization is
performed many times.

• It is expected that only a few (two or three iterations, counted
by variable c) are required to complete the algorithm as
a variation of resulting trajectory (due to varying parame-
ters p from one iteration to another) is smaller and smaller
over iterations.

5. Simulations

In order to test the proposed algorithm, planar pendulum ma-
nipulators, Fig. 1, up-to five degrees of freedom were selected.
The manipulators are easy to visualize and a high degree of
redundancy can be obtained easily. Forward positional kine-
matics of the pendula are given by
[

x
y

]
=

[
k1(q)
k2(q)

]
=

[
a1c1,1 +a2c1,2 +a3c1,3 +a4c1,4 +a5c1,5

a1s1,1 +a2s1,2 +a3s1,3 +a4s1,4 +a5s1,5

]
,

(40)
where aaa = (ai, i = 1, . . . ,n) is a vector of links’ lengths set to 1
in all simulations. A standard robotic convention was used
to abbreviate trigonometric functions, c1,i = cos(∑i

j=1 q j), and
s1,i = sin(∑i

j=1 q j). A circle centered at (xc,yc) with the radius
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Fig. 3. Stroboscopic views of postures of 4D pendulum corresponding
to the shortest and the longest path for qinit varied, R and (xc,yc) fixed.

R was a path to follow

x(s)= xc+Rcos(2πs),y(s)= yc+Rsin(2πs), s∈ [0,1]. (41)

If not stated otherwise, the linear approximation (25) was used.
In the first simulation, for the 4D-pendulum, fixed (xc,yc) =

(2.5,0.5), the length of resulting loop in the configuration
space was computed as a function of radius R. The initial
configuration qinit was also varied [2] and the plot depicted in
Fig. 2 presents the shortest Q-loop for each R. It appears that
the characteristics is almost linear. So one can expect that the
length of the Q-loop scales linearly with the length of the given
X-loop if only an initial configuration is free to choose.

In the second simulation (the same manipulator, and the cen-
ter of the circle) and fixed radius R = 1.25, it was checked
how the length of Q-loop depends on qinit . The set of possible
qinit was discretized (214 items generated). The shortest loop
started at qqq0 = (28.3◦,−6.7◦,−21.6◦,−20◦) (length 242.3◦),
while the longest one at qqq0 = (29.7◦,−49.4◦,39.7◦,−20◦)
(length 411.8◦). Both solutions were presented in Fig. 3. As
expected, cf. Eq. (19), augmenting functions that correspond
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where a = (ai, i = 1, …, n) is a vector of links’ lengths set to 
1 in all simulations. A standard robotic convention was used 
to abbreviate trigonometric functions, c1, i = cos(∑i

j=1qj), and 
s1, i = sin(∑i

j=1qj). A circle centered at (xc, yc) with the radius R 
was a path to follow
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• As the region Ac is composed of finite number of points,
thus integrals in Eq. (37), Eq. (38), are replaced with sums
and velocity ∂q/∂ s at each particular configuration is inter-
polated based on its neighboring configurations.

• An initial region Ac = A1 was selected as a single, given,
configuration qinit because no other information about Q-
loop is known when the algorithm begins. As the algo-
rithm progresses, new approximations give rise to consec-
utive (known) Q-loops and discretization of the current Q-
loop generated new regions Ac. It is also interesting to start
A1 with any other configuration.

• Linear augmented functions (25) are the simplest possible
and very useful as a solution of the approximation task is
given explicitly. However, they may not be so efficient when
the region A is larger. In this case, it may rarely happen
that the vector of coefficients pi, cf. (27), is very short to
cause some numerical problems and to warn that linear aug-
menting functions are not rich enough. Moreover, as the
quality function prefers augmented function km+i(q) with
‖∂km+i(q)/∂q‖ � 1 some other bases (like harmonic ones)
can be used to search for desired augmented functions.

• In a general case, any standard optimization method can be
applied to derive a vector of parameters p�i in Step 4. How-
ever, by selecting appropriate quality functions (linear or
some special quadratic) the solution can be given explicitly
to speed-up computations significantly as the optimization is
performed many times.

• It is expected that only a few (two or three iterations, counted
by variable c) are required to complete the algorithm as
a variation of resulting trajectory (due to varying parame-
ters p from one iteration to another) is smaller and smaller
over iterations.

5. Simulations

In order to test the proposed algorithm, planar pendulum ma-
nipulators, Fig. 1, up-to five degrees of freedom were selected.
The manipulators are easy to visualize and a high degree of
redundancy can be obtained easily. Forward positional kine-
matics of the pendula are given by
[

x
y

]
=

[
k1(q)
k2(q)

]
=

[
a1c1,1 +a2c1,2 +a3c1,3 +a4c1,4 +a5c1,5

a1s1,1 +a2s1,2 +a3s1,3 +a4s1,4 +a5s1,5

]
,

(40)
where aaa = (ai, i = 1, . . . ,n) is a vector of links’ lengths set to 1
in all simulations. A standard robotic convention was used
to abbreviate trigonometric functions, c1,i = cos(∑i

j=1 q j), and
s1,i = sin(∑i

j=1 q j). A circle centered at (xc,yc) with the radius
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Fig. 3. Stroboscopic views of postures of 4D pendulum corresponding
to the shortest and the longest path for qinit varied, R and (xc,yc) fixed.

R was a path to follow

x(s)= xc+Rcos(2πs),y(s)= yc+Rsin(2πs), s∈ [0,1]. (41)

If not stated otherwise, the linear approximation (25) was used.
In the first simulation, for the 4D-pendulum, fixed (xc,yc) =

(2.5,0.5), the length of resulting loop in the configuration
space was computed as a function of radius R. The initial
configuration qinit was also varied [2] and the plot depicted in
Fig. 2 presents the shortest Q-loop for each R. It appears that
the characteristics is almost linear. So one can expect that the
length of the Q-loop scales linearly with the length of the given
X-loop if only an initial configuration is free to choose.

In the second simulation (the same manipulator, and the cen-
ter of the circle) and fixed radius R = 1.25, it was checked
how the length of Q-loop depends on qinit . The set of possible
qinit was discretized (214 items generated). The shortest loop
started at qqq0 = (28.3◦,−6.7◦,−21.6◦,−20◦) (length 242.3◦),
while the longest one at qqq0 = (29.7◦,−49.4◦,39.7◦,−20◦)
(length 411.8◦). Both solutions were presented in Fig. 3. As
expected, cf. Eq. (19), augmenting functions that correspond
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• As the region Ac is composed of finite number of points,
thus integrals in Eq. (37), Eq. (38), are replaced with sums
and velocity ∂q/∂ s at each particular configuration is inter-
polated based on its neighboring configurations.

• An initial region Ac = A1 was selected as a single, given,
configuration qinit because no other information about Q-
loop is known when the algorithm begins. As the algo-
rithm progresses, new approximations give rise to consec-
utive (known) Q-loops and discretization of the current Q-
loop generated new regions Ac. It is also interesting to start
A1 with any other configuration.

• Linear augmented functions (25) are the simplest possible
and very useful as a solution of the approximation task is
given explicitly. However, they may not be so efficient when
the region A is larger. In this case, it may rarely happen
that the vector of coefficients pi, cf. (27), is very short to
cause some numerical problems and to warn that linear aug-
menting functions are not rich enough. Moreover, as the
quality function prefers augmented function km+i(q) with
‖∂km+i(q)/∂q‖ � 1 some other bases (like harmonic ones)
can be used to search for desired augmented functions.

• In a general case, any standard optimization method can be
applied to derive a vector of parameters p�i in Step 4. How-
ever, by selecting appropriate quality functions (linear or
some special quadratic) the solution can be given explicitly
to speed-up computations significantly as the optimization is
performed many times.

• It is expected that only a few (two or three iterations, counted
by variable c) are required to complete the algorithm as
a variation of resulting trajectory (due to varying parame-
ters p from one iteration to another) is smaller and smaller
over iterations.

5. Simulations

In order to test the proposed algorithm, planar pendulum ma-
nipulators, Fig. 1, up-to five degrees of freedom were selected.
The manipulators are easy to visualize and a high degree of
redundancy can be obtained easily. Forward positional kine-
matics of the pendula are given by
[

x
y

]
=

[
k1(q)
k2(q)

]
=

[
a1c1,1 +a2c1,2 +a3c1,3 +a4c1,4 +a5c1,5

a1s1,1 +a2s1,2 +a3s1,3 +a4s1,4 +a5s1,5

]
,

(40)
where aaa = (ai, i = 1, . . . ,n) is a vector of links’ lengths set to 1
in all simulations. A standard robotic convention was used
to abbreviate trigonometric functions, c1,i = cos(∑i

j=1 q j), and
s1,i = sin(∑i

j=1 q j). A circle centered at (xc,yc) with the radius
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Fig. 3. Stroboscopic views of postures of 4D pendulum corresponding
to the shortest and the longest path for qinit varied, R and (xc,yc) fixed.

R was a path to follow

x(s)= xc+Rcos(2πs),y(s)= yc+Rsin(2πs), s∈ [0,1]. (41)

If not stated otherwise, the linear approximation (25) was used.
In the first simulation, for the 4D-pendulum, fixed (xc,yc) =

(2.5,0.5), the length of resulting loop in the configuration
space was computed as a function of radius R. The initial
configuration qinit was also varied [2] and the plot depicted in
Fig. 2 presents the shortest Q-loop for each R. It appears that
the characteristics is almost linear. So one can expect that the
length of the Q-loop scales linearly with the length of the given
X-loop if only an initial configuration is free to choose.

In the second simulation (the same manipulator, and the cen-
ter of the circle) and fixed radius R = 1.25, it was checked
how the length of Q-loop depends on qinit . The set of possible
qinit was discretized (214 items generated). The shortest loop
started at qqq0 = (28.3◦,−6.7◦,−21.6◦,−20◦) (length 242.3◦),
while the longest one at qqq0 = (29.7◦,−49.4◦,39.7◦,−20◦)
(length 411.8◦). Both solutions were presented in Fig. 3. As
expected, cf. Eq. (19), augmenting functions that correspond
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If not stated otherwise, the linear approximation (25) was used.
In the first simulation, for the 4D-pendulum, fixed 

(xc, yc) = (2.5, 0.5), the length of resulting loop in the configu-

ration space was computed as a function of radius R. The initial 
configuration qinit was also varied [2] and the plot depicted in 
Fig. 2 presents the shortest Q-loop for each R. It appears that 
the characteristics is almost linear. So one can expect that the 
length of the Q-loop scales linearly with the length of the given 
X-loop if only an initial configuration is free to choose.

In the second simulation (the same manipulator, and the 
center of the circle) and fixed radius R = 1.25, it was checked 
how the length of Q-loop depends on qinit. The set of pos-
sible qinit was discretized (214 items generated). The shortest 
loop started at q0 = (28.3°, –6.7°, –21.6°, –20°) (length 242.3°), 
while the longest one at q0 = (29.7°, –49.4°, 39.7°, –20°) 
(length 411.8°). Both solutions were presented in Fig. 3. As 
expected, cf. Eq. (19), augmenting functions that correspond 
to the shortest Q-loop
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Table 1
The shortest and the longest Q-loops: varied qinit and n; while R, (xc,yc) fixed

n qinit [
◦] len qinit [

◦] len
shortest longest

3 (51,−34,−52) 238 (−33.8,86.7,−37.9) 338
4 (72,−23,−69,−40) 170 (94.9,−151.8,77,−20) 290
5 (−106,92,14,45,45) 139 (45,−112,−159,−135,0) 309

Table 2
The shortest Q-loops obtained using pseudo-inverse Jacobian; varied qinit and

n; while R, (xc,yc) fixed

n q(0)[◦]→ q(1)[◦] len
3 (51.3,−34.3,−52)→ (56,−45.2,−41.7) 238.1
4 (−60.4,45.4,55,40)→ (−51.4,33.7,53.5,53.5) 170.4
5 (24,−63,−51,180,−45)→ (58,−11,7,−117,−19) 130.2

to the shortest Q-loop

k3(q) =0.49q1 −0.76q2 +0.16q3 +0.39q4,

k4(q) =0.046q1 +0.26q2 −0.65q3 +0.71q4,
(42)

have their gradients almost unit-length ||∂k2/∂q|| = 0.995,
||∂k3/∂q||= 0.996. It appears that selection of an initial entry
configuration to the Q-loop is important and can significantly
impact the optimal length of the loop.

In the third simulation, it was checked whether this obser-
vation is valid also for pendula with a different number of de-
grees of freedom. For all pendula with n = 3,4,5, (xc,yc) =
(0.5,1.5), R = 0.9, while qinit was varied. Results collected
in Table 1 confirm that the observation made previously does
not depend on the number of degrees of freedom. The strobo-
scopic views of the loops corresponding to the shortest and the
longest Q loop are presented in Fig. 4.

In the next experiment (for the same initial data as previ-
ously) the algorithm using the pseudo-inverse Jacobian was
run. Results were collected in Table 2. Obviously, for the
pseudo-inverse solution the loop was broken (q(0) �= q(1)).
It is interesting that quality of the optimal solutions with re-
peatable and non-repeatable algorithm are almost the same (cf.
Table 1).

The goal of the last simulation is to compare linear,
cf. Eq. (25), with a special case of the quadratic approximation
cf. Eq. (28) (with cross variables neglected). A path to follow
was a circle centered at (1.5,0.5). Simulations were carried
out on pendula with n = 3,4,5 degrees of freedom and two se-
lected radii of the prescribed path. Potential initial configura-
tions to the Q-loop were generated. Their total number is col-
lected in the fifth column of Table 3. Some of the were unac-
ceptable due to geometrical constraints, those acceptable were
counted in the sixth column of Table 3. Then, an approxima-
tion task was run for two approximation functions (linear and
quadratic one). Some solutions were unacceptable as an initial
configuration acceptability does not necessary implies accept-
ability of the Q-loop as well (a conflict may appear somewhere
along the loop, not necessarily at s = 0). These qinit which suc-
cessfully generated Q-loops for both functions were counted in
the seventh column of Table 3. In this way with each generated
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Fig. 4. Stroboscopic views of loops corresponding to the shortest
(left) and the longest (right) Q-loops, qinit varied

Table 3
A comparison of Q loops obtained for the same qinit configurations using

linear and quadratic approximation functions, n and R varied

n R ∆min[
◦] ∆max[

◦] all qinit qinit accept passed
3 0.9 -3.0 10.8 288 84 38
3 0.5 -0.07 3.2 288 116 116
4 1.2 -7.3 11 648 116 41
4 0.6 -0.77 18.65 648 216 151
5 1.2 -49 34 2000 400 93
5 0.7 -3.4 27 2000 646 325

qinit , two lengths of acceptable Q-loops were associated: for
linear len1 and quadratic len2 approximation functions. Based
on the values, a vector of lengths’ difference was constructed
∆ = len2 − len1. The minimal and maximal component of this
vector is presented in the third and the fourth column of Ta-
ble 3, respectively. Histograms based on vectors ∆ obtained
for different values of n and R were presented in Figure 3.

In most cases, it appears that the linear approximation is bet-
ter than quadratic one (positive values of ∆ dominate). This re-
sult seems to be unexpected but averaging over large approx-
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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qk = 0.996. It appears that selection of an initial entry 
configuration to the Q-loop is important and can significantly 
impact the optimal length of the loop.

In the third simulation, it was checked whether this observa-
tion is valid also for pendula with a different number of degrees 
of freedom. For all pendula with n = 3, 4, 5, (xc, yc) = (0.5, 1.5), 
R = 0.9, while qinit was varied. Results collected in Table 1 con-
firm that the observation made previously does not depend on 

Fig. 2. Length of a Q-loop as a function of a circle radius R
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Fig. 3. Stroboscopic views of postures of 4D pendulum corresponding to the shortest and the longest path for qinit varied, R and (xc, yc) fixed
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Table 1 
The shortest and the longest Q-loops: varied qinit and n; while R, 

(xc, yc) fixed

n qinit[°] len qinit[°] len

shortest longest

3 (51, –34, –52) 238 (–33.8, 86.7, –37.9) 338
4 (72, –23, –69, –40) 170 (94.9, –151.8, 77, –20) 290
5 (–106, 92, 14, 45, 45) 139 (45, –112, –159, –135, 0) 309
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the number of degrees of freedom. The stroboscopic views of 
the loops corresponding to the shortest and the longest Q loop 
are presented in Fig. 4.

In the next experiment (for the same initial data as previ-
ously) the algorithm using the pseudo-inverse Jacobian was 
run. Results were collected in Table 2. Obviously, for the pseu-
do-inverse solution the loop was broken (q(0)  6= q(1)). It is in-
teresting that quality of the optimal solutions with repeatable 
and non-repeatable algorithm are almost the same (cf. Table 1).

Table 2 
The shortest Q-loops obtained using pseudo-inverse Jacobian; 

varied qinit and n; while R, (xc, yc) fixed

n q(0)[°] ! q(1)[°] len

3 (51.3, –34.3, –52) ! (56, –45.2, –41.7) 238.1

4 (–60.4, 45.4, 55, 40) ! (–51.4, 33.7, 53.5, 53.5) 170.4
5 (24, –63, –51, 180, –45) ! (58, –11.7, –117, –19) 130.2

The goal of the last simulation is to compare linear, cf.  
(25), with a special case of the quadratic approximation cf.  
(28) (with cross variables neglected). A path to follow was 
a circle centered at (1.5, 0.5). Simulations were carried out on 
pendula with n = 3, 4, 5 degrees of freedom and two selected 
radii of the prescribed path. Potential initial configurations to 
the Q-loop were generated. Their total number is collected 
in the fifth column of Table 3. Some of them were unaccept-

Table 3 
A comparison of Q-loops obtained for the same qinit configurations 
using linear and quadratic approximation functions, n and R varied

n R ∆min[°] ∆max[°] all qinit qinit accept passed

3 0.9 –3.0 10.8 288 84 38

3 0.5 –0.07 3.2 288 116 116

4 1.2 –7.3 11 648 116 41

4 0.6 –0.77 18.65 648 216 151

5 1.2 –49 34 2000 400 93

5 0.7 –3.4 27 2000 646 325

Fig. 4. Stroboscopic views of loops corresponding to the shortest (left) 
and the longest (right) Q-loops, qinit varied
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Fig. 5. Histograms of Q-loop length differences obtained from qua-
dratic and linear approximations for the same initial configurations, 

n and R varied
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able due to geometrical constraints, those acceptable were 
counted in the sixth column of Table 3. Then, an approxi-
mation task was run for two approximation functions (linear 
and quadratic one). Some solutions were unacceptable as an 
initial configuration acceptability does not necessary imply 
acceptability of the Q-loop as well (a conflict may appear 
somewhere along the loop, not necessarily at s = 0). These 
qinit which successfully generated Q-loops for both functions 
were counted in the seventh column of Table 3. In this way 
with each generated qinit, two lengths of acceptable Q-loops 
were associated: for linear len1 and quadratic len2 approxi-
mation functions. Based on the values, a vector of lengths’ 
difference was constructed ∆ = len2 ¡ len1. The minimal and 
maximal component of this vector is presented in the third 
and the fourth column of Table 3, respectively. Histograms 
based on vectors ∆ obtained for different values of n and R 
were presented in Fig. 3.

In most cases, it appears that the linear approximation is 
better than quadratic one (positive values of ∆ dominate). This 
result seems to be unexpected but averaging over large approx-
imation regions in a configuration space with coordinates of q 
varied substantially may lead to inaccuracies of high degree ap-
proximations. High-degree polynomial approximating functions 
tend to attain large values while the optimal functions should 
have lengths of their gradients, cf. (17), as close to one as pos-
sible at any configuration along designed Q-loop. Exemplary 
optimal approximation functions for n = 5, R = 1.2 and qinit 
= (133°, 172°, 9°, –36°, 0°) followed: augmented functions for 
the linear approximation

k3(q) = 0.74q1 + 0.08q2 ¡ 0.6q3 ¡ 0.2q4 ¡ 0.19q5,
k4(q) = –0.11q1 + 0.43q2 + 0.27q3 ¡ 0.81q4 ¡ 0.28q5,� (43)

k5(q) = –0.07q1 + 0.04q2 + 0.08q3 ¡ 0.37q4 ¡ 0.92q5,

have lengths of their gradients very close to 1: k

I. Duleba, I. Karcz-Duleba

plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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qk = 1 (the length of resulting Q-loop 
equals 340°). Quadratic approximating functions

k3(q) �= 0.85q1 + 0.33q2 ¡ 0.61q3 ¡ 0.36q4 ¡ 0.07q5 + 

–0.02q2
1 ¡ 0.13q2

2 + 0.08q2
3 ¡ 0.34q2

4 + 0.38q2
5,

k4(q) �= 0.47q1 + 0.94q2 + 0.54q3 ¡ 0.79q4 ¡ 0.33q5 + 
–0.17q2

1 ¡ 0.22q2
2 ¡ 0.14q2

3 ¡ 0.04q2
4 ¡ 0.72q2

5,

k5(q) �= 1.87q1 + 1.1q2 + 0.17q3 + 0.75q4 ¡ 0.84q5 + 
–0.75q2

1 ¡ 0.42q2
2 ¡ 0.1q2

3 + 0.49q2
4 ¡ 0.24q2

5,

�(44)

generated Q-loop of the length 374°. Notice that in this case  
k
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
ration space which corresponds to X-loop (2)

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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plexity of optimization tasks generated and an accuracy of the
approximation. In practical cases, an approximation region, in
a configuration space, for repeatable inverse kinematic tasks
is not known explicitly (typically assumed to be known and
regular [4, 10]). In Section 4 an algorithm minimizing a trajec-
tory length for a repeatable inverse kinematic task is provided.
Simulation results of the proposed algorithm are collected in
Section 5. The simulations were performed on models of pen-
dula with the redundancy index r modified in order to check
various aspects of the algorithm and its parameters. Section 6
summarizes the paper.

2. Theory
2.1. Repeatable inverse kinematics task Forward kinemat-
ics k maps a configuration q of a manipulator from a config-
uration space Q, into a generalized position x in a task-space
X [11]

k : Q � q → x = k(q) ∈ X , (1)

where dimQ = n,dimX = m ≤ 6. Based on kinematics (1), an
(m× n) Jacobian matrix J(q) = ∂k/∂q is calculated. In the
task-space a closed path (X-loop) is defined

{x(s),s ∈ [0,smax], x(0) = x(smax)}, (2)

where s variable is usually defined as a current length of the
loop starting from its initial point. A repeatable inverse kine-
matic task is to find a cyclic path (Q-loop) q(·) in the configu-
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∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

A classical repeatable inverse kinematic task assumes that
an entry configuration qinit to the loop is given k(qinit) = x0 =
x(0) although in this paper also a free-entry configuration will
be allowed. The task is trivial for non-redundant manipula-
tors, thus only redundant manipulators will be considered with
redundancy index r equal to n−m ≥ 1.

A standard way to solve the inverse kinematic task [6] is to
apply the Newton algorithm

qi+1 = qi +ξ · J#(qi)(x(s)− k(qi)), (4)

where ξ is a small, real and positive parameter, J# = JT (J ·
JT )−1 is a pseudo-inverse of the Jacobian matrix J and an ini-
tial configuration q0 is fixed (k(q0) = x(0)). Unfortunately,
typically algorithm (4) does not generate a loop in a config-
uration space (3) when applied to consecutive points of X-
loop (2).

In order to solve the cyclic inverse task, kinemat-
ics (1) is augmented with extra r components kadd(q) =
(km+1(q), . . . ,km+r(q))T to get non-redundant kinematics
kaug(q) = (k(q)T ,kadd(q)T ) and the following version of the
Newton algorithm is applied

qi+1 = qi +ξ · J−1
aug,trunc(qi)(x(s)− k(qi)), (5)

where J−1
aug,trunc(qi) collects first m columns of the inverse of

the augmented Jacobian matrix Jaug(qi) = ∂kaug(q)/∂q. The
Newton algorithm (5) is run for an appropriate number of

points x(s) with values of s increased and the initial config-
uration q0 for the next task selected as the final configuration
from the current run (q0 = qinit for s = 0). The resulting Q-
loop is composed of configurations generated with the Newton
algorithm (5).

2.2. Orthonormal augmenting the Jacobian matrix As
a pseudo-inverse of the Jacobian matrix offers desirable prop-
erty of local minimization of a manipulator displacement while
following X-loop, we will search for an augmentation of the
matrix approximating the pseudo-inverse solution.

The first attempt will be numeric in nature. Using the SVD
algorithm [3], the Jacobian matrix attains a form

J =U · [D,0m,r] ·V T , (6)

where 0m,r is a (m× r) block matrix composed of zeros, U ∈
SO(m), V ∈ SO(n) are rotational matrices in m and n dimen-
sional spaces, respectively, and D = diag(di) is a (m×m) di-
agonal matrix with ordered non-negative values di ≥ d j, when
i < j. Later on we will assume that only regular configurations
are considered, i.e. dm > 0.
Observation 1: For a given J, SVD is not unique, as the fol-
lowing identity holds

I−i,m · [D,0m,r] · I−i,n = [D,0m,r], (7)

where I−i,k denotes (k × k) identity matrix with the element
(i, i) replaced with −1. Eq. (7) when applied to Eq. (6) changes
signs of all elements in the i-th column of matrix U and the i-th
row of matrix V T . It is worth noticing that vector-rows of the
matrix D are perpendicular to each other.

The square root of the determinant of a manipulability ma-
trix M(q) = J(q) · JT (q) [6] is called a manipulability index

m(q) =
√

det(M(q)) =
m

∏
i=1

di. (8)

An orthonormal augmentation of the Jacobian matrix can be
viewed as a purposeful extending [D,0r,m] into a square matrix
(n×n) while preserving the value of the manipulability index.
Formally, the orthonormally augmented Jacobian Jaug can be
expressed as

Jaug =Ũ · D̃ ·V T =[
U 0
0 R

][
D 0
0 Ir

]
·V T =

[
U 0
0 Ir

][
D 0
0 R

]
·V T ,

(9)

where R ∈ SO(r) is any rotational matrix, Ũ ∈ SO(n). The or-
thonormal augmentation means that added vectors are not only
perpendicular to each other and to rows of matrix [D,0r,m] but
they are also a unit-length, (in the matrix D̃, cf. (9), matrices
Ir/R appear). In fact the vectors span a null space of the Jaco-
bian matrix.

Unfortunately, SVD of the matrix J(q) can be computed
only numerically at a given configuration q. When solving
a repeatable inverse kinematics, cf. Eq. (4), the SVD proce-
dure has to be applied many times (for numerous values of
s) as the Newton algorithm of inverse kinematics progresses.
Therefore, it is desirable to have the orthonormal extension of
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6.	 Conclusions

In this paper a repeatable inverse kinematic task was solved 
via approximating a pseudo-inverse Jacobian matrix with linear 
and quadratic polynomials, allowing to select freely an initial 
entry configuration and defining iteratively a task-dependent 
region in the configuration space to evaluate the quality func-
tion. Simulations confirmed a good quality of designed tech-
niques and proved that a linear approximation function is good 
enough to solve the task accurately and fast. An invariance of 
the approximation function on constant rotations was proved 
and a relationship of optimal extensions of the Jacobian matrix 
with a manipulability index was revealed.
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