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Abstract. This paper deals with control of a nonholonomic unicycle-like robot in a cluttered environment with static obstacles. The proposed 
solution is based on a combination of a universal motion controller taking advantage of transverse functions with a navigation velocity field 
determining a path in a free task space. The motion controller is used to imitate an omnidirectional planar kinematics such that nonholonomic 
constraints become hidden for a navigation layer. Then it is possible to generate vector fields which govern motion of the omnidirectional frame. 
The controller using the transverse function is discussed in depth. In particular, a possible parametrization of this function is considered and 
analysis of an augmented dynamics is provided for different motion patterns. Next,  construction of obstacles and potential design for star-like 
shapes are presented. The navigation algorithm is verified experimentally and the results are discussed.
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holonomic constraints [19, 20]. The key property of the con-
troller using transverse functions is the ability to approximate 
non feasible directions in the phase space using periodic inputs 
with tunable frequency. As a result, it is possible to change con-
figuration of a small-time controllable nonholonomic system in 
almost arbitrarily way (similarly as for a holonomic system). 
Consequently, it becomes possible to stabilize its configuration 
in some vicinity of a desired point or trajectory, even when 
a permanent disturbance occurs. Simultaneously, smoothness 
of the control law offers the possibility to increase robustness 
of the closed-loop system to some class of disturbances (the 
robustness issue concerning control of nonholonomic systems 
has been reported in some papers, [21–23]).

Another fundamental problem in mobile robotics with a sig-
nificant practical impact is control in the presence of constraints 
imposed on a workspace, [24, 25]. This is the main issue that 
has to be considered in order to solve the navigation problem 
in a cluttered environment. So far many approaches based on 
analytical, combinatorial and probabilistic methods have been 
proposed to cover this task. The formal analytical methods are 
usually derived from the concept of potential functions intro-
duced in robotics by Khatib, [26]. A formal analysis of this 
method was carried out by Rimon and Koditschek, who intro-
duced the so-called navigation function ensuring one global 
minimum for star obstacles, [27, 28]. The potential function 
paradigm has proved to be an effective tool for control design 
also for phase-constrained systems, [29, 30]. A complementary 
method of motion planning based on potential functions may 
take advantage of harmonic functions which solve the Laplace 
equation, [31–34]. The fundamental advantage of these func-
tions is the lack of local minima, [35, 36].

Some authors employ non-gradient vector fields in order to 
find feasible paths for nonholonomic vehicles, [37]. The con-
cept of potential and non gradient fields has been successfully 
used for multi agent systems, [38, 39]. Recently, an algorithm 

1.	 Introduction

Control of nonholonomic mechanical systems becomes an im-
portant issue in robotics since many robots, in particular mo-
bile devices, are subject to nonintegrable kinematic constraints. 
These constraints impose restrictions on feasible directions in 
the phase space that lead to significant difficulties in design 
of a stabilizing state feedback discussed by Brockett [1]. As 
a result, an application of classic control methods is restricted 
to the case when the linear approximation of an open-loop 
dynamics is controllable. This condition can be satisfied when 
tracking some class of reference trajectories introducing per-
sistence excitation (at least non vanishing reference motion 
is required) is considered. Following this idea, many feed-
back controllers dedicated to nonholonomic systems were 
proposed, [2–5]. In order to cover a more complicated case 
when linear controllability is lost one needs to use nonlinear 
techniques based on discontinuous or time-varying feedbacks, 
cf. [6–9]. However, both approaches have significant draw-
backs that hinder achieving asymptotic stabilization at a point 
with an acceptable performance and robustness to unmodelled 
dynamics. Additionally, from work done by Lizárraga [10] it 
follows that no asymptotic smooth stabilizer exists for all fea-
sible trajectories.

In order to overcome theoretical and practical drawbacks 
concerning stabilization of nonholonomic systems a theory 
of transverse functions has been formulated by Morin and 
Samson [11]. So far this method has been applied to various 
nonhoholonomic systems including simple wheeled robots [12], 
wheeled robots with trailers [13, 14], nonholonomic ball [15], 
trident-snake robot and others [16, 17], a three link mechanical 
structure in the flight phase [18], and manipulators with non-
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when both kinematic and dynamic constraints are taken into 
account has been proposed in [40].

In this paper we deal with the unicycle-like robot which is 
the basic example of nonholonomic systems used in practice. 
So far robots equipped with two-wheeled differentially driven 
structure constitutes the most important class of robotic vehi-
cles. This is due to simplicity of this drive as well as relatively 
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller 
based on a transverse function in order to imitate the omnidirec-
tional planar robot. We borrowed the concept already discussed 
in [41] and extended it in order to solve another control task. 
Namely, instead of employing tracking of a reference trajectory 
directly, it is assumed that an input to the motion controller 
specifies velocity of the omnidirectional frame. Basically, the 
algorithm using the transverse function is treated as a bridge 
connecting nonhonolonomic kinematics with a higher level nav-
igation layer defining directions of motion based on the envi-
ronment topology. According to the best author's knowledge 
the considered application based on transverse functions has 
not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in 
Section 2, a fundamental mathematical background, notation 
on a Lie group, a general idea of transverse functions and de-
coupling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented 
dynamics governing evolution of the transverse function for 
the given types of motion are discussed in depth. The last part 
of the paper is focused on the application of the considered 
control method to solve a navigation task using velocity field. 
In order to do this potential functions for star-like obstacles 
and corresponding velocity fields are designed. The algorithm 
is verified experimentally in Section 6 for various scenarios 
using a real control system equipped with a laboratory two-
wheeled robot.

Acknowledgements. This work was supported by the Univer-
sity Grant No. 09/93/DSPB/0611.

2.	 Decoupling of nonholonomic systems  
on Lie group using transverse functions

2.1. Preliminary and notation. Let G be a Lie group with 
group operation gh 2 G, where g, h 2 G. The inverse ele-
ment of g, denoted by g–1 2 G, satisfies gg –1 = g –1g = e, 
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation 
lg : G ! G, h ! gh, right translation rg : G ! G, h ! hg and 
conjugation ϕg : G ! G, h ! lg(rg–1(h)) = rg–1(lg(h)) = ghg–1. 
Differentials of these maps are defined by: dlg(h) :=  d ‒dh lg(h), 
drg(h) :=  d ‒dh rg(h) and dϕg(h) :=  d ‒dh ghg–1, respectively.

For the given Lie group G associated Lie algebra 
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2. Decoupling of nonholonomic systems on Lie
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2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (1)

Assume that a basis of 

D. Pazderski

cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.

Acknowledgements. This work was supported by the Uni-
versity Grant No. 09/93/DSPB/0611.

2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G
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which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.
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given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.
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2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.
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Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
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ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
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Differentials of these maps are defined by: dlg(h) := d
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drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.
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group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
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Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�
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� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
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via exponential map: g→ G, denoted by
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ġ =
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(3).
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vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.
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2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
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group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�
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� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.
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2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.
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2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that
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Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.
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2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (9)

where A(α) := [A1
> A2

>]> 2 ℝn×(n–m) is the matrix composed of 
columns being derivative of f expressed in X, while A1 2 ℝm×(n–m) 
and A2 2 ℝ(n–m)×(n–m). Using (9) and recalling definition of C 
allows one to rewrite matrix M as follows
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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where C ̄ (α) := [C ¡ A(α)] 2 ℝn×n. Since X is the full rank ma-
trix and p = n ¡ m the condition given by (6) is ensured when 
C ̄ (α) is invertible. Next, computing determinant of C ̄  one has: 
detC ̄  = detA2. As a result for p = n ¡ m transversality condi-
tion is given by

	

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Relation (11) can be used explicitly to verify if f is a transverse 
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless af-
fine system is not unique. Basically, such a function should 
satisfy quite general conditions covered by (6) and (8). The 
constructive method of computation of a transverse function 
has been proposed in [11]. It is based on the exponential map of 
non-commuting vector fields with harmonic inputs in order to 
find implicitly a new direction in the tangent space. This algo-
rithm can be successfully applied to many driftless systems, see 
for example [43]. When the exponential map cannot be found 
precisely, one can take advantage of approximated results, [19] 
or apply coordinate transformations, cf. [13]. However, in many 
cases formal results of these computations can be seen as an 
initial candidate for a transverse function. This is due to the 
fact that one needs to select a proper set of parameters or in-
troduce some modifications to get a required design flexibility. 
For example, on a Lie group it is possible to find generalized 
transverse functions (GTF) which can be shrunk to the origin 
without violating transversality condition. As a result of this 
feature these functions can be employed to design a controller 
ensuring asymptotic tracking of some kind of reference trajec-
tories, [12, 42].

2.4. Companion system and decoupling control. The fun-
damental property of the control method taking advantage of 
transverse functions is an approximate decoupling of a con-
trollable nonlinear system in spite of kinematic constraints and 
a possible additive drift. In the considered case one can apply 
this technique to get an almost linear system.

Assume that 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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(t) and configuration g(t) evolve in a sim-

ilar way, such that g(t) 2 Bε(
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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mined by transverse function f. Then defining an error on Lie 
group G one can write
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Alternatively, from (12) one can easily find that 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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To obtain a more general result we assume that f is dependent 
not only on α, but also on an exogenous variable δ 2 ℝl with 
bounded derivative δ ̇. In such a case time derivative of f be-
comes: 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

. Recalling (9) and using basis X(∙) 
one can rewrite 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ + Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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where Aδ(α) 2 ℝn×l. Next, computing time derivative of (13) 
and following analysis presented in [12] we consider the com-
panion system defined by
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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where ū := [u> α ̇ >]> 2 ℝn is the extended input. Since  
X(
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Proposition 1. Decoupling controller. Applying the following 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Formally, term w in (16) can be regarded as vector field in 

D. Pazderski

cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.

Acknowledgements. This work was supported by the Uni-
versity Grant No. 09/93/DSPB/0611.

2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,� (20)

where

	

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties 
of (20) should be carefully taken into account when application 
of this control scheme is considered.

3.	 Selection of transverse function for 
a unicycle-like vehicle

3.1. Model. Here we recall basic definitions and operators 
which can be employed for a control of the unicycle kinematics, 
cf. [12]. Assume that G =' SE(2) is the Lie group with opera-
tion given by
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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We consider a unicycle-like robot and describe its 
kinematics using equation (3) assuming that m = 2, 
X1 := [cos gθ sin gθ 0]> and X2 := [0 0 1]>, while u1 and u2 de-
note linear and angular velocity, respectively. It is well known 
that X1 and X2 are left-invariant vector fields – hence the uni-
cycle can be globally defined on Lie group G. The basis of 
Lie algebra 
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.

Acknowledgements. This work was supported by the Uni-
versity Grant No. 09/93/DSPB/0611.

2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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cles. This is due to simplicity of this drive as well as relatively
high mobility in comparison to a car-like structure.

Here we consider application of the decoupling controller
based on a transverse function in order to imitate the omni-
directional planar robot. We borrowed the concept already
discussed in [41] and extended it in order to solve another
control task. Namely, instead of employing tracking of a
reference trajectory directly, it is assumed that an input to
the motion controller specifies velocity of the omnidirectional
frame. Basically, the algorithm using the transverse function
is treated as a bridge connecting nonhonolonomic kinematics
with a higher level navigation layer defining directions of mo-
tion based on the environment topology. According to the best
author’s knowledge the considered application based on trans-
verse functions has not been proposed in the literature so far.

The paper is divided into three parts. In the first part, in Sec-
tion 2, a fundamental mathematical background, notation on a
Lie group, a general idea of transverse functions and decou-
pling controller are recalled. The next part presented in Sec-
tions 3 and 4 is focused on detailed analysis of the motion con-
troller designed for the unicycle. In particular the parametriza-
tion of the transverse function and stability of an augmented
dynamics governing evolution of the transverse function for
the given types of motion are discussed in depth. The last part
of the paper is focused on the application of the considered
control method to solve a navigation task using velocity field.
In order to do this potential functions for star-like obstacles
and corresponding velocity fields are designed. The algorithm
is verified experimentally in Section 6 for various scenarios
using a real control system equipped with a laboratory two-
wheeled robot.

Acknowledgements. This work was supported by the Uni-
versity Grant No. 09/93/DSPB/0611.

2. Decoupling of nonholonomic systems on Lie
group using transverse functions

2.1. Preliminary and notation Let G be a Lie group with
group operation gh ∈ G, where g,h ∈ G. The inverse ele-
ment of g, denoted by g−1 ∈ G, satisfies gg−1 = g−1g = e,
with e being neutral (identity) element of group G. The fun-
damental group diffeomorphisms include: left translation lg :
G → G,h → gh, right translation rg : G → G,h → hg and con-
jugation φg : G → G,h → lg(rg−1(h)) = rg−1(lg(h)) = ghg−1.
Differentials of these maps are defined by: dlg(h) := d

dh lg(h),
drg(h) := d

dh rg(h) and dφg(h) := d
dh ghg−1, respectively.

For the given Lie group G associated Lie algebra g can
be defined. It consists of vector fields V1,V2, . . . ,Vi, . . . on G
which are left-invariant under left translation, namely

∀g,h ∈ G, dlg(h)Vi(h) =Vi(gh). (1)

Assume that a basis of g is constituted by n independent
vector fields X1,X2, . . . ,Xn ∈ g, where n = dimG. Apply-
ing vector-matrix notation this basis can be defined by X :=
[X1 X2 . . . Xn] ∈ Rn×n. Accordingly, one can express any vec-
tor field V ∈ g evaluated at g ∈ G in the Lie algebra basis as:

V = ∑n
i=1 Xi (g)wi = X (g)w, where w = [w1 . . . wn]

� ∈ Rn.
The Lie algebra g of the group G is related with this group

via exponential map: g→ G, denoted by

g = exp(X(·)w), (2)

where g ∈ G and X(·)w ∈ g. This map is understood as the
solution of differential equation d

dτ g = X(g)w with g(0) = e
evaluated at τ = 1.

The other important differential operator is the adjoint oper-
ator Ad : G× g → g which is given by Ad (g)V := dφg(e)V ,
where V ∈ g. For computation purposes we also consider con-
jugation of Ad given by: AdX (g) = X(e)−1Ad(g)X(e).

2.2. Kinematic control system on Lie group Consider m in-
put small-time locally controllable (STLC) system defined on
G

ġ =
m

∑
i=1

Xi(g)ui, (3)

where g ∈ G denotes configuration and X1,X2, . . . ,Xm ∈ g are
left-invariant control vector fields and u1,u2, . . . ,um denote in-
puts. Since the given system is STLC one can define the fol-
lowing basis of g

X := [X1 X2 . . . Xm Xm+1 . . .Xn], (4)

where Xm+1, . . . ,Xn are properly chosen (first and higher order)
Lie brackets of control vector fields X1, X2 . . . , Xm. Equiva-
lently, using (4) one can rewrite (3) as follows (cf. [12])

ġ = X(g)Cu, (5)

where C := [I 0]� ∈ Rn×m, with I ∈ Rm×m being identity ma-
trix, and u = [u1 u2 . . . um]

� ∈ Rm.

2.3. Transverse function Next, we recall a definition of a
transverse function defined on a torus.

DEFINITION 1. Let f : Tp → G, where p ≥ n − m be a
smooth function defined on p dimensional torus satisfying

∀α ∈ Tp, rankM(α) = n, (6)

while M(α) ∈ Rn×(m+p) is defined as follows

M(α) :=
[

X1( f (α)) X2( f (α)) . . . Xm( f (α))− ∂ f (α)

∂α

]
(7)

and
∀α ∈ Tp, f (α) ∈ Bε(e), (8)

where Bε(e) denotes n-dimensional ball with radius ε and
centre e. This function is transversal to control vector fields
Xm+1, . . . ,Xn and is called transverse function (TF) for system
(3).

Notice that when p = n − m the transversality condition
given by (6) can be written in a more convenient way using
basis X . Correspondingly, it can be assumed that

∂ f (α)

∂α
:= X( f (α))A(α) (9)

where A(α) := [A�
1 A�

2 ]
� ∈ Rn×(n−m) is the matrix composed

of columns being derivative of f expressed in X , while A1 ∈

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

1 = 

D. Pazderski

where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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1 and ε1 and ε2 are arbitrarily chosen non-zero pa-
rameters. 

Taking into account that the unicycle kinematics and the 
chained system are locally equivalent it implies that function f ̄ 
can be seen as a suitable candidate for a transverse function for 
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2 
are selected to be small enough. However, for higher values of 
ε1 and ε2 preservation of condition (6) is not obvious. Moreover, 
one can ask if there are some possible modifications of standard 
form (29) which can be introduced to increase design flexibility. 
We examine these issues in depth.

In order to make more general statements we introduce new 
parameter ε3 and consider modified version of (29) as follows

	

D. Pazderski

where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .

0 0.5 1ρ̄1 π
2

2 ρ̄2 2.5 3 π
0.2

0.5

1

2

5

10

20

50

(1.14, 0.95)

ε2

mε3
1
2
tanc(ε2)

Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .

0 0.5 1ρ̄1 π
2

2 ρ̄2 2.5 3 π
0.2

0.5
1
2

5
10
20

50

(1.14, 0.95)

ε2

mε3
1
2
tanc(ε2)

Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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From (31) it follows that γ does not depend on ε1. Hence, taking 
into account (32) one concludes that the transversality condition 
is satisfied for any ε1 > 0. Additionally, since ε2 is related to 
angular measure we restrict upper bound of this parameter to π.

Further, we consider selection of parameters ε2 and ε3 by 
analysing function γ. Using trigonometric identities in (31) we 
have
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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Fig. 3. Global minimum and maximum values of γ(α) for the optimal
value of parameter ε3

bound of ε3 is plotted. In particular for ε2 ≤ ρ̄1 ≈ 1.139 pa-
rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that

for small ε2 the maximum value of ε3 ≈ 0.5. This result is not
surprising, since it well corresponds to the condition which can
be obtained for the approximated system defined by (28). For
ε2 ∈ (ρ̄1,π] there is no closed-analytical formula describing
mε3 . Instead, one can follow algorithm presented in Appendix
A.1 to find the solution numerically.

Another criterion of selecting parameter ε3 comes from
analysis of the control law (15). Considering (19) and (32) one
can realize that the value of the lower bound of γ is critical.
Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
responds to the nominal selection of the transverse function
given by (29) for which ε3 = 1

4 . Moreover, it can be proved
that (ε2 → 0+) ⇒

(
∀α ∈ S1, γ(α)→ 1

2

)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
u1 u2 α̇

]�
= C̄−1(α)AdX ( f−1)

[
νx νθ νy

]�
, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
– in Fig. 4 this variable is illustrated by short arrows with the
corresponding direction. Now taking into account (32) and us-

Fig. 4. Geometrical interpretation of the omnidirectional planar frame

ing (26) the term ωα(α) from (20) can be calculated as follows

ωα (α) =− ω̄α (α)

ε1ε2γ (α)
, (36)
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bound of ε3 is plotted. In particular for ε2 ≤ ρ̄1 ≈ 1.139 pa-
rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that

for small ε2 the maximum value of ε3 ≈ 0.5. This result is not
surprising, since it well corresponds to the condition which can
be obtained for the approximated system defined by (28). For
ε2 ∈ (ρ̄1,π] there is no closed-analytical formula describing
mε3 . Instead, one can follow algorithm presented in Appendix
A.1 to find the solution numerically.

Another criterion of selecting parameter ε3 comes from
analysis of the control law (15). Considering (19) and (32) one
can realize that the value of the lower bound of γ is critical.
Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
responds to the nominal selection of the transverse function
given by (29) for which ε3 = 1

4 . Moreover, it can be proved
that (ε2 → 0+) ⇒

(
∀α ∈ S1, γ(α)→ 1

2

)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
u1 u2 α̇

]�
= C̄−1(α)AdX ( f−1)

[
νx νθ νy

]�
, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
– in Fig. 4 this variable is illustrated by short arrows with the
corresponding direction. Now taking into account (32) and us-

Fig. 4. Geometrical interpretation of the omnidirectional planar frame

ing (26) the term ωα(α) from (20) can be calculated as follows

ωα (α) =− ω̄α (α)

ε1ε2γ (α)
, (36)
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rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that
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. More-
over, it can be proved that (ε2 ! 0+) ) (8α 2 

D. Pazderski

where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .
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Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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1, γ(α) ! 1–2), 
namely for a small ε2 function γ(α) becomes independent from 
α (as is the case of the chained system (28)).

4.	 Approximated omnidirectional system

Recall the definition of auxiliary variable 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

 2 G satisfying (13). It 
implies that for any g describing configuration of the unicycle one 
can find the virtual frame characterized by 

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.
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z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write
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Alternatively, from (12) one can easily find that
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system evolving on G.
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as follows.
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, (15)
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Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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y are position coordinates while 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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θ stands for orientation 
– cf. Fig. 4.

Now we recall the decoupling control law defined by (18) 
taking into account the unicycle model and assuming that δ  ̇´ 0. 
Consequently, one can specify (18) as follows
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Fig. 2. Optimal value of parameter ε3 maximizing infα∈S1 γ(α)
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Fig. 3. Global minimum and maximum values of γ(α) for the optimal
value of parameter ε3

bound of ε3 is plotted. In particular for ε2 ≤ ρ̄1 ≈ 1.139 pa-
rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that

for small ε2 the maximum value of ε3 ≈ 0.5. This result is not
surprising, since it well corresponds to the condition which can
be obtained for the approximated system defined by (28). For
ε2 ∈ (ρ̄1,π] there is no closed-analytical formula describing
mε3 . Instead, one can follow algorithm presented in Appendix
A.1 to find the solution numerically.

Another criterion of selecting parameter ε3 comes from
analysis of the control law (15). Considering (19) and (32) one
can realize that the value of the lower bound of γ is critical.
Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
responds to the nominal selection of the transverse function
given by (29) for which ε3 = 1

4 . Moreover, it can be proved
that (ε2 → 0+) ⇒

(
∀α ∈ S1, γ(α)→ 1

2

)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
u1 u2 α̇

]�
= C̄−1(α)AdX ( f−1)

[
νx νθ νy

]�
, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
– in Fig. 4 this variable is illustrated by short arrows with the
corresponding direction. Now taking into account (32) and us-

Fig. 4. Geometrical interpretation of the omnidirectional planar frame

ing (26) the term ωα(α) from (20) can be calculated as follows

ωα (α) =− ω̄α (α)

ε1ε2γ (α)
, (36)
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,� (35)

where νx, νθ and νy are velocity components defined in the local 
frame X(
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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) (notice that the order of ν components is different to 
the one used to characterize group elements due to the defini-
tion of basis X in (25)). These signals can be used to change 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Fig. 3. Global minimum and maximum values of γ(α) for the optimal
value of parameter ε3

bound of ε3 is plotted. In particular for ε2 ≤ ρ̄1 ≈ 1.139 pa-
rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that

for small ε2 the maximum value of ε3 ≈ 0.5. This result is not
surprising, since it well corresponds to the condition which can
be obtained for the approximated system defined by (28). For
ε2 ∈ (ρ̄1,π] there is no closed-analytical formula describing
mε3 . Instead, one can follow algorithm presented in Appendix
A.1 to find the solution numerically.

Another criterion of selecting parameter ε3 comes from
analysis of the control law (15). Considering (19) and (32) one
can realize that the value of the lower bound of γ is critical.
Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
responds to the nominal selection of the transverse function
given by (29) for which ε3 = 1

4 . Moreover, it can be proved
that (ε2 → 0+) ⇒

(
∀α ∈ S1, γ(α)→ 1

2

)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
u1 u2 α̇

]�
= C̄−1(α)AdX ( f−1)

[
νx νθ νy

]�
, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
– in Fig. 4 this variable is illustrated by short arrows with the
corresponding direction. Now taking into account (32) and us-

Fig. 4. Geometrical interpretation of the omnidirectional planar frame

ing (26) the term ωα(α) from (20) can be calculated as follows

ωα (α) =− ω̄α (α)

ε1ε2γ (α)
, (36)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Fig. 3. Global minimum and maximum values of γ(α) for the optimal
value of parameter ε3

bound of ε3 is plotted. In particular for ε2 ≤ ρ̄1 ≈ 1.139 pa-
rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that

for small ε2 the maximum value of ε3 ≈ 0.5. This result is not
surprising, since it well corresponds to the condition which can
be obtained for the approximated system defined by (28). For
ε2 ∈ (ρ̄1,π] there is no closed-analytical formula describing
mε3 . Instead, one can follow algorithm presented in Appendix
A.1 to find the solution numerically.

Another criterion of selecting parameter ε3 comes from
analysis of the control law (15). Considering (19) and (32) one
can realize that the value of the lower bound of γ is critical.
Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
responds to the nominal selection of the transverse function
given by (29) for which ε3 = 1

4 . Moreover, it can be proved
that (ε2 → 0+) ⇒

(
∀α ∈ S1, γ(α)→ 1

2

)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
u1 u2 α̇

]�
= C̄−1(α)AdX ( f−1)

[
νx νθ νy

]�
, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
– in Fig. 4 this variable is illustrated by short arrows with the
corresponding direction. Now taking into account (32) and us-

Fig. 4. Geometrical interpretation of the omnidirectional planar frame

ing (26) the term ωα(α) from (20) can be calculated as follows

ωα (α) =− ω̄α (α)

ε1ε2γ (α)
, (36)
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Consequently, the augmented dynamics becomes
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Case Motion νx νθ νy
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II pure rotation 0 ± 0
III feasible arc ± ± 0
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where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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4.1. Evolution of augment dynamics. Now we focus on 
time-evolution of dynamics (38) with respect to input ν gov-
erning motion of the virtual omnidirectional frame. Compo-
nents of ν can be interpreted from (35) assuming that f ap-
proaches e that gives AdX( f –1) ¼ I. Then using (19) one obtains
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Hence, it can be concluded that components νx and νθ are asso-
ciated with the real kinematic inputs u1 and u2 of the unicycle, 
respectively. Alternatively, νy is an infeasible input in the sense 
that the motion defined by it cannot be directly executed by 
the unicycle.

Since it is difficult to formulate precise conclusions for the 
general case, we consider particular cases in the sequel. In order 
to do this we define fundamental motion patterns (manoeuvres) 
collected in Table 1. We distinguish two kinds of patterns – fea-
sible, which can be realized straightforward by the unicycle 
and infeasible which violate nonhnolonomic constraints. To 
simplify analysis it is assumed that input ν is constant at least 
during some time interval. 

Table 1 
Basic motion patterns

	 Case	 Motion	 νx	 νθ	 νy

	 I	 feasible straight line	 ±	 0 	 0
	 II	 pure rotation	 0 	 ±	 0
	 III	 feasible arc	 ±	 ±	 0
	 III	 infeasible straight line	 ±	 0	 ±
	 IV	 infeasible arc	 ±	 ±	 ±

Let α0 be an equilibrium point of system (38), namely 
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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In order to investigate the stability of (38) we introduce the 
following positive definite function
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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where ᾶ := α ¡ α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇  one has
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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4.2. Case I: feasible straight motion. Assume that νx 6 = 0 while 
νθ and νy = 0. Computing ω ̄ αν, in view of (37), one has
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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sign(νx) is the locally as-
ymptotically stable equilibrium point.

4.3. Case II: pure rotation. Let νx = νy = 0 and νθ 6 = 0 which 
implies from (37) that
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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It can be shown (see Appendix A.2) that 
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Hence, in view of (46), the equilibrium point satisfies α0 = 0. 
Consequently, using (42) one can prove that
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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4.4. Case III: feasible motion along arc. In this case we have 
νx = const 6 = 0, νθ = const 6 = 0 and νy = 0. Then it follows from 
(37) that
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
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]
AdX (
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=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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where atan2(∙, ∙) stands for the four-quadrant inverse tangent 
function.

Alternatively, it is possible to find sets of equilibrium points 
by solving (49) numerically for the given parameters. The re-
sults illustrated in Fig. 5 are obtained assuming that νx = Ncosβ, 
νθ = Nsinβ, where N > 0 and β 2 (¡π, π], for selected ratio 
ε1/ε2 and ε3 = 
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Fig. 2. Optimal value of parameter ε3 maximizing infα∈S1 γ(α)
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Fig. 3. Global minimum and maximum values of γ(α) for the optimal
value of parameter ε3

bound of ε3 is plotted. In particular for ε2 ≤ ρ̄1 ≈ 1.139 pa-
rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that

for small ε2 the maximum value of ε3 ≈ 0.5. This result is not
surprising, since it well corresponds to the condition which can
be obtained for the approximated system defined by (28). For
ε2 ∈ (ρ̄1,π] there is no closed-analytical formula describing
mε3 . Instead, one can follow algorithm presented in Appendix
A.1 to find the solution numerically.

Another criterion of selecting parameter ε3 comes from
analysis of the control law (15). Considering (19) and (32) one
can realize that the value of the lower bound of γ is critical.
Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
responds to the nominal selection of the transverse function
given by (29) for which ε3 = 1

4 . Moreover, it can be proved
that (ε2 → 0+) ⇒

(
∀α ∈ S1, γ(α)→ 1

2

)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
u1 u2 α̇

]�
= C̄−1(α)AdX ( f−1)

[
νx νθ νy

]�
, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
– in Fig. 4 this variable is illustrated by short arrows with the
corresponding direction. Now taking into account (32) and us-

Fig. 4. Geometrical interpretation of the omnidirectional planar frame

ing (26) the term ωα(α) from (20) can be calculated as follows

ωα (α) =− ω̄α (α)

ε1ε2γ (α)
, (36)
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Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
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given by (29) for which ε3 = 1
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)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
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]�
= C̄−1(α)AdX ( f−1)

[
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, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
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It can be observed that the value of equilibrium point α0 for 
small ε2 well corresponds to the approximated analytical solution 
defined by (54). Substituting the assumed inputs in (54) one 
obtains: α0 := atan2(¡ε2cosβ, ¡ε1sinβ) = atan2(ε2sin(¡β ¡

D. Pazderski

Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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. In Fig. 5 this case is illustrated by almost straight 
lines denoted by ̓ 1̕ . For the higher value of ε2 one can notice 
that parameter ε3 affects the value of the equilibrium point con-
siderably. Then the approximated result (54) is no longer accu-
rate – cf. Fig. 6.

4.5. Case IV – infeasible linear motion. Assuming that νx = 
const  6      = 0, νy = const  6 = 0 and recalling (37) allows one to write

	

Application of transverse functions

results illustrated in Fig. 5 are obtained assuming that νx =
N cosβ , νθ = N sinβ , where N > 0 and β ∈ (−π,π], for se-
lected ratio ε1/ε2 and ε3 =

1
4 .

It can be observed that the value of equilibrium point α0
for small ε2 well corresponds to the approximated analyti-
cal solution defined by (54). Substituting the assumed in-
puts in (54) one obtains: α0 := atan2(−ε2 cosβ ,−ε1 sinβ ) =
atan2

(
ε2 sin(−β − π

2 ), ε1 cos(−β − π
2 )
)
. Hence, for ε1 = ε2

one easily concludes that α0 = −β − π
2 . In Fig. 5 this case

is illustrated by almost straight lines denoted by ’1’. For the
higher value of ε2 one can notice that parameter ε3 affects the
value of the equilibrium point considerably. Then the approxi-
mated result (54) is no longer accurate – cf. Fig. 6.
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Fig. 5. Set of equilibrium points in Case III for the given inputs νx =
N cosβ , νθ = N sinβ and various selections of parameter ε1 and ε2
and ε3 =

1
4 – the coefficients on curves denote ratio ε1/ε2

4.5. Case IV – infeasible linear motion Assuming that νx =
const �= 0, νy = const �= 0 and recalling (37) allows one to write

ω̄α ν = sin fθ νx + cos fθ νy. (55)

Clearly, the equilibrium point can be found when there is a
solution to equation: tan( fθ (α)) = −νy/νx. Assuming that
ε2 <

π
2 this condition can be satisfied when

sup
α

| fθ (α)|< arctan
∣∣∣∣
νy

νx

∣∣∣∣ . (56)
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Fig. 6. Set of equilibrium points in Case III for the given inputs νx =
N cosβ , νθ = N sinβ and various selections of parameter ε1 and ε3
with ε2 = 1.5 – the coefficients on curves denote ratio ε1/ε2

Basically, it means that an equilibrium can be achieved when∣∣∣∣
νy

νx

∣∣∣∣< tanε2. (57)

Following this result, one concludes that the augmented dy-
namics (38) has the equilibrium even for some kind of infea-
sible motion pattern. This is an interesting issue which comes
from the self adapting property of transverse functions. Basi-
cally, it means that there is some tolerance to infeasible input
ν for which the augmented dynamics is stable and no period-
ically cycles are observed. Moreover, this tolerance can be
easily modified by parameter ε2. For smaller ε2 the unicy-
cle is controlled such that difficult directions are realized in
an oscillatory way. When ε2 increases the controller attenuates
this behaviour since more change of orientation is permissible.
In particular, for ε2 = π

2 function tanε2 becomes unbounded
and for any infeasible straight stationary motion an equilib-
rium point can be found. A similar conclusion can be made
for ε2 >

π
2 . It follows that for a higher value of ε2 orientation

of the unicycle is adjusted properly in order to establish the
desired change of position coordinates.
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Fig. 7. Normalized mean frequency of oscillation for infeasible linear
motion computed for the selected value of ε2 and ε3 =

1
4

To make more detailed analysis it is assumed that νx =
N cosβ and νy = N sinβ where N > 0. Using these inputs in
(55) allows one to rewrite (38) as follows

α̇ =− N
ε1ε2γ (α)

(sin fθ cosβ + cos fθ sinβ ) . (58)
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Clearly, the equilibrium point can be found when there is a solu-
tion to equation: tan( fθ(α)) = ¡νy/νx. Assuming that ε2 < 
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

 this 
condition can be satisfied when

	

Application of transverse functions

results illustrated in Fig. 5 are obtained assuming that νx =
N cosβ , νθ = N sinβ , where N > 0 and β ∈ (−π,π], for se-
lected ratio ε1/ε2 and ε3 =

1
4 .

It can be observed that the value of equilibrium point α0
for small ε2 well corresponds to the approximated analyti-
cal solution defined by (54). Substituting the assumed in-
puts in (54) one obtains: α0 := atan2(−ε2 cosβ ,−ε1 sinβ ) =
atan2

(
ε2 sin(−β − π

2 ), ε1 cos(−β − π
2 )
)
. Hence, for ε1 = ε2

one easily concludes that α0 = −β − π
2 . In Fig. 5 this case

is illustrated by almost straight lines denoted by ’1’. For the
higher value of ε2 one can notice that parameter ε3 affects the
value of the equilibrium point considerably. Then the approxi-
mated result (54) is no longer accurate – cf. Fig. 6.
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Fig. 5. Set of equilibrium points in Case III for the given inputs νx =
N cosβ , νθ = N sinβ and various selections of parameter ε1 and ε2
and ε3 =

1
4 – the coefficients on curves denote ratio ε1/ε2

4.5. Case IV – infeasible linear motion Assuming that νx =
const �= 0, νy = const �= 0 and recalling (37) allows one to write

ω̄α ν = sin fθ νx + cos fθ νy. (55)

Clearly, the equilibrium point can be found when there is a
solution to equation: tan( fθ (α)) = −νy/νx. Assuming that
ε2 <

π
2 this condition can be satisfied when

sup
α

| fθ (α)|< arctan
∣∣∣∣
νy

νx

∣∣∣∣ . (56)
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Fig. 6. Set of equilibrium points in Case III for the given inputs νx =
N cosβ , νθ = N sinβ and various selections of parameter ε1 and ε3
with ε2 = 1.5 – the coefficients on curves denote ratio ε1/ε2

Basically, it means that an equilibrium can be achieved when∣∣∣∣
νy

νx

∣∣∣∣< tanε2. (57)

Following this result, one concludes that the augmented dy-
namics (38) has the equilibrium even for some kind of infea-
sible motion pattern. This is an interesting issue which comes
from the self adapting property of transverse functions. Basi-
cally, it means that there is some tolerance to infeasible input
ν for which the augmented dynamics is stable and no period-
ically cycles are observed. Moreover, this tolerance can be
easily modified by parameter ε2. For smaller ε2 the unicy-
cle is controlled such that difficult directions are realized in
an oscillatory way. When ε2 increases the controller attenuates
this behaviour since more change of orientation is permissible.
In particular, for ε2 = π

2 function tanε2 becomes unbounded
and for any infeasible straight stationary motion an equilib-
rium point can be found. A similar conclusion can be made
for ε2 >

π
2 . It follows that for a higher value of ε2 orientation

of the unicycle is adjusted properly in order to establish the
desired change of position coordinates.
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Fig. 7. Normalized mean frequency of oscillation for infeasible linear
motion computed for the selected value of ε2 and ε3 =

1
4

To make more detailed analysis it is assumed that νx =
N cosβ and νy = N sinβ where N > 0. Using these inputs in
(55) allows one to rewrite (38) as follows

α̇ =− N
ε1ε2γ (α)

(sin fθ cosβ + cos fθ sinβ ) . (58)
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Basically, it means that an equilibrium can be achieved when

	

Application of transverse functions

results illustrated in Fig. 5 are obtained assuming that νx =
N cosβ , νθ = N sinβ , where N > 0 and β ∈ (−π,π], for se-
lected ratio ε1/ε2 and ε3 =

1
4 .

It can be observed that the value of equilibrium point α0
for small ε2 well corresponds to the approximated analyti-
cal solution defined by (54). Substituting the assumed in-
puts in (54) one obtains: α0 := atan2(−ε2 cosβ ,−ε1 sinβ ) =
atan2

(
ε2 sin(−β − π

2 ), ε1 cos(−β − π
2 )
)
. Hence, for ε1 = ε2

one easily concludes that α0 = −β − π
2 . In Fig. 5 this case

is illustrated by almost straight lines denoted by ’1’. For the
higher value of ε2 one can notice that parameter ε3 affects the
value of the equilibrium point considerably. Then the approxi-
mated result (54) is no longer accurate – cf. Fig. 6.
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Fig. 5. Set of equilibrium points in Case III for the given inputs νx =
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4.5. Case IV – infeasible linear motion Assuming that νx =
const �= 0, νy = const �= 0 and recalling (37) allows one to write

ω̄α ν = sin fθ νx + cos fθ νy. (55)

Clearly, the equilibrium point can be found when there is a
solution to equation: tan( fθ (α)) = −νy/νx. Assuming that
ε2 <

π
2 this condition can be satisfied when

sup
α

| fθ (α)|< arctan
∣∣∣∣
νy

νx

∣∣∣∣ . (56)
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Basically, it means that an equilibrium can be achieved when∣∣∣∣
νy

νx

∣∣∣∣< tanε2. (57)

Following this result, one concludes that the augmented dy-
namics (38) has the equilibrium even for some kind of infea-
sible motion pattern. This is an interesting issue which comes
from the self adapting property of transverse functions. Basi-
cally, it means that there is some tolerance to infeasible input
ν for which the augmented dynamics is stable and no period-
ically cycles are observed. Moreover, this tolerance can be
easily modified by parameter ε2. For smaller ε2 the unicy-
cle is controlled such that difficult directions are realized in
an oscillatory way. When ε2 increases the controller attenuates
this behaviour since more change of orientation is permissible.
In particular, for ε2 = π

2 function tanε2 becomes unbounded
and for any infeasible straight stationary motion an equilib-
rium point can be found. A similar conclusion can be made
for ε2 >

π
2 . It follows that for a higher value of ε2 orientation

of the unicycle is adjusted properly in order to establish the
desired change of position coordinates.
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To make more detailed analysis it is assumed that νx =
N cosβ and νy = N sinβ where N > 0. Using these inputs in
(55) allows one to rewrite (38) as follows

α̇ =− N
ε1ε2γ (α)

(sin fθ cosβ + cos fθ sinβ ) . (58)
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Following this result, one concludes that the augmented dy-
namics (38) has the equilibrium even for some kind of infea-
sible motion pattern. This is an interesting issue which comes 
from the self adapting property of transverse functions. Basi-
cally, it means that there is some tolerance to infeasible input 
ν for which the augmented dynamics is stable and no peri-

odically cycles are observed. Moreover, this tolerance can be 
easily modified by parameter ε2. For smaller ε2 the unicycle is 
controlled such that difficult directions are realized in an oscil-
latory way. When ε2 increases the controller attenuates this be-
haviour since more change of orientation is permissible. In par-
ticular, for ε2 = 
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
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while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has
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implies from (37) that
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where
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It can be shown (see Appendix A.2) that
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Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that
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. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that
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(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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follows that for a higher value of ε2 orientation of the unicycle 
is adjusted properly in order to establish the desired change of 
position coordinates.

To make more detailed analysis it is assumed that νx = Ncosβ 
and νy = Nsinβ where N > 0. Using these inputs in (55) allows 
one to rewrite (38) as follows

	

Application of transverse functions

results illustrated in Fig. 5 are obtained assuming that νx =
N cosβ , νθ = N sinβ , where N > 0 and β ∈ (−π,π], for se-
lected ratio ε1/ε2 and ε3 =

1
4 .

It can be observed that the value of equilibrium point α0
for small ε2 well corresponds to the approximated analyti-
cal solution defined by (54). Substituting the assumed in-
puts in (54) one obtains: α0 := atan2(−ε2 cosβ ,−ε1 sinβ ) =
atan2

(
ε2 sin(−β − π

2 ), ε1 cos(−β − π
2 )
)
. Hence, for ε1 = ε2

one easily concludes that α0 = −β − π
2 . In Fig. 5 this case

is illustrated by almost straight lines denoted by ’1’. For the
higher value of ε2 one can notice that parameter ε3 affects the
value of the equilibrium point considerably. Then the approxi-
mated result (54) is no longer accurate – cf. Fig. 6.
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N cosβ , νθ = N sinβ and various selections of parameter ε1 and ε2
and ε3 =
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4 – the coefficients on curves denote ratio ε1/ε2

4.5. Case IV – infeasible linear motion Assuming that νx =
const �= 0, νy = const �= 0 and recalling (37) allows one to write

ω̄α ν = sin fθ νx + cos fθ νy. (55)

Clearly, the equilibrium point can be found when there is a
solution to equation: tan( fθ (α)) = −νy/νx. Assuming that
ε2 <

π
2 this condition can be satisfied when

sup
α

| fθ (α)|< arctan
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Basically, it means that an equilibrium can be achieved when∣∣∣∣
νy

νx

∣∣∣∣< tanε2. (57)

Following this result, one concludes that the augmented dy-
namics (38) has the equilibrium even for some kind of infea-
sible motion pattern. This is an interesting issue which comes
from the self adapting property of transverse functions. Basi-
cally, it means that there is some tolerance to infeasible input
ν for which the augmented dynamics is stable and no period-
ically cycles are observed. Moreover, this tolerance can be
easily modified by parameter ε2. For smaller ε2 the unicy-
cle is controlled such that difficult directions are realized in
an oscillatory way. When ε2 increases the controller attenuates
this behaviour since more change of orientation is permissible.
In particular, for ε2 = π

2 function tanε2 becomes unbounded
and for any infeasible straight stationary motion an equilib-
rium point can be found. A similar conclusion can be made
for ε2 >

π
2 . It follows that for a higher value of ε2 orientation

of the unicycle is adjusted properly in order to establish the
desired change of position coordinates.
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Fig. 7. Normalized mean frequency of oscillation for infeasible linear
motion computed for the selected value of ε2 and ε3 =

1
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To make more detailed analysis it is assumed that νx =
N cosβ and νy = N sinβ where N > 0. Using these inputs in
(55) allows one to rewrite (38) as follows

α̇ =− N
ε1ε2γ (α)

(sin fθ cosβ + cos fθ sinβ ) . (58)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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To be more precise one has
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Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
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gives
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In order to find a solution to (64) one concludes that
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√
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Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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.� (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3 
and β. The results of this computation are presented in Fig. 7 
for β 2 [0, 

D. Pazderski

Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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). It can be seen that when β is close to zero the 
feasible input νx dominates and no oscillation is observed. When 
β becomes higher than ε2 the dynamics (59) starts to generate 
a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

.� (60)

Hence, it is possible to predict a response of the controller for 
the assumed inputs νx and νy. This is an important issue when 
the oscillatory response of the controller should be limited. 
Such a requirement is necessary when a practical implementa-
tion of the controller is considered.

Fig. 6. Set of equilibrium points in Case III for the given inputs 
νx = Ncosβ, νθ = Nsinβ and various selections of parameter ε1 and ε3 

with ε2 = 1.5 – the coefficients on curves denote ratio ε1/ε2
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Fig. 3. Global minimum and maximum values of γ(α) for the optimal
value of parameter ε3

bound of ε3 is plotted. In particular for ε2 ≤ ρ̄1 ≈ 1.139 pa-
rameter ε3 has to be selected such that

∀ε2 ∈ (0, ρ̄1],ε3 < mε3 =
1
2

tanc(ε3), (34)

where tanc(σ) := tan(σ)
σ , while σ ∈ R. It can be noticed that

for small ε2 the maximum value of ε3 ≈ 0.5. This result is not
surprising, since it well corresponds to the condition which can
be obtained for the approximated system defined by (28). For
ε2 ∈ (ρ̄1,π] there is no closed-analytical formula describing
mε3 . Instead, one can follow algorithm presented in Appendix
A.1 to find the solution numerically.

Another criterion of selecting parameter ε3 comes from
analysis of the control law (15). Considering (19) and (32) one
can realize that the value of the lower bound of γ is critical.
Basically, when γ decreases the resultant gain in the open-loop
increases and the augmented dynamics becomes sensitive to
unmodelled perturbations. Then the control law approaches
singularity that can lead to unacceptable performance, [42].
Following this aspect one should prefer to chose ε3 for which
the lower bound of γ is maximised. In Fig. 2 the optimal value
of ε3 is presented for the given ε2 while in Fig. 3 the bounds
of γ for the optimal ε3 is presented. It can be noticed that
for a small value of ε2 the optimal selection of ε3 well cor-
responds to the nominal selection of the transverse function
given by (29) for which ε3 = 1

4 . Moreover, it can be proved
that (ε2 → 0+) ⇒

(
∀α ∈ S1, γ(α)→ 1

2

)
, namely for a small

ε2 function γ(α) becomes independent from α (as is the case
of the chained system (28)).

4. Approximated omnidirectional system
Recall the definition of auxiliary variable z ∈ G satisfying
(13). It implies that for any g describing configuration of

the unicycle one can find the virtual frame characterized by
z = [zx zy zθ ]

�, where zx and zy are position coordinates while
zθ stands for orientation – cf. Fig. 4.

Now we recall the decoupling control law defined by (18)
taking into account the unicycle model and assuming that δ̇ ≡
0. Consequently, one can specify (18) as follows

[
u1 u2 α̇

]�
= C̄−1(α)AdX ( f−1)

[
νx νθ νy

]�
, (35)

where νx, νθ and νy are velocity components defined in the
local frame X(z) (notice that the order of ν components is dif-
ferent to the one used to characterize group elements due to
the definition of basis X in (25)). These signals can be used
to change z in an arbitrary direction. Then g evolves at the
neighbourhood of z with the radius dependent on transverse
function f . Consequently, g can be seen as a closed curve in G
parametrized by α . In Fig. 4 2D projection of this curve on the
plane is presented. This curve can be bounded by a rectangle
with the centre placed at (zx,zy) and dimensions dependent on
ε1, ε2 and ε3. Similarly, orientation gθ can be found for any α
– in Fig. 4 this variable is illustrated by short arrows with the
corresponding direction. Now taking into account (32) and us-

Fig. 4. Geometrical interpretation of the omnidirectional planar frame

ing (26) the term ωα(α) from (20) can be calculated as follows

ωα (α) =− ω̄α (α)

ε1ε2γ (α)
, (36)
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Application of transverse functions to control differentially driven wheeled robots using velocity fields

4.6. Case V – infeasible motion along arc. This case is the 
most complicated and it can be seen as a superposition of Case 
III and Case IV. Using again (37) and (46) one obtains
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ¼ 1 
and sin(ε2cosα) ¼ ε2cosα. Then one can define
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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be more precise one has
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that
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∣∣< ε1ε2N = ε2

√
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x +

(
ε1

ε2
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Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that
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∣∣< ε1ε2N = ε2

√
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x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ¼ tanε2. It confirms that when the 
input in the infeasible direction does not exceed some threshold 
system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one 
observed in the case IV.

4.7. Extension to non-constant parameters of the transverse 
function. The studied decoupling controller (35) is designed as-
suming that parameters of transverse function f are constant co-
efficients. However, in order to facilitate tuning of the controller 
(for example to decrease frequency of oscillations for an infea-
sible motion pattern) one can employ feed-forward term Aδ(α)δ ̇ 
from (18). In the considered case variable δ can be used to char-
acterize parameters of f. To be more precise, one can assume that 
δ := [ε1 ε2 ε3]>. Consequently, it is possible to change these pa-
rameters freely (assuming that the transversality condition holds 
and δ ̇  is bounded) without affecting the position and orientation 
of the omnidirectional frame described by 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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 and g taking into account additional require-
ments and to improve performance of the controller.

5.	 Application of the controller  
for velocity-based control in task space

For many feedback planning algorithms taking advantage of 
potential functions it is assumed that a robot is not subject to 
phase constraints and is fully actuated. Consequently, every 

direction in the phase space can be executed independently 
using a relatively simple motion controller. Then it is possible 
to use the basic idea of attracting and repulsive vector fields 
designed based on the gradient of potential functions. In such 
a case the main problem is to construct a potential in order to 
avoid local minima.

Here we consider the feedback motion planning algorithm 
assuming that obstacles are isolated from each other. Moreover, 
a local sensing zone is supposed – namely each obstacle can 
interact with a robot locally in an external region. The robot 
is modelled as a virtual particle without velocity constraints.

Basically, the considered problem can be stated as follows.

Problem 1. Feedback navigation problem. Let p 2 ℝ2 be the 
coordinate of the point robot on the plane with holes (obstacles). 
The robot kinematics is given by
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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where w = [w1 w2]> is input. Assume that there exists a feed-
back navigation algorithm Ω(p) which provides a bounded and 
differentiable velocity field in ℝ2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world 
with star obstacles for a differentially driven robot with the 
unicycle kinematic such that position of the robot follows p(t) 
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional 
robot. Consider open workspace 
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

. 
Assume that a real robot for the given configuration 
g 2 G =' SE(2) occupies area 

D. Pazderski

Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Then a motion planning/control problem in a geometrically 
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as

A2 (α) = ε1ε2γ(α). (32)

From (31) it follows that γ does not depend on ε1. Hence,
taking into account (32) one concludes that the transversality
condition is satisfied for any ε1 > 0. Additionally, since ε2
is related to angular measure we restrict upper bound of this
parameter to π .

0 0.5 1ρ̄1 π
2

2 ρ̄2 2.5 3 π
0.2

0.5

1

2

5

10

20

50

(1.14, 0.95)

ε2

mε3
1
2
tanc(ε2)

Fig. 1. Upper bound of parameter ε3 for ε2 ∈ (0,π]

Further, we consider selection of parameters ε2 and ε3 by
analysing function γ . Using trigonometric identities in (31) we
have

γ(α) =(sinc(ε2 cosα)−2ε3 cos(ε2 cosα))cos2 α+

+2ε3 cos(ε2 cosα)sin2 α, (33)

where sinc(σ) := sinσ
σ is the analytic function for σ ∈R. Next,

making detailed analysis (see Appendix A.1) one can find fea-
sible values of ε3 for ε2 in the given domain. In Fig. 1 upper
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]

� ∈R2

and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{

p ∈ W : ∀zθ ,α ∈ S1,WR(z f (α))∩W O i �= /0
}
.

(68)
To make a simpler model we introduce the enlarged virtual
obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration
space

Z f ree := W \
l⋃

i=1

Oi. (70)

DEFINITION 2. Let F be a differentiable star defined by

F :=
{

p ∈ R2 : F(p)−1 ≤ 0
}
, (71)

where F(p) satisfies

1. F(p) ∈C2 in the set B0(ρ)⊃ F ,
2. F(p) is positive definite and has global minimum at p = 0.

To be more precise we define

Oi :=
{

p ∈ R2 : Foi(p−oi)≤ 1
}

(72)

and

Ei :=
{

p ∈ R2 : Foi(p−oi)≤ Fei(p−oi)≤ 1
}
, (73)

where oi = [oix oiy]
� ∈R2 denotes the coordinates of the centre

of both regions while Foi(p) and Fei(p) satisfy conditions given
by Definition 2.

5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc

i is a circular (disk) obstacle
with radius ri. Then Foi(p−oi) := 1

r2
i
‖p−oi‖2 and the repul-

sive potential of the obstacle can be defined as

V c
oi
(p) =




r2
i

‖p−oi‖2−r2
i

if ‖p−oi‖> ri

0 otherwise
. (74)

From (74) it follows that Voi is unbounded on obstacle bound-
ary ∂Oc

i .
Computing gradient of Voi gives

∂V c
oi
(p)

∂ p
=

{
− 2

r2
i
(V c

oi
(p))2(p−oi)

� if ‖p−oi‖> ri

0 otherwise
. (75)

Fig. 8. Example of a star obstacle surrounded by a local interaction
zone

Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=




−Fδ

ei (p)
∂V c

oi
(p)

∂ p

�
if Fei(p)< 1

0 otherwise
, (76)

where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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Application of transverse functions

Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]

� ∈R2

and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{

p ∈ W : ∀zθ ,α ∈ S1,WR(z f (α))∩W O i �= /0
}
.

(68)
To make a simpler model we introduce the enlarged virtual
obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration
space

Z f ree := W \
l⋃

i=1

Oi. (70)

DEFINITION 2. Let F be a differentiable star defined by

F :=
{

p ∈ R2 : F(p)−1 ≤ 0
}
, (71)

where F(p) satisfies

1. F(p) ∈C2 in the set B0(ρ)⊃ F ,
2. F(p) is positive definite and has global minimum at p = 0.

To be more precise we define

Oi :=
{

p ∈ R2 : Foi(p−oi)≤ 1
}

(72)

and

Ei :=
{

p ∈ R2 : Foi(p−oi)≤ Fei(p−oi)≤ 1
}
, (73)

where oi = [oix oiy]
� ∈R2 denotes the coordinates of the centre

of both regions while Foi(p) and Fei(p) satisfy conditions given
by Definition 2.

5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc

i is a circular (disk) obstacle
with radius ri. Then Foi(p−oi) := 1

r2
i
‖p−oi‖2 and the repul-

sive potential of the obstacle can be defined as

V c
oi
(p) =




r2
i

‖p−oi‖2−r2
i

if ‖p−oi‖> ri

0 otherwise
. (74)

From (74) it follows that Voi is unbounded on obstacle bound-
ary ∂Oc

i .
Computing gradient of Voi gives

∂V c
oi
(p)

∂ p
=

{
− 2

r2
i
(V c

oi
(p))2(p−oi)

� if ‖p−oi‖> ri

0 otherwise
. (75)

Fig. 8. Example of a star obstacle surrounded by a local interaction
zone

Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=



−Fδ

ei (p)
∂V c

oi
(p)

∂ p

�
if Fei(p)< 1

0 otherwise
, (76)

where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]
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and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
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Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{
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}
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To make a simpler model we introduce the enlarged virtual
obstacle Oi such that
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DEFINITION 2. Let F be a differentiable star defined by

F :=
{

p ∈ R2 : F(p)−1 ≤ 0
}
, (71)

where F(p) satisfies

1. F(p) ∈C2 in the set B0(ρ)⊃ F ,
2. F(p) is positive definite and has global minimum at p = 0.

To be more precise we define

Oi :=
{

p ∈ R2 : Foi(p−oi)≤ 1
}

(72)

and

Ei :=
{

p ∈ R2 : Foi(p−oi)≤ Fei(p−oi)≤ 1
}
, (73)

where oi = [oix oiy]
� ∈R2 denotes the coordinates of the centre

of both regions while Foi(p) and Fei(p) satisfy conditions given
by Definition 2.

5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc

i is a circular (disk) obstacle
with radius ri. Then Foi(p−oi) := 1

r2
i
‖p−oi‖2 and the repul-

sive potential of the obstacle can be defined as

V c
oi
(p) =




r2
i

‖p−oi‖2−r2
i

if ‖p−oi‖> ri

0 otherwise
. (74)

From (74) it follows that Voi is unbounded on obstacle bound-
ary ∂Oc

i .
Computing gradient of Voi gives

∂V c
oi
(p)

∂ p
=
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r2
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(V c

oi
(p))2(p−oi)

� if ‖p−oi‖> ri

0 otherwise
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Fig. 8. Example of a star obstacle surrounded by a local interaction
zone

Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=



−Fδ

ei (p)
∂V c

oi
(p)

∂ p

�
if Fei(p)< 1

0 otherwise
, (76)

where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Application of transverse functions

Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]

� ∈R2

and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{

p ∈ W : ∀zθ ,α ∈ S1,WR(z f (α))∩W O i �= /0
}
.

(68)
To make a simpler model we introduce the enlarged virtual
obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration
space

Z f ree := W \
l⋃

i=1

Oi. (70)

DEFINITION 2. Let F be a differentiable star defined by

F :=
{

p ∈ R2 : F(p)−1 ≤ 0
}
, (71)

where F(p) satisfies

1. F(p) ∈C2 in the set B0(ρ)⊃ F ,
2. F(p) is positive definite and has global minimum at p = 0.

To be more precise we define

Oi :=
{

p ∈ R2 : Foi(p−oi)≤ 1
}

(72)

and

Ei :=
{

p ∈ R2 : Foi(p−oi)≤ Fei(p−oi)≤ 1
}
, (73)

where oi = [oix oiy]
� ∈R2 denotes the coordinates of the centre

of both regions while Foi(p) and Fei(p) satisfy conditions given
by Definition 2.

5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc

i is a circular (disk) obstacle
with radius ri. Then Foi(p−oi) := 1

r2
i
‖p−oi‖2 and the repul-

sive potential of the obstacle can be defined as

V c
oi
(p) =




r2
i

‖p−oi‖2−r2
i

if ‖p−oi‖> ri

0 otherwise
. (74)

From (74) it follows that Voi is unbounded on obstacle bound-
ary ∂Oc

i .
Computing gradient of Voi gives

∂V c
oi
(p)

∂ p
=

{
− 2

r2
i
(V c

oi
(p))2(p−oi)

� if ‖p−oi‖> ri

0 otherwise
. (75)

Fig. 8. Example of a star obstacle surrounded by a local interaction
zone

Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=



−Fδ

ei (p)
∂V c

oi
(p)

∂ p

�
if Fei(p)< 1

0 otherwise
, (76)

where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map

Bull. Pol. Ac.: Tech. XX(Y) 2016 9

 in order to define 
a transient region where the given obstacle can interact with 
the robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration 
space

	

Application of transverse functions
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design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
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Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
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where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
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(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
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∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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lap it is clear that for any p one can analyse an isolated system
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minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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where oi = [oix oiy]> 2 ℝ2 denotes the coordinates of the centre 
of both regions while Foi(p) and Fei(p) satisfy conditions given 
by Definition 2.

5.2. Obstacle avoidance for circular obstacles. Next, we con-
sider the case when 

D. Pazderski

Next, we define scaled time τ := N t
ε1ε2

and apply it to (58).
Additionally, using trigonometric identities one obtains the fol-
lowing normalized dynamics

dα
dτ

=− 1
γ(α)

sin( fθ +β ) . (59)

Integrating (59) numerically one can determine the mean nor-
malized frequency of oscillation for the given values of ε2, ε3
and β . The results of this computation are presented in Fig.
7 for β ∈ [0, π

2 ). It can be seen that when β is close to zero
the feasible input νx dominates and no oscillation is observed.
When β becomes higher than ε2 the dynamics (59) starts to
generate a periodic cycle.

Having normalized frequency Fn one can compute real fre-
quency of oscillation as follows

Fosc =
N

ε1ε2
Fn. (60)

Hence, it is possible to predict a response of the controller for
the assumed inputs νx and νy. This is an important issue when
the oscillatory response of the controller should be limited.
Such a requirement is necessary when a practical implemen-
tation of the controller is considered.

4.6. Case V – infeasible motion along arc This case is the
most complicated and it can be seen as a superposition of Case
III and Case IV. Using again (37) and (46) one obtains

ω̄α ν = sin fθ νx + cos fθ νy −κ1(α)ε1 sinανθ . (61)

Similarly as in the Case IV one can study an approximate solu-
tion assuming that ε2 selected is small enough such that κ1 ≈ 1
and sin(ε2 cosα)≈ ε2 cosα . Then one can define

ω̄α ν ≈ κ3(α) := ε2 cosανx +νy − ε1 sinανθ (62)

and consider the following equation: κ3(α) = 0. The solution
to this equation can be found only when νy is not significant.
To be more precise one has

ε2 cosανx +νy − ε1 sinανθ = 0. (63)

Defining νx = Nε1 sinβ and νθ = Nε2 cosβ , using these sig-
nals in (63) and taking advantage of trigonometric identities
gives

ε1ε2N sin(α −β ) = νy. (64)

In order to find a solution to (64) one concludes that

∣∣νy
∣∣< ε1ε2N = ε2

√
ν2

x +

(
ε1

ε2

)2

ν2
θ . (65)

Basically, it can be found that inequality (65) for νθ = 0 cor-
responds to (57), since ε2 ≈ tanε2. It confirms that when the
input in the infeasible direction does not exceed some thresh-
old system (38) evolves to an equilibrium. Otherwise, the aug-
mented dynamics generates a periodic cycle similar to the one
observed in the case IV.

4.7. Extension to non-constant parameters of the trans-
verse function The studied decoupling controller (35) is de-
signed assuming that parameters of transverse function f are
constant coefficients. However, in order to facilitate tuning of
the controller (for example to decrease frequency of oscilla-
tions for an infeasible motion pattern) one can employ feed-
forward term Aδ (α)δ̇ from (18). In the considered case vari-
able δ can be used to characterize parameters of f . To be more
precise, one can assume that δ := [ε1 ε2 ε3]

�. Consequently,
it is possible to change these parameters freely (assuming that
the transversality condition holds and δ̇ is bounded) without
affecting the position and orientation of the omnidirectional
frame described by z. Then, one can adapt distance between
z and g taking into account additional requirements and to im-
prove performance of the controller.

5. Application of the controller for velocity-
based control in task space

For many feedback planning algorithms taking advantage of
potential functions it is assumed that a robot is not subject to
phase constraints and is fully actuated. Consequently, every di-
rection in the phase space can be executed independently using
a relatively simple motion controller. Then it is possible to use
the basic idea of attracting and repulsive vector fields designed
based on the gradient of potential functions. In such a case the
main problem is to construct a potential in order to avoid local
minima.

Here we consider the feedback motion planning algorithm
assuming that obstacles are isolated from each other. More-
over, a local sensing zone is supposed – namely each obstacle
can interact with a robot locally in an external region. The
robot is modelled as a virtual particle without velocity con-
straints.

Basically, the considered problem can be stated as follows.

PROBLEM 1 Feedback navigation problem. Let p ∈ R2 be
the coordinate of the point robot on the plane with holes (ob-
stacles). The robot kinematics is given by

ṗ = w (66)

where w = [w1 w2]
� is input. Assume that there exists a feed-

back navigation algorithm Ω(p) which provides a bounded and
differentiable velocity field in R2 such that trajectory p(t) re-
mains in a free space. Design a controller for a planar world
with star obstacles for a differentially driven robot with the
unicycle kinematic such that position of the robot follows p(t)
with bounded error while its orientation maintains in the de-
sired range.

5.1. Environment description for virtual omnidirectional
robot Consider open workspace W = R2 with set of l obsta-
cles W O := ∑k

i=1 W O i and define free space W f ree := W \
W O . Assume that a real robot for the given configuration
g ∈ G ∼= SE(2) occupies area WR(g). Accordingly, it is pos-
sible to find the free configuration space defined by

Q f ree := {g ∈ G : WR(g)∩W O = /0} . (67)
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Application of transverse functions

Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]

� ∈R2

and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{

p ∈ W : ∀zθ ,α ∈ S1,WR(z f (α))∩W O i �= /0
}
.

(68)
To make a simpler model we introduce the enlarged virtual
obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration
space

Z f ree := W \
l⋃

i=1

Oi. (70)

DEFINITION 2. Let F be a differentiable star defined by

F :=
{

p ∈ R2 : F(p)−1 ≤ 0
}
, (71)

where F(p) satisfies

1. F(p) ∈C2 in the set B0(ρ)⊃ F ,
2. F(p) is positive definite and has global minimum at p = 0.

To be more precise we define

Oi :=
{

p ∈ R2 : Foi(p−oi)≤ 1
}

(72)

and

Ei :=
{

p ∈ R2 : Foi(p−oi)≤ Fei(p−oi)≤ 1
}
, (73)

where oi = [oix oiy]
� ∈R2 denotes the coordinates of the centre

of both regions while Foi(p) and Fei(p) satisfy conditions given
by Definition 2.

5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc

i is a circular (disk) obstacle
with radius ri. Then Foi(p−oi) := 1

r2
i
‖p−oi‖2 and the repul-

sive potential of the obstacle can be defined as

V c
oi
(p) =




r2
i

‖p−oi‖2−r2
i

if ‖p−oi‖> ri

0 otherwise
. (74)

From (74) it follows that Voi is unbounded on obstacle bound-
ary ∂Oc

i .
Computing gradient of Voi gives

∂V c
oi
(p)

∂ p
=

{
− 2

r2
i
(V c

oi
(p))2(p−oi)

� if ‖p−oi‖> ri

0 otherwise
. (75)

Fig. 8. Example of a star obstacle surrounded by a local interaction
zone

Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=



−Fδ

ei (p)
∂V c

oi
(p)

∂ p

�
if Fei(p)< 1

0 otherwise
, (76)

where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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that gradient
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∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
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∑
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woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]

� ∈R2

and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies
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{

p ∈ W : ∀zθ ,α ∈ S1,WR(z f (α))∩W O i �= /0
}
.

(68)
To make a simpler model we introduce the enlarged virtual
obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration
space

Z f ree := W \
l⋃

i=1

Oi. (70)

DEFINITION 2. Let F be a differentiable star defined by
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{
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}
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where F(p) satisfies
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of both regions while Foi(p) and Fei(p) satisfy conditions given
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5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc
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with radius ri. Then Foi(p−oi) := 1
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sive potential of the obstacle can be defined as
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Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
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where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
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(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
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∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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i=1 Ei denotes position of the goal.
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lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
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the local minima issue can occur even for one convex obstacle,
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where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
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∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
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woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]
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and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{
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}
.

(68)
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obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.
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{
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2. F(p) is positive definite and has global minimum at p = 0.
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{
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and
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of both regions while Foi(p) and Fei(p) satisfy conditions given
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Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=


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ei (p)
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where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive
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pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].
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zone

Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=



−Fδ

ei (p)
∂V c

oi
(p)

∂ p

�
if Fei(p)< 1

0 otherwise
, (76)

where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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Application of transverse functions

Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]

� ∈R2

and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{

p ∈ W : ∀zθ ,α ∈ S1,WR(z f (α))∩W O i �= /0
}
.

(68)
To make a simpler model we introduce the enlarged virtual
obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration
space

Z f ree := W \
l⋃

i=1

Oi. (70)

DEFINITION 2. Let F be a differentiable star defined by

F :=
{

p ∈ R2 : F(p)−1 ≤ 0
}
, (71)

where F(p) satisfies

1. F(p) ∈C2 in the set B0(ρ)⊃ F ,
2. F(p) is positive definite and has global minimum at p = 0.

To be more precise we define

Oi :=
{
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}
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and

Ei :=
{

p ∈ R2 : Foi(p−oi)≤ Fei(p−oi)≤ 1
}
, (73)

where oi = [oix oiy]
� ∈R2 denotes the coordinates of the centre

of both regions while Foi(p) and Fei(p) satisfy conditions given
by Definition 2.

5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc

i is a circular (disk) obstacle
with radius ri. Then Foi(p−oi) := 1

r2
i
‖p−oi‖2 and the repul-

sive potential of the obstacle can be defined as
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0 otherwise
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From (74) it follows that Voi is unbounded on obstacle bound-
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Computing gradient of Voi gives

∂V c
oi
(p)

∂ p
=

{
− 2

r2
i
(V c

oi
(p))2(p−oi)

� if ‖p−oi‖> ri

0 otherwise
. (75)

Fig. 8. Example of a star obstacle surrounded by a local interaction
zone
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to set Ei and taking into account result (75) one can propose
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where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
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∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
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woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
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∑
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woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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in the neighbourhood of a star:

pc = β (p) := r
p−oi

‖p−oi‖

√
Foi(p)+oi, (80)

where r is the radius of the disc contained in the given star.
This transformation maps the boundary of the star on the
boundary of the disk with radius r. Next, based on (74) po-
tential V (pc) is computed. Correspondingly, gradient of V (pc)
is determined based on (75) and then it is lifted from pc to p.
In order to attenuate the repulsive field on the exterior of Ei one
can use function Fei similarly as in the case of the disk obstacle,
cf. (76).

Fig. 9. Interpretation of deformation of a star shape to a disc and
lifting of vector field near the obstacle

5.4. Integration of navigation algorithm with motion con-
troller Now assuming that w(p) is a bounded vector field (it is
guaranteed when p /∈ ∂Oi, where i = 1, . . . , l) one can combine
navigation algorithm (79) with control algorithm (35). Basi-
cally, components of vector fields w are given in the inertial
frame, while inputs νx and νy are defined in the local omnidi-
rectional frame. Recalling (17) in the considered case one can
write

ν = X−1(z)w∗ (81)

where z = [p� zθ ]
� ∈ G and w∗ = [w� wθ ]

� ∈R3, while wθ is
an additional component.

So far only the position coordinates, p = [zx zy]
�, of the vir-

tual robot have been taken into account. However, the assumed
model of the omnidirectional robot consists of virtual frame
with orientation zθ . As a result of the decoupling – cf. (16) – it
is possible to treat zθ as an independent variable which can be
controlled by input wθ (or νθ as a result of (81)). To be more
precise, assume that φ ∈ S1 is a desired bounded differentiable
trajectory and define the following tracking error

eφ := zθ −φ . (82)

Taking time derivative of eφ and recalling that żθ = νθ the fol-
lowing open-loop dynamics can be considered

ėφ = νθ − φ̇ , (83)

where φ̇ is a bounded term by definition.
Consequently, in order to ensure that eφ → 0 one can pro-

pose the following classic stabilizer.

PROPOSITION 2. Let φ̇ be a bounded term. Then the auxil-
iary control law defined as follows

νθ =−kφ (zθ −φ)+ φ̇ (84)

where k > 0, applied to linear system żθ = νθ ensures expo-
nential stability of (83).

Now we consider limitations of arbitrary selection of φ . In
spite of the fact that the virtual frame is omnidirectional one
should be aware that the motion task is executed by the system
with nonholonomic constraints. Recalling analysis of the basic
motion patterns discussed in Section 4.1 it is clear that infeasi-
ble directions can be only approximated. When the constraints
are strongly violated (it is dependent on the selected parame-
ters) the unicycle moves in an oscillatory way. Clearly, there is
a contradiction between the execution of an infeasible motion
and the attenuation of the zig-zag motion response.

Taking into account these aspects one can usually prefer to
use simple motion patterns which are almost feasible. In order
to do this one can use a heading controller and try to steer
virtual omnidirectional robot in order to maintain its direction
defined by zθ to be compatible with navigation vector field w.
Following this idea one can design function φ as follows

φ := atan2(wy,wx) . (85)

where ‖w‖> 0. In this case time derivative of φ satisfies

φ̇ =
w�

‖w‖2 Jẇ (86)

with J :=

[
0 1
−1 0

]
being a skew-symmetric matrix. Here, the

controller given by (84) can be applied conditionally. Using
(86) one can see that φ̇ is dependent on time derivative of nav-
igation vector field w. This might be considered as a serious
limitation in practice since ẇ describes a linear acceleration
which is not trivial to be computed (or measured) efficiently.
Taking into account this issue one can use a simplified version
of controller by neglecting the term φ̇ in (84). In such a case
the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
φ̇ is not compensated. Thus it is not guaranteed that error eφ
tends to zero – instead it remains bounded for the bounded φ̇ .
Such a result is sufficient since for the considered motion con-
troller the precise tracking of φ is not necessary. This can be
seen as an important advantage of this control strategy.

Another issue is related to the computation of φ . From (85)
it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
ing simplified heading controller

νθ =−kφ tanh‖w‖(zθ −φ). (87)

Since φ and zθ are bounded variables in R it is clear that:
‖w‖→ 0 ⇒ tanh‖w‖(zθ −φ) = 0. As a result for a weak nav-
igation field (when ‖w‖ is small) the heading control is atten-
uated. Hence, the discussed method allows one to achieve a
relatively high robustness to unmodelled dynamics and mea-
surement noise without losing basic navigation properties.
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where r is the radius of the disc contained in the given star. This 
transformation maps the boundary of the star on the boundary 
of the disk with radius r. Next, based on (74) potential V(pc) 
is computed. Correspondingly, gradient of V(pc) is determined 

Fig. 8. Example of a star obstacle surrounded by a local interaction zone
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Application of transverse functions to control differentially driven wheeled robots using velocity fields

Now we consider limitations of arbitrary selection of ϕ. In 
spite of the fact that the virtual frame is omnidirectional one 
should be aware that the motion task is executed by the system 
with nonholonomic constraints. Recalling analysis of the basic 
motion patterns discussed in Section 4.1 it is clear that infea-
sible directions can be only approximated. When the constraints 
are strongly violated (it is dependent on the selected parame-
ters) the unicycle moves in an oscillatory way. Clearly, there is 
a contradiction between the execution of an infeasible motion 
and the attenuation of the zig-zag motion response.

Taking into account these aspects one can usually prefer to 
use simple motion patterns which are almost feasible. In order 
to do this one can use a heading controller and try to steer 
virtual omnidirectional robot in order to maintain its direction 
defined by 

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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troller Now assuming that w(p) is a bounded vector field (it is
guaranteed when p /∈ ∂Oi, where i = 1, . . . , l) one can combine
navigation algorithm (79) with control algorithm (35). Basi-
cally, components of vector fields w are given in the inertial
frame, while inputs νx and νy are defined in the local omnidi-
rectional frame. Recalling (17) in the considered case one can
write

ν = X−1(z)w∗ (81)

where z = [p� zθ ]
� ∈ G and w∗ = [w� wθ ]

� ∈R3, while wθ is
an additional component.

So far only the position coordinates, p = [zx zy]
�, of the vir-
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model of the omnidirectional robot consists of virtual frame
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Taking time derivative of eφ and recalling that żθ = νθ the fol-
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nential stability of (83).
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should be aware that the motion task is executed by the system
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motion patterns discussed in Section 4.1 it is clear that infeasi-
ble directions can be only approximated. When the constraints
are strongly violated (it is dependent on the selected parame-
ters) the unicycle moves in an oscillatory way. Clearly, there is
a contradiction between the execution of an infeasible motion
and the attenuation of the zig-zag motion response.

Taking into account these aspects one can usually prefer to
use simple motion patterns which are almost feasible. In order
to do this one can use a heading controller and try to steer
virtual omnidirectional robot in order to maintain its direction
defined by zθ to be compatible with navigation vector field w.
Following this idea one can design function φ as follows
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(86) one can see that φ̇ is dependent on time derivative of nav-
igation vector field w. This might be considered as a serious
limitation in practice since ẇ describes a linear acceleration
which is not trivial to be computed (or measured) efficiently.
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of controller by neglecting the term φ̇ in (84). In such a case
the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
φ̇ is not compensated. Thus it is not guaranteed that error eφ
tends to zero – instead it remains bounded for the bounded φ̇ .
Such a result is sufficient since for the considered motion con-
troller the precise tracking of φ is not necessary. This can be
seen as an important advantage of this control strategy.

Another issue is related to the computation of φ . From (85)
it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
ing simplified heading controller

νθ =−kφ tanh‖w‖(zθ −φ). (87)

Since φ and zθ are bounded variables in R it is clear that:
‖w‖→ 0 ⇒ tanh‖w‖(zθ −φ) = 0. As a result for a weak nav-
igation field (when ‖w‖ is small) the heading control is atten-
uated. Hence, the discussed method allows one to achieve a
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iary control law defined as follows
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Now we consider limitations of arbitrary selection of φ . In
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should be aware that the motion task is executed by the system
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motion patterns discussed in Section 4.1 it is clear that infeasi-
ble directions can be only approximated. When the constraints
are strongly violated (it is dependent on the selected parame-
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a contradiction between the execution of an infeasible motion
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the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
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it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
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Since φ and zθ are bounded variables in R it is clear that:
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uated. Hence, the discussed method allows one to achieve a
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controller given by (84) can be applied conditionally. Using
(86) one can see that φ̇ is dependent on time derivative of nav-
igation vector field w. This might be considered as a serious
limitation in practice since ẇ describes a linear acceleration
which is not trivial to be computed (or measured) efficiently.
Taking into account this issue one can use a simplified version
of controller by neglecting the term φ̇ in (84). In such a case
the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
φ̇ is not compensated. Thus it is not guaranteed that error eφ
tends to zero – instead it remains bounded for the bounded φ̇ .
Such a result is sufficient since for the considered motion con-
troller the precise tracking of φ is not necessary. This can be
seen as an important advantage of this control strategy.

Another issue is related to the computation of φ . From (85)
it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
ing simplified heading controller

νθ =−kφ tanh‖w‖(zθ −φ). (87)

Since φ and zθ are bounded variables in R it is clear that:
‖w‖→ 0 ⇒ tanh‖w‖(zθ −φ) = 0. As a result for a weak nav-
igation field (when ‖w‖ is small) the heading control is atten-
uated. Hence, the discussed method allows one to achieve a
relatively high robustness to unmodelled dynamics and mea-
surement noise without losing basic navigation properties.
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Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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θ ¡ ϕ) = 0. As a result for a weak nav-
igation field (when jjwjj is small) the heading control is at-
tenuated. Hence, the discussed method allows one to achieve 
a relatively high robustness to unmodelled dynamics and mea-
surement noise without losing basic navigation properties.

5.5. Extension to trajectory tracking. Basically, the naviga-
tion vector field (79) can be also applied for a non stationary 
goal. However, it does not guarantee an asymptotic tracking 
result with respect to the omnidirectional frame due to the un-

based on (75) and then it is lifted from pc to p. In order to at-
tenuate the repulsive field on the exterior of 
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Then a motion planning/control problem in a geometrically
constrained workspace can be described in terms of the config-
uration variables. Following this idea we consider a virtual om-
nidirectional robot with coordinates given by p := [zx zy]

� ∈R2

and zθ ∈ S1. Recalling (13) one can notice that the space oc-
cupied by the robot is dependent on z and α . Therefore an
additional safe space has to be reserved around each obstacle.
Consequently, we define ith virtual obstacle which satisfies

Z O i :=
{

p ∈ W : ∀zθ ,α ∈ S1,WR(z f (α))∩W O i �= /0
}
.

(68)
To make a simpler model we introduce the enlarged virtual
obstacle Oi such that

Z O i ⊂ Oi ⊂ W (69)

and Oi has a star-like shape, cf. [28]. Here it should be em-
phasized that since the upper norm of f is known from the
design the desired safety margin can be precisely determined.
Additionally, we consider external zone Ei in order to define a
transient region where the given obstacle can interact with the
robot, cf. Fig. 8.

Similarly to (67) we introduce virtual free configuration
space

Z f ree := W \
l⋃

i=1

Oi. (70)

DEFINITION 2. Let F be a differentiable star defined by

F :=
{

p ∈ R2 : F(p)−1 ≤ 0
}
, (71)

where F(p) satisfies

1. F(p) ∈C2 in the set B0(ρ)⊃ F ,
2. F(p) is positive definite and has global minimum at p = 0.

To be more precise we define

Oi :=
{

p ∈ R2 : Foi(p−oi)≤ 1
}

(72)

and

Ei :=
{

p ∈ R2 : Foi(p−oi)≤ Fei(p−oi)≤ 1
}
, (73)

where oi = [oix oiy]
� ∈R2 denotes the coordinates of the centre

of both regions while Foi(p) and Fei(p) satisfy conditions given
by Definition 2.

5.2. Obstacle avoidance for circular obstacles Next, we
consider the case when Oi = Oc

i is a circular (disk) obstacle
with radius ri. Then Foi(p−oi) := 1

r2
i
‖p−oi‖2 and the repul-

sive potential of the obstacle can be defined as

V c
oi
(p) =




r2
i

‖p−oi‖2−r2
i

if ‖p−oi‖> ri

0 otherwise
. (74)

From (74) it follows that Voi is unbounded on obstacle bound-
ary ∂Oc

i .
Computing gradient of Voi gives

∂V c
oi
(p)

∂ p
=

{
− 2

r2
i
(V c

oi
(p))2(p−oi)

� if ‖p−oi‖> ri

0 otherwise
. (75)

Fig. 8. Example of a star obstacle surrounded by a local interaction
zone

Assuming that the interaction area for ith obstacle is restricted
to set Ei and taking into account result (75) one can propose
the following repulsive vector field

woi(p) :=



−Fδ

ei (p)
∂V c

oi
(p)

∂ p

�
if Fei(p)< 1

0 otherwise
, (76)

where δ = 2,4, . . . is an even integer and Fei can be interpreted
as a scaling function which limits the interaction area (notice

that gradient
∂V c

oi
(p)

∂ p is non zero at the exterior of the obstacle).
Taking into account all l circular obstacles one can propose

the following resultant repulsive field

wo(p) =
l

∑
i=1

woi(p). (77)

Next, we introduce a radially symmetric vector field which
smoothly attracts the point robot to the goal and define

wa(p) =−p+ pd , (78)

where pd ∈ Z f ree \
⋃l

i=1 Ei denotes position of the goal.
The resultant navigation field is composed of the attractive

and the repulsive fields as follows

w(p) = kawa(p)+ kowo(p) (79)

where ka and ko are positive coefficients used for a tuning pur-
pose. Recalling that interaction areas of obstacles do not over-
lap it is clear that for any p one can analyse an isolated system
composed of one circular obstacle and the goal. In such a case
it is well known that for a radially symmetric attractor no local
minima appear and the only critical points (when field w is de-
generated to zero) are the saddle point and the global minimum
at pd , [45].

5.3. Obstacle avoidance for star obstacles Considering a
more general model of the environment with star obstacles,
the local minima issue can occur even for one convex obstacle,
[45]. Hence, the potential and the corresponding repulsive vec-
tor field have to be computed in a different way. For example,
one can take advantage of a coordinate transformation in order
to reshape a star to a disk. Following the algorithm proposed
by Rimon and Koditschek [28] we consider the following map
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function Fei similarly as in the case of the disk obstacle, cf. (76).

5.4. Integration of navigation algorithm with motion con-
troller. Now assuming that w(p) is a bounded vector field (it is 
guaranteed when p 2/ 
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in the neighbourhood of a star:

pc = β (p) := r
p−oi

‖p−oi‖

√
Foi(p)+oi, (80)

where r is the radius of the disc contained in the given star.
This transformation maps the boundary of the star on the
boundary of the disk with radius r. Next, based on (74) po-
tential V (pc) is computed. Correspondingly, gradient of V (pc)
is determined based on (75) and then it is lifted from pc to p.
In order to attenuate the repulsive field on the exterior of Ei one
can use function Fei similarly as in the case of the disk obstacle,
cf. (76).

Fig. 9. Interpretation of deformation of a star shape to a disc and
lifting of vector field near the obstacle

5.4. Integration of navigation algorithm with motion con-
troller Now assuming that w(p) is a bounded vector field (it is
guaranteed when p /∈ ∂Oi, where i = 1, . . . , l) one can combine
navigation algorithm (79) with control algorithm (35). Basi-
cally, components of vector fields w are given in the inertial
frame, while inputs νx and νy are defined in the local omnidi-
rectional frame. Recalling (17) in the considered case one can
write

ν = X−1(z)w∗ (81)

where z = [p� zθ ]
� ∈ G and w∗ = [w� wθ ]

� ∈R3, while wθ is
an additional component.

So far only the position coordinates, p = [zx zy]
�, of the vir-

tual robot have been taken into account. However, the assumed
model of the omnidirectional robot consists of virtual frame
with orientation zθ . As a result of the decoupling – cf. (16) – it
is possible to treat zθ as an independent variable which can be
controlled by input wθ (or νθ as a result of (81)). To be more
precise, assume that φ ∈ S1 is a desired bounded differentiable
trajectory and define the following tracking error

eφ := zθ −φ . (82)

Taking time derivative of eφ and recalling that żθ = νθ the fol-
lowing open-loop dynamics can be considered

ėφ = νθ − φ̇ , (83)

where φ̇ is a bounded term by definition.
Consequently, in order to ensure that eφ → 0 one can pro-

pose the following classic stabilizer.

PROPOSITION 2. Let φ̇ be a bounded term. Then the auxil-
iary control law defined as follows

νθ =−kφ (zθ −φ)+ φ̇ (84)

where k > 0, applied to linear system żθ = νθ ensures expo-
nential stability of (83).

Now we consider limitations of arbitrary selection of φ . In
spite of the fact that the virtual frame is omnidirectional one
should be aware that the motion task is executed by the system
with nonholonomic constraints. Recalling analysis of the basic
motion patterns discussed in Section 4.1 it is clear that infeasi-
ble directions can be only approximated. When the constraints
are strongly violated (it is dependent on the selected parame-
ters) the unicycle moves in an oscillatory way. Clearly, there is
a contradiction between the execution of an infeasible motion
and the attenuation of the zig-zag motion response.

Taking into account these aspects one can usually prefer to
use simple motion patterns which are almost feasible. In order
to do this one can use a heading controller and try to steer
virtual omnidirectional robot in order to maintain its direction
defined by zθ to be compatible with navigation vector field w.
Following this idea one can design function φ as follows

φ := atan2(wy,wx) . (85)

where ‖w‖> 0. In this case time derivative of φ satisfies

φ̇ =
w�

‖w‖2 Jẇ (86)

with J :=

[
0 1
−1 0

]
being a skew-symmetric matrix. Here, the

controller given by (84) can be applied conditionally. Using
(86) one can see that φ̇ is dependent on time derivative of nav-
igation vector field w. This might be considered as a serious
limitation in practice since ẇ describes a linear acceleration
which is not trivial to be computed (or measured) efficiently.
Taking into account this issue one can use a simplified version
of controller by neglecting the term φ̇ in (84). In such a case
the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
φ̇ is not compensated. Thus it is not guaranteed that error eφ
tends to zero – instead it remains bounded for the bounded φ̇ .
Such a result is sufficient since for the considered motion con-
troller the precise tracking of φ is not necessary. This can be
seen as an important advantage of this control strategy.

Another issue is related to the computation of φ . From (85)
it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
ing simplified heading controller

νθ =−kφ tanh‖w‖(zθ −φ). (87)

Since φ and zθ are bounded variables in R it is clear that:
‖w‖→ 0 ⇒ tanh‖w‖(zθ −φ) = 0. As a result for a weak nav-
igation field (when ‖w‖ is small) the heading control is atten-
uated. Hence, the discussed method allows one to achieve a
relatively high robustness to unmodelled dynamics and mea-
surement noise without losing basic navigation properties.
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model of the omnidirectional robot consists of virtual frame
with orientation zθ . As a result of the decoupling – cf. (16) – it
is possible to treat zθ as an independent variable which can be
controlled by input wθ (or νθ as a result of (81)). To be more
precise, assume that φ ∈ S1 is a desired bounded differentiable
trajectory and define the following tracking error

eφ := zθ −φ . (82)

Taking time derivative of eφ and recalling that żθ = νθ the fol-
lowing open-loop dynamics can be considered

ėφ = νθ − φ̇ , (83)

where φ̇ is a bounded term by definition.
Consequently, in order to ensure that eφ → 0 one can pro-

pose the following classic stabilizer.
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iary control law defined as follows
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Now we consider limitations of arbitrary selection of φ . In
spite of the fact that the virtual frame is omnidirectional one
should be aware that the motion task is executed by the system
with nonholonomic constraints. Recalling analysis of the basic
motion patterns discussed in Section 4.1 it is clear that infeasi-
ble directions can be only approximated. When the constraints
are strongly violated (it is dependent on the selected parame-
ters) the unicycle moves in an oscillatory way. Clearly, there is
a contradiction between the execution of an infeasible motion
and the attenuation of the zig-zag motion response.

Taking into account these aspects one can usually prefer to
use simple motion patterns which are almost feasible. In order
to do this one can use a heading controller and try to steer
virtual omnidirectional robot in order to maintain its direction
defined by zθ to be compatible with navigation vector field w.
Following this idea one can design function φ as follows

φ := atan2(wy,wx) . (85)

where ‖w‖> 0. In this case time derivative of φ satisfies

φ̇ =
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‖w‖2 Jẇ (86)

with J :=
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]
being a skew-symmetric matrix. Here, the

controller given by (84) can be applied conditionally. Using
(86) one can see that φ̇ is dependent on time derivative of nav-
igation vector field w. This might be considered as a serious
limitation in practice since ẇ describes a linear acceleration
which is not trivial to be computed (or measured) efficiently.
Taking into account this issue one can use a simplified version
of controller by neglecting the term φ̇ in (84). In such a case
the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
φ̇ is not compensated. Thus it is not guaranteed that error eφ
tends to zero – instead it remains bounded for the bounded φ̇ .
Such a result is sufficient since for the considered motion con-
troller the precise tracking of φ is not necessary. This can be
seen as an important advantage of this control strategy.

Another issue is related to the computation of φ . From (85)
it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
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νθ =−kφ tanh‖w‖(zθ −φ). (87)

Since φ and zθ are bounded variables in R it is clear that:
‖w‖→ 0 ⇒ tanh‖w‖(zθ −φ) = 0. As a result for a weak nav-
igation field (when ‖w‖ is small) the heading control is atten-
uated. Hence, the discussed method allows one to achieve a
relatively high robustness to unmodelled dynamics and mea-
surement noise without losing basic navigation properties.
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where 

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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θ. As a result of the decoupling – cf. (16) – it 
is possible to treat 
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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θ as an independent variable which can be 
controlled by input wθ (or νθ as a result of (81)). To be more 
precise, assume that ϕ 2 

D. Pazderski

where g, h ∈ G and R ∈ SO(2) is the planar rotation matrix. In
the considered case coordinates of g given by gx, gy and gθ can
be explicitly interpreted, such that gx and gy describe position
on the plane, while gθ denotes orientation. Moreover, neutral
element e = 0 and inverse element satisfies

g−1 =−

[
R�(gθ ) 0

0 1

]
g. (24)

We consider a unicycle-like robot and describe its kine-
matics using equation (3) assuming that m = 2, X1 :=
[cosgθ singθ 0]� and X2 := [0 0 1]�, while u1 and u2 denote
linear and angular velocity, respectively. It is well known that
X1 and X2 are left-invariant vector fields – hence the unicy-
cle can be globally defined on Lie group G. The basis of Lie
algebra g of group G is determined by three independent left-
invariant vector fields X1, X2, and X3 := [X2,X1]. To be more
precise, we define

X(g) := [X1 X2 X3](g) =




cosgθ 0 −singθ

singθ 0 cosgθ

0 1 0


 . (25)

Additionally, computing adjoint operator one has

Ad(g) :=


R(gθ )

[
gy

−gx

]

0 1


 ∈ R3×3. (26)

3.2. Selection and parametrization of transverse function
Now we will focus on selection of transverse function f for the
unicycle kinematics. We notice that in this case p = n−m = 1,
hence function f evolves on one-dimensional torus T1 = S1.
Assume that f = [ fx fy fθ ]

� ∈ G is the transverse function
satisfying (6) and (8). Recalling basis X given by (25) and
computing A from (9) one obtains

A(α) =

[
A1

A2

]
=




cos fθ (α) ∂ fx
∂α + sin fθ (α)

∂ fy
∂α

∂ fθ
∂α

sin fθ (α) ∂ fx
∂α − cos fθ (α)

∂ fy
∂α


 . (27)

Formally, for the unicycle, one can compute f by analytic
means using exponential map, [43]. However, typically an
alternative and simpler detailed form of the transverse func-
tion, borrowed from the result obtained for a chained system,
is used, [12]. We discuss the latter case more thoroughly.

Basically, it is well known that a local homogeneous ap-
proximation (cf. [44]) of the unicycle is given by the following
I-order two input chained system

ξ̇ = X̄1u1 + X̄2u2, (28)

where ξ ∈ R3 denotes the configuration, X̄1 = [1 ξ3 0]� and
X̄2 = [0 0 1]�. The transverse function for this system can be
found based on the following exponential map

f̄ (α) = exp(ε1X̄1 sinα + ε2X̄2 cosα) =




ε1 sinα
1
4 ε1ε2 sin2α

ε2 cosα


 ,

(29)

where α ∈ S1 and ε1 and ε2 are arbitrarily chosen non-zero
parameters.

Taking into account that the unicycle kinematics and the
chained system are locally equivalent it implies that function f̄
can be seen as a suitable candidate for a transverse function for
the former system. Consequently, it can be expected that func-
tion (29) is transversal to vector field X1 and X2 when ε1 and ε2
are selected to be small enough. However, for higher values of
ε1 and ε2 preservation of condition (6) is not obvious. More-
over, one can ask if there are some possible modifications of
standard form (29) which can be introduced to increase design
flexibility. We examine these issues in depth.

In order to make more general statements we introduce new
parameter ε3 and consider modified version of (29) as follows

f̄ (α) =




ε1 sinα
ε̄3 sin2α
ε2 cosα


 , (30)

where ε̄3 := ∏3
i=1 εi. Notice that in (29) ε3 =

1
4 .

Now we assume that f = f̄ and investigate the transversality
condition indicated by function A2. Namely we look for a fea-
sible selection of ε1, ε2 and ε3 in order to guarantee that (11)
is satisfied. Further, without the lack of generality we assume
that ε1 and ε2 are positive and A2(α) should be positive for all
α ∈ S1. Next, we define

γ(α) :=
1
ε2

sin(ε2 cosα)cosα −2ε3 cos2α cos(ε2 cosα).

(31)
and rewrite A2 as
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where r is the radius of the disc contained in the given star.
This transformation maps the boundary of the star on the
boundary of the disk with radius r. Next, based on (74) po-
tential V (pc) is computed. Correspondingly, gradient of V (pc)
is determined based on (75) and then it is lifted from pc to p.
In order to attenuate the repulsive field on the exterior of Ei one
can use function Fei similarly as in the case of the disk obstacle,
cf. (76).
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5.4. Integration of navigation algorithm with motion con-
troller Now assuming that w(p) is a bounded vector field (it is
guaranteed when p /∈ ∂Oi, where i = 1, . . . , l) one can combine
navigation algorithm (79) with control algorithm (35). Basi-
cally, components of vector fields w are given in the inertial
frame, while inputs νx and νy are defined in the local omnidi-
rectional frame. Recalling (17) in the considered case one can
write

ν = X−1(z)w∗ (81)

where z = [p� zθ ]
� ∈ G and w∗ = [w� wθ ]

� ∈R3, while wθ is
an additional component.

So far only the position coordinates, p = [zx zy]
�, of the vir-

tual robot have been taken into account. However, the assumed
model of the omnidirectional robot consists of virtual frame
with orientation zθ . As a result of the decoupling – cf. (16) – it
is possible to treat zθ as an independent variable which can be
controlled by input wθ (or νθ as a result of (81)). To be more
precise, assume that φ ∈ S1 is a desired bounded differentiable
trajectory and define the following tracking error

eφ := zθ −φ . (82)

Taking time derivative of eφ and recalling that żθ = νθ the fol-
lowing open-loop dynamics can be considered

ėφ = νθ − φ̇ , (83)

where φ̇ is a bounded term by definition.
Consequently, in order to ensure that eφ → 0 one can pro-

pose the following classic stabilizer.

PROPOSITION 2. Let φ̇ be a bounded term. Then the auxil-
iary control law defined as follows

νθ =−kφ (zθ −φ)+ φ̇ (84)

where k > 0, applied to linear system żθ = νθ ensures expo-
nential stability of (83).

Now we consider limitations of arbitrary selection of φ . In
spite of the fact that the virtual frame is omnidirectional one
should be aware that the motion task is executed by the system
with nonholonomic constraints. Recalling analysis of the basic
motion patterns discussed in Section 4.1 it is clear that infeasi-
ble directions can be only approximated. When the constraints
are strongly violated (it is dependent on the selected parame-
ters) the unicycle moves in an oscillatory way. Clearly, there is
a contradiction between the execution of an infeasible motion
and the attenuation of the zig-zag motion response.

Taking into account these aspects one can usually prefer to
use simple motion patterns which are almost feasible. In order
to do this one can use a heading controller and try to steer
virtual omnidirectional robot in order to maintain its direction
defined by zθ to be compatible with navigation vector field w.
Following this idea one can design function φ as follows

φ := atan2(wy,wx) . (85)

where ‖w‖> 0. In this case time derivative of φ satisfies

φ̇ =
w�

‖w‖2 Jẇ (86)

with J :=

[
0 1
−1 0

]
being a skew-symmetric matrix. Here, the

controller given by (84) can be applied conditionally. Using
(86) one can see that φ̇ is dependent on time derivative of nav-
igation vector field w. This might be considered as a serious
limitation in practice since ẇ describes a linear acceleration
which is not trivial to be computed (or measured) efficiently.
Taking into account this issue one can use a simplified version
of controller by neglecting the term φ̇ in (84). In such a case
the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
φ̇ is not compensated. Thus it is not guaranteed that error eφ
tends to zero – instead it remains bounded for the bounded φ̇ .
Such a result is sufficient since for the considered motion con-
troller the precise tracking of φ is not necessary. This can be
seen as an important advantage of this control strategy.

Another issue is related to the computation of φ . From (85)
it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
ing simplified heading controller

νθ =−kφ tanh‖w‖(zθ −φ). (87)

Since φ and zθ are bounded variables in R it is clear that:
‖w‖→ 0 ⇒ tanh‖w‖(zθ −φ) = 0. As a result for a weak nav-
igation field (when ‖w‖ is small) the heading control is atten-
uated. Hence, the discussed method allows one to achieve a
relatively high robustness to unmodelled dynamics and mea-
surement noise without losing basic navigation properties.
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motion patterns discussed in Section 4.1 it is clear that infeasi-
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of controller by neglecting the term φ̇ in (84). In such a case
the closed loop dynamics becomes: ėφ = −kφ eφ − φ̇ , where
φ̇ is not compensated. Thus it is not guaranteed that error eφ
tends to zero – instead it remains bounded for the bounded φ̇ .
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troller the precise tracking of φ is not necessary. This can be
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it follows that φ can be determined when ‖w‖> 0. In order to
cope with the singularity at w = 0 one can consider the follow-
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compensated velocity of the target. Hence, one can extend the 
navigation algorithm as follows

	

Application of transverse functions

5.5. Extension to trajectory tracking Basically, the naviga-
tion vector field (79) can be also applied for a non stationary
goal. However, it does not guarantee an asymptotic tracking
result with respect to the omnidirectional frame due to the un-
compensated velocity of the target. Hence, one can extend the
navigation algorithm as follows

w(p) = kawa(p)+ kowo(p)+ ṗd , (88)

where ṗ ∈ R2 denotes bounded components of the goal ve-
locity expressed in the inertial frame. It should be empha-
sized that obstacle avoidance is still guaranteed since wo(p)
is unbounded on obstacles boundaries and the repulsive field is
dominant.

5.6. Tuning of the motion controller in the navigation task
In subsection 4.7 it is stated that parameters of the transverse
function of the considered motion controller can be changed
during its operation. This possibility can be employed for the
navigation task especially when infeasible motion patterns are
required.

The key idea of the navigation method considered here is
based on control of the virtual omnidirectional frame instead
of the nonholonomic robot directly. Taking into account a safe
navigation requirement one can easily find that a control preci-
sion can be locally relaxed when the distance between the robot
and obstacles is significant. Assuming that the robot moves in
a low cluttered area it is possible to execute various manoeu-
vres in extensive way without collisions. In such a case one
can safely increase the distance between the omnidirectional
frame and the robot frame in order to improve robustness of the
closed-loop to unmodelled dynamics and to attenuate possi-
ble oscillatory motions. Conversely, when the robot navigates
through a cluttered region it is required that the robot should
be close enough to the virtual one. Thus, function f should
be made as small as needed (recall that the non zero distance
between the robot and the navigation frame can be taken into
account by increasing dimensions of modelled obstacles).

Here we propose an idea how to scale the transverse func-
tion. It turns out that the investigated navigation method pro-
vides a convenient measure determining the occupancy level
of the environment close to the robot. This measure is based
on the repulsive potential. Assume that Voi(gx,gy) denotes the
non-negative potential of ith obstacle determined for the cur-
rent position of the robot. This potential can be computed us-
ing algorithm discussed in sections 5.2 and 5.3. Aggregating
all repulsive potentials one has: Vo = ∑l

i=1 Voi(gx,gy). In order
to improve robustness of the algorithm we define the filtered
potential V f

o satisfying

V̇ f
o =−k f (V f

o −Vo), (89)

where 1/k f > 0 denotes the time constant.
Term V f

o can be used to define parameters of the transverse
function. We consider the particular proposition of tuning as-
suming that only parameter ε1 is changed. This parameter
scales components fx and fy, cf. (30), and determines the
Euclidean distance between position coordinates (zx,zy) and

(gx,gy). Later on it is assumed that ε1 is defined by the follow-
ing formula

ε1 =
ε1max − ε1min

kε1V f
o +1

+ ε1min, (90)

where kε1 > 0 is a positive constant, while ε1min and ε1max
denote the positive lower and upper bound of ε1, respectively.
It can be easily concluded that when the robot is away from any
obstacle V f

o → 0 and ε1 → ε1max. When the robot approaches
boundary of any obstacle V f

o increases and ε1 → ε1min.
Time derivative of ε1 can be easily determined from (89)

and (90). Next, computing term Aδ (α)δ̇ one can use ε̇1 in the
motion controller defined by (18).

It is worth noting that the presented tuning algorithm can
be further extended in order to modify other parameters of the
transverse function. In particular, the detailed propositions are
dependent on specific requirements formulated for the given
motion task as well as implementation issues met in practice.

6. Simulation and experimental results
6.1. Simulation of the omnidirectional frame First, we
make simulation in Matlab/Simulink environment of the con-
trol system with motion controller (35). Parameters of the
transverse function are set as follows: ε1 = 0.05 and ε2 = π

6 ,
while ε3 ∈ {0.05, 0.25, 0.5}. Velocity input ν applied to the
omnidirectional frame is chosen as

ν(t) := 0.1




[0 0 1]� for t ∈ [0,10)
[−1 0 0]� for t ∈ [10,20)
[1 −1 0]� for t ∈ [20,30)
[0 0 0]� for t ≥ 30

, (91)

while initial configuration of the unicycle satisfies g(0) = 0.
Consequently, only the second motion stage defined for
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Fig. 10. Position path (gx,gy) obtained for the selected values of ε3

t ∈ [10,20)s is feasible for the considered nonholonomic kine-
matics. Other segments are highly infeasible and they are exe-
cuted using an oscillatory-like pattern as can be observed from
Fig. 10. Comparing the obtained curves (gx,gy) one concludes
that parameter ε3 does not affect the path shape considerably.
In particular, the first two segments are almost invariant to the
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where p ̇  2 ℝ2 denotes bounded components of the goal velocity 
expressed in the inertial frame. It should be emphasized that 
obstacle avoidance is still guaranteed since wo(p) is unbounded 
on obstacles boundaries and the repulsive field is dominant.

5.6. Tuning of the motion controller in the navigation task. 
In subsection 4.7 it is stated that parameters of the transverse 
function of the considered motion controller can be changed 
during its operation. This possibility can be employed for the 
navigation task especially when infeasible motion patterns are 
required.

The key idea of the navigation method considered here is 
based on control of the virtual omnidirectional frame instead 
of the nonholonomic robot directly. Taking into account a safe 
navigation requirement one can easily find that a control preci-
sion can be locally relaxed when the distance between the robot 
and obstacles is significant. Assuming that the robot moves in 
a low cluttered area it is possible to execute various manoeu-
vres in extensive way without collisions. In such a case one 
can safely increase the distance between the omnidirectional 
frame and the robot frame in order to improve robustness of 
the closed-loop to unmodelled dynamics and to attenuate pos-
sible oscillatory motions. Conversely, when the robot navigates 
through a cluttered region it is required that the robot should be 
close enough to the virtual one. Thus, function f should be made 
as small as needed (recall that the non zero distance between 
the robot and the navigation frame can be taken into account 
by increasing dimensions of modelled obstacles).

Here we propose an idea how to scale the transverse func-
tion. It turns out that the investigated navigation method pro-
vides a convenient measure determining the occupancy level 
of the environment close to the robot. This measure is based 
on the repulsive potential. Assume that Voi(gx, gy) denotes the 
non-negative potential of i th obstacle determined for the current 
position of the robot. This potential can be computed using 
algorithm discussed in sections 5.2 and 5.3. Aggregating all 
repulsive potentials one has: Vo = ∑l

i=1Voi(gx, gy). In order to 
improve robustness of the algorithm we define the filtered po-
tential V f

o  satisfying
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5.5. Extension to trajectory tracking Basically, the naviga-
tion vector field (79) can be also applied for a non stationary
goal. However, it does not guarantee an asymptotic tracking
result with respect to the omnidirectional frame due to the un-
compensated velocity of the target. Hence, one can extend the
navigation algorithm as follows
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vres in extensive way without collisions. In such a case one
can safely increase the distance between the omnidirectional
frame and the robot frame in order to improve robustness of the
closed-loop to unmodelled dynamics and to attenuate possi-
ble oscillatory motions. Conversely, when the robot navigates
through a cluttered region it is required that the robot should
be close enough to the virtual one. Thus, function f should
be made as small as needed (recall that the non zero distance
between the robot and the navigation frame can be taken into
account by increasing dimensions of modelled obstacles).

Here we propose an idea how to scale the transverse func-
tion. It turns out that the investigated navigation method pro-
vides a convenient measure determining the occupancy level
of the environment close to the robot. This measure is based
on the repulsive potential. Assume that Voi(gx,gy) denotes the
non-negative potential of ith obstacle determined for the cur-
rent position of the robot. This potential can be computed us-
ing algorithm discussed in sections 5.2 and 5.3. Aggregating
all repulsive potentials one has: Vo = ∑l

i=1 Voi(gx,gy). In order
to improve robustness of the algorithm we define the filtered
potential V f

o satisfying

V̇ f
o =−k f (V f

o −Vo), (89)

where 1/k f > 0 denotes the time constant.
Term V f

o can be used to define parameters of the transverse
function. We consider the particular proposition of tuning as-
suming that only parameter ε1 is changed. This parameter
scales components fx and fy, cf. (30), and determines the
Euclidean distance between position coordinates (zx,zy) and

(gx,gy). Later on it is assumed that ε1 is defined by the follow-
ing formula

ε1 =
ε1max − ε1min

kε1V f
o +1

+ ε1min, (90)

where kε1 > 0 is a positive constant, while ε1min and ε1max
denote the positive lower and upper bound of ε1, respectively.
It can be easily concluded that when the robot is away from any
obstacle V f

o → 0 and ε1 → ε1max. When the robot approaches
boundary of any obstacle V f

o increases and ε1 → ε1min.
Time derivative of ε1 can be easily determined from (89)

and (90). Next, computing term Aδ (α)δ̇ one can use ε̇1 in the
motion controller defined by (18).

It is worth noting that the presented tuning algorithm can
be further extended in order to modify other parameters of the
transverse function. In particular, the detailed propositions are
dependent on specific requirements formulated for the given
motion task as well as implementation issues met in practice.

6. Simulation and experimental results
6.1. Simulation of the omnidirectional frame First, we
make simulation in Matlab/Simulink environment of the con-
trol system with motion controller (35). Parameters of the
transverse function are set as follows: ε1 = 0.05 and ε2 = π

6 ,
while ε3 ∈ {0.05, 0.25, 0.5}. Velocity input ν applied to the
omnidirectional frame is chosen as

ν(t) := 0.1
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[0 0 1]� for t ∈ [0,10)
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while initial configuration of the unicycle satisfies g(0) = 0.
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t ∈ [10,20)s is feasible for the considered nonholonomic kine-
matics. Other segments are highly infeasible and they are exe-
cuted using an oscillatory-like pattern as can be observed from
Fig. 10. Comparing the obtained curves (gx,gy) one concludes
that parameter ε3 does not affect the path shape considerably.
In particular, the first two segments are almost invariant to the
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where 1/kf > 0 denotes the time constant.
Term V f

o  can be used to define parameters of the transverse 
function. We consider the particular proposition of tuning as-
suming that only parameter ε1 is changed. This parameter scales 
components fx and fy, cf. (30), and determines the Euclidean 
distance between position coordinates (

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1
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0 −A−1
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]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by
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5.5. Extension to trajectory tracking Basically, the naviga-
tion vector field (79) can be also applied for a non stationary
goal. However, it does not guarantee an asymptotic tracking
result with respect to the omnidirectional frame due to the un-
compensated velocity of the target. Hence, one can extend the
navigation algorithm as follows

w(p) = kawa(p)+ kowo(p)+ ṗd , (88)

where ṗ ∈ R2 denotes bounded components of the goal ve-
locity expressed in the inertial frame. It should be empha-
sized that obstacle avoidance is still guaranteed since wo(p)
is unbounded on obstacles boundaries and the repulsive field is
dominant.

5.6. Tuning of the motion controller in the navigation task
In subsection 4.7 it is stated that parameters of the transverse
function of the considered motion controller can be changed
during its operation. This possibility can be employed for the
navigation task especially when infeasible motion patterns are
required.

The key idea of the navigation method considered here is
based on control of the virtual omnidirectional frame instead
of the nonholonomic robot directly. Taking into account a safe
navigation requirement one can easily find that a control preci-
sion can be locally relaxed when the distance between the robot
and obstacles is significant. Assuming that the robot moves in
a low cluttered area it is possible to execute various manoeu-
vres in extensive way without collisions. In such a case one
can safely increase the distance between the omnidirectional
frame and the robot frame in order to improve robustness of the
closed-loop to unmodelled dynamics and to attenuate possi-
ble oscillatory motions. Conversely, when the robot navigates
through a cluttered region it is required that the robot should
be close enough to the virtual one. Thus, function f should
be made as small as needed (recall that the non zero distance
between the robot and the navigation frame can be taken into
account by increasing dimensions of modelled obstacles).

Here we propose an idea how to scale the transverse func-
tion. It turns out that the investigated navigation method pro-
vides a convenient measure determining the occupancy level
of the environment close to the robot. This measure is based
on the repulsive potential. Assume that Voi(gx,gy) denotes the
non-negative potential of ith obstacle determined for the cur-
rent position of the robot. This potential can be computed us-
ing algorithm discussed in sections 5.2 and 5.3. Aggregating
all repulsive potentials one has: Vo = ∑l

i=1 Voi(gx,gy). In order
to improve robustness of the algorithm we define the filtered
potential V f

o satisfying

V̇ f
o =−k f (V f

o −Vo), (89)

where 1/k f > 0 denotes the time constant.
Term V f

o can be used to define parameters of the transverse
function. We consider the particular proposition of tuning as-
suming that only parameter ε1 is changed. This parameter
scales components fx and fy, cf. (30), and determines the
Euclidean distance between position coordinates (zx,zy) and

(gx,gy). Later on it is assumed that ε1 is defined by the follow-
ing formula

ε1 =
ε1max − ε1min

kε1V f
o +1

+ ε1min, (90)

where kε1 > 0 is a positive constant, while ε1min and ε1max
denote the positive lower and upper bound of ε1, respectively.
It can be easily concluded that when the robot is away from any
obstacle V f

o → 0 and ε1 → ε1max. When the robot approaches
boundary of any obstacle V f

o increases and ε1 → ε1min.
Time derivative of ε1 can be easily determined from (89)

and (90). Next, computing term Aδ (α)δ̇ one can use ε̇1 in the
motion controller defined by (18).

It is worth noting that the presented tuning algorithm can
be further extended in order to modify other parameters of the
transverse function. In particular, the detailed propositions are
dependent on specific requirements formulated for the given
motion task as well as implementation issues met in practice.

6. Simulation and experimental results
6.1. Simulation of the omnidirectional frame First, we
make simulation in Matlab/Simulink environment of the con-
trol system with motion controller (35). Parameters of the
transverse function are set as follows: ε1 = 0.05 and ε2 = π

6 ,
while ε3 ∈ {0.05, 0.25, 0.5}. Velocity input ν applied to the
omnidirectional frame is chosen as

ν(t) := 0.1
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[0 0 1]� for t ∈ [0,10)
[−1 0 0]� for t ∈ [10,20)
[1 −1 0]� for t ∈ [20,30)
[0 0 0]� for t ≥ 30

, (91)

while initial configuration of the unicycle satisfies g(0) = 0.
Consequently, only the second motion stage defined for
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Fig. 10. Position path (gx,gy) obtained for the selected values of ε3

t ∈ [10,20)s is feasible for the considered nonholonomic kine-
matics. Other segments are highly infeasible and they are exe-
cuted using an oscillatory-like pattern as can be observed from
Fig. 10. Comparing the obtained curves (gx,gy) one concludes
that parameter ε3 does not affect the path shape considerably.
In particular, the first two segments are almost invariant to the
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where kε1 > 0 is a positive constant, while ε1min and ε1max denote 
the positive lower and upper bound of ε1, respectively. It can be 
easily concluded that when the robot is away from any obstacle 
V f

o  ! 0 and ε1 ! ε1max. When the robot approaches boundary 
of any obstacle V f

o  increases and ε1 ! ε1min.
Time derivative of ε1 can be easily determined from (89) and 

(90). Next, computing term Aδ(α)δ ̇ one can use ε ̇1 in the motion 
controller defined by (18).

It is worth noting that the presented tuning algorithm can 
be further extended in order to modify other parameters of the 
transverse function. In particular, the detailed propositions are 
dependent on specific requirements formulated for the given 
motion task as well as implementation issues met in practice.

6.	 Simulation and experimental results}

6.1. Simulation of the omnidirectional frame. First, we make 
simulation in Matlab/Simulink environment of the control 
system with motion controller (35). Parameters of the trans-
verse function are set as follows: ε1 = 0.05 and ε2 = π–6, while 
ε3 2 {0.05, 0.25, 0.5}. Velocity input ν applied to the omnidi-
rectional frame is chosen as
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5.5. Extension to trajectory tracking Basically, the naviga-
tion vector field (79) can be also applied for a non stationary
goal. However, it does not guarantee an asymptotic tracking
result with respect to the omnidirectional frame due to the un-
compensated velocity of the target. Hence, one can extend the
navigation algorithm as follows

w(p) = kawa(p)+ kowo(p)+ ṗd , (88)

where ṗ ∈ R2 denotes bounded components of the goal ve-
locity expressed in the inertial frame. It should be empha-
sized that obstacle avoidance is still guaranteed since wo(p)
is unbounded on obstacles boundaries and the repulsive field is
dominant.

5.6. Tuning of the motion controller in the navigation task
In subsection 4.7 it is stated that parameters of the transverse
function of the considered motion controller can be changed
during its operation. This possibility can be employed for the
navigation task especially when infeasible motion patterns are
required.

The key idea of the navigation method considered here is
based on control of the virtual omnidirectional frame instead
of the nonholonomic robot directly. Taking into account a safe
navigation requirement one can easily find that a control preci-
sion can be locally relaxed when the distance between the robot
and obstacles is significant. Assuming that the robot moves in
a low cluttered area it is possible to execute various manoeu-
vres in extensive way without collisions. In such a case one
can safely increase the distance between the omnidirectional
frame and the robot frame in order to improve robustness of the
closed-loop to unmodelled dynamics and to attenuate possi-
ble oscillatory motions. Conversely, when the robot navigates
through a cluttered region it is required that the robot should
be close enough to the virtual one. Thus, function f should
be made as small as needed (recall that the non zero distance
between the robot and the navigation frame can be taken into
account by increasing dimensions of modelled obstacles).

Here we propose an idea how to scale the transverse func-
tion. It turns out that the investigated navigation method pro-
vides a convenient measure determining the occupancy level
of the environment close to the robot. This measure is based
on the repulsive potential. Assume that Voi(gx,gy) denotes the
non-negative potential of ith obstacle determined for the cur-
rent position of the robot. This potential can be computed us-
ing algorithm discussed in sections 5.2 and 5.3. Aggregating
all repulsive potentials one has: Vo = ∑l

i=1 Voi(gx,gy). In order
to improve robustness of the algorithm we define the filtered
potential V f

o satisfying

V̇ f
o =−k f (V f

o −Vo), (89)

where 1/k f > 0 denotes the time constant.
Term V f

o can be used to define parameters of the transverse
function. We consider the particular proposition of tuning as-
suming that only parameter ε1 is changed. This parameter
scales components fx and fy, cf. (30), and determines the
Euclidean distance between position coordinates (zx,zy) and

(gx,gy). Later on it is assumed that ε1 is defined by the follow-
ing formula

ε1 =
ε1max − ε1min

kε1V f
o +1

+ ε1min, (90)

where kε1 > 0 is a positive constant, while ε1min and ε1max
denote the positive lower and upper bound of ε1, respectively.
It can be easily concluded that when the robot is away from any
obstacle V f

o → 0 and ε1 → ε1max. When the robot approaches
boundary of any obstacle V f

o increases and ε1 → ε1min.
Time derivative of ε1 can be easily determined from (89)

and (90). Next, computing term Aδ (α)δ̇ one can use ε̇1 in the
motion controller defined by (18).

It is worth noting that the presented tuning algorithm can
be further extended in order to modify other parameters of the
transverse function. In particular, the detailed propositions are
dependent on specific requirements formulated for the given
motion task as well as implementation issues met in practice.

6. Simulation and experimental results
6.1. Simulation of the omnidirectional frame First, we
make simulation in Matlab/Simulink environment of the con-
trol system with motion controller (35). Parameters of the
transverse function are set as follows: ε1 = 0.05 and ε2 = π

6 ,
while ε3 ∈ {0.05, 0.25, 0.5}. Velocity input ν applied to the
omnidirectional frame is chosen as

ν(t) := 0.1




[0 0 1]� for t ∈ [0,10)
[−1 0 0]� for t ∈ [10,20)
[1 −1 0]� for t ∈ [20,30)
[0 0 0]� for t ≥ 30

, (91)

while initial configuration of the unicycle satisfies g(0) = 0.
Consequently, only the second motion stage defined for
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Fig. 10. Position path (gx,gy) obtained for the selected values of ε3

t ∈ [10,20)s is feasible for the considered nonholonomic kine-
matics. Other segments are highly infeasible and they are exe-
cuted using an oscillatory-like pattern as can be observed from
Fig. 10. Comparing the obtained curves (gx,gy) one concludes
that parameter ε3 does not affect the path shape considerably.
In particular, the first two segments are almost invariant to the
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that parameter ε3 does not affect the path shape considerably. 
In particular, the first two segments are almost invariant to the 
selection of ε3. Some difference can be noticed for the last seg-
ment – then the number of manoeuvres increases slightly for 
a higher value of ε3.

Otherwise, parameter ε3 modifies input signals considerably 
– cf. Figs. 11–13. More smooth time plots are observed when 
ε3 ¼ 0.25. This correspond to the optimal selection of ε3 dis-
cussed in Section 3 – cf. Fig. 2. Computing integrals of squared 
inputs – see Table 2 – it can be confirmed that the same motion 
action (with respect to the path shape and the mean velocity) is 
executed with different energy expenditure.

Table 2 
Comparison of the control effort computed for the given set of 

parameter ε3 for the scenario considered in the simulation

Parameter ε3 ſ030u1(t)2dt ſ030u2(t)2dt ſ030u(t)>u(t)dt

0.05 1.34 327 328

0.25 1.56 133 135

0.5 4.27 112 116

6.2. Experimental results of the navigation controller. In 
order to verify properties of the motion controller with the pro-
posed navigation method, experimental work was conducted 
using a laboratory two-wheeled robot MTracker [46] with 
wheels radius rw = 0.025m and the distance between the wheels 
b = 0.145m. The algorithm was implemented in C++ code and 
run on a PC which sends velocity commands to the on-board 
DSP controller 50 times per second. The robot was localized 
using the odometry. The wheel velocities were saturated using 
smooth scaling algorithm (in order to suppress hard nonlineari-
ties). Additionally, time scaling was applied to guarantee proper 
integration of the augmented dynamics.

The obstacles were modelled numerically as smooth su-
perellipses, [47] and their dimensions were increased to in-
clude the robot diameter as well as an additional distance 
margin defined by the transverse function, cf. (68). The mo-
tion controller parameters were selected as follows: ε1 = 0.05, 
ε2 = 0.5, ε3 = 0.3, while initial condition α(0) = ¡
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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rameters of the navigation controller given by (79) were set as: 
ka = ka(p) = 
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Table 2. Comparison of the control effort computed for the given set
of parameter ε3 for the scenario considered in the simulation

Parameter ε3
∫ 30

0 u1(t)2dt
∫ 30

0 u2(t)2dt
∫ 30

0 u(t)�u(t)dt
0.05 1.34 327 328
0.25 1.56 133 135
0.5 4.27 112 116

selection of ε3. Some difference can be noticed for the last seg-
ment – then the number of manoeuvres increases slightly for a
higher value of ε3.

Otherwise, parameter ε3 modifies input signals consider-
ably – cf. Figs. 11-13. More smooth time plots are observed
when ε3 ≈ 0.25. This correspond to the optimal selection of
ε3 discussed in Section 3 – cf. Fig. 2. Computing integrals of
squared inputs – see Table 2 – it can be confirmed that the same
motion action (with respect to the path shape and the mean ve-
locity) is executed with different energy expenditure.

6.2. Experimental results of the navigation controller In
order to verify properties of the motion controller with the
proposed navigation method, experimental work was con-
ducted using a laboratory two-wheeled robot MTracker [46]
with wheels radius rw = 0.025m and the distance between the
wheels b = 0.145m. The algorithm was implemented in C++
code and run on a PC which sends velocity commands to the
on-board DSP controller 50 times per second. The robot was
localized using the odometry. The wheel velocities were sat-
urated using smooth scaling algorithm (in order to suppress
hard nonlinearities). Additionally, time scaling was applied to
guarantee proper integration of the augmented dynamics.

The obstacles were modelled numerically as smooth su-
perellipses, [47] and their dimensions were increased to in-
clude the robot diameter as well as an additional distance mar-
gin defined by the transverse function, cf. (68). The mo-
tion controller parameters were selected as follows: ε1 = 0.05,
ε2 = 0.5, ε3 = 0.3, while initial condition α(0) = −π

2 . The
parameters of the navigation controller given by (79) were set
as: ka = ka(p) = 0.125

‖w(p)‖+0.25 and ko = 0.2. The given formula
describing ka allows one to limit magnitude of the attractive
field when the robot is far away from the goal.

The following experimental scenarios were considered:

• Experiment 1 (E1): motion with the robot heading alignment
• Experiment 2 (E2): motion with simultaneous and indepen-

dent rotation
• Experiment 3 (E3): motion with simultaneous and indepen-

dent rotation with the adaptation of the transverse function
• Experiment 4 (E4): tracking of the circular trajectory with

the robot heading alignment
• Experiment 5 (E5): motion of the robot between obstacles

with overlapping external zones with the heading alignment
• Experiment 6 (E6): motion of the robot between obstacles

with overlapping external zones with almost constant orien-
tation

In experiment E1 the static goal with coordinates pd =
[4 2.5]� is taken into account. The maximum values of wheel
velocities are limited to 10 rad/s. It is assumed that the obsta-
cles including their external zones are isolated from each other
– see Fig. 14a. In order to avoid oscillatory motion of the robot
the auxiliary heading controller (87) is applied with kφ = 20.
The motion task is executed properly – the goal is achieved
without any collision within about 35 s. From Fig. 15a one can
see the navigation components describing linear velocity in the
local omnidirectional frame. One can notice that in spite of us-
ing the heading controller term νy is not precisely attenuated.
In particular, at about 18th second νy becomes significant for a
short time interval. This is the result of a significant change of
φ which is not followed accurately by zθ due to signal satura-
tion and absence of φ̇ in (87). In spite of it the tracking preci-
sion is sufficient to avoid an oscillatory response of the closed-
loop system for the chosen parameter ε2. It can be concluded
that input ν is almost feasible such that oscillatory motion pat-
terns are not employed. From Fig. 15d it can be observed that
the robot moves forward with positive linear velocity during
execution of the motion task. As a result the augmented dy-
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In order to avoid oscillatory motion of the robot the auxiliary 
heading controller (87) is applied with kϕ = 20. The motion task 
is executed properly – the goal is achieved without any collision 
within about 35 s. From Fig. 15a one can see the navigation 

components describing linear velocity in the local omnidirec-
tional frame. One can notice that in spite of using the heading 
controller term νy is not precisely attenuated. In particular, at 
about 18th second νy becomes significant for a short time in-

Fig. 14. Results of experiments E1–E6: the environment structure and position paths

(a) Experiment E1: path (

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

θ due to signal saturation and absence 
of ϕ ̇ in (87). In spite of it the tracking precision is sufficient to 
avoid an oscillatory response of the closed-loop system for the 
chosen parameter ε2. It can be concluded that input ν is almost 
feasible such that oscillatory motion patterns are not employed. 
From Fig. 15d it can be observed that the robot moves forward 
with positive linear velocity during execution of the motion task. 
As a result the augmented dynamics is not excited and variable 
α stays close to −π/2 (as indicated from stability of augmented 
dynamics considered in Section 4.1) and components of trans-
verse function f do not change significantly – cf. Figs. 15c and 
f. Control inputs u1 and u2 are smoothly saturated in order to 

meet the assumed bounds. As a result the magnitudes of these 
signals are scaled down in comparison to the magnitudes of 
auxiliary inputs νx and νθ – cf. Figs. 15a, b, d and e.

The next experiment, E2, was conducted assuming that 
the omnidirectional frame moves toward the goal and rotates 
with angular velocity 0.075rad/s. The upper bound of the an-
gular velocities of the robot wheels were increased to 30rad/s. 
This scenario could correspond to an exploration task when 
the robot is supposed to observe a surrounding environment 
from different angles. In this case the heading controller is 
not used. As a result the navigation field in general is highly 
infeasible for the unicycle – from Fig. 16a it can be seen that 
νy achieves significant values. From Fig. 14b it can be no-

Fig. 15. Results of experiment E1
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Fig. 16. Results of experiment E2
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(f) Time evolution of the TF: fx (black line),  
fy (dashed black line), fθ (gray line)



846 Bull.  Pol.  Ac.:  Tech.  64(4)  2016

D. Pazderski

ticed that a zig-zag motion pattern is executed by the robot 
in order to approximate the path given by (

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

x, 

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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y). Comparing 
results of experiments E1 and E2 illustrated in Figs. 14a and 
14b, respectively, one concludes that the position of the om-
nidirectional frame evolves in a similar way in spite of the 
fact that nonholonomic constraints are highly violated – the 
robot orientation increases in an approximate sense during 
experiment E2 – cf. Fig. 16b. However, in order to approxi-
mate infeasible directions highly oscillatory input signals are 
produced – see Figs. 16d and e. This is a result of excitation 
of the augmented dynamics which is forced to generate peri-

odic cycles with the frequency mainly dependent on value of 
νy – cf. Figs. 16c and f.

Basically, in experiment E3 the same scenario is considered 
as in the previous case. The main modification is the applica-
tion of adapting scheme discussed in Section 5.6. To be more 
precise, it was assumed that parameter ε1 is a time varying func-
tion bounded by ε1min = 0.05 and ε1max = 0.4. Other parameters 
of the algorithm defined by (89) and (90) were selected as: 
1/ kf  = 0.2 and kε1 = 20. Comparing results of experiments E2 
and E3 one can easily notice that highly oscillatory manoeuvres 
are realized near obstacles – cf. Fig. 14c. In the case when the 

Fig. 17. Results of experiment E3
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(a) Navigation inputs νx (solid) and νy (dashed) 
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(d) Linear velocity u1 of the unicycle in [m/s]

(b) Orientation of the unicycle gθ in [rad]

(e) Angular velocity u2 of the unicycle in [rad/s]

(c) Time evolution of auxiliary variable α  
in [rad]

(f) Time evolution of the TF: fx (black line),  
fy (dashed black line), fθ (gray line)

Fig. 18. Results of experiment E4
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(d) Linear velocity u1 of the unicycle in [m/s]

(b) Auxiliary angular input νθ [rad/s]

(e) Angular velocity u2 of the unicycle in [rad/s]

(c) Time evolution of auxiliary variable α  
in [rad/s]

(f) Time evolution of the TF: fx (black line),  
fy (dashed black line), fθ (gray line)
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repulsive potential vanishes parameters ε1 increases and the 
approximation accuracy is relaxed – for example compare the 
initial trajectory in experiments E2 and E3. It can be confirmed 
from Fig. 17f that coordinates fx and fy are scaled during the 
navigation task. As a result frequency of control input can be 
attenuated when the robot moves away from obstacles – cf. 
Figs. 16d, e and 17d, e. It makes it possible to improve perfor-
mance of the controller and to decrease the oscillatory response 
if it is not required to accomplish the task.

Experiment E4 illustrates properties of the controller in the 
trajectory tracking case. The environment structure corresponds 

to the one used in experiments E1–E3. Similarly as in E1, the 
heading controller is used and the upper bound of the wheel veloc-
ities are limited to 10rad/s. The goal is assumed to move around 
a circle with radius 1.5m and with linear velocity 0.075m/s – see 
Fig. 14d. The reference trajectory cyclically collides with three 
obstacles. From experimental results it follows that the position 
variables of the virtual robot converge asymptotically to the goal 
when it is placed outside any obstacle and its corresponding in-
teractive zone. The robot motion does not exhibit oscillatory be-
haviour – infeasible motion is reduced and the augmented dy-
namics does not produce oscillation – see Figs. 18c and f.

Fig. 19. Results of experiment E5
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(b) Auxiliary angular input νθ [rad/s]
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Fig. 20. Results of experiment E6
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(f) Time evolution of the TF: fx (black line),  
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In the next experiment, E5, two obstacles with overlapping 
external zones are considered – cf. Fig. 14e. The position of 
the stationary goal is defined by pd = [1 1.5]>. Other condi-
tions and parameters correspond to the ones used in experiment 
E1. This scenario can be interpreted as a motion task through 
a corridor defined between walls. Since in the considered case 
the obstacles are not completely isolated the lack of local 
minima is not guaranteed. In spite of it any local minimum 
is not met and the robot is attracted to the goal properly in 
about 17 s. The robot motion is smooth and no rapid changes 
in the linear velocity are observed – cf. Fig. 19d. As a result 
of the interaction between the repulsive and attractive fields 
in the given scenario the robot path is placed in the middle of 
the feasible passage.

Experiment E6 is a variation of experiment E5. Namely, it 
is assumed that the robot heading should not be changed sig-
nificantly during motion execution. To be more precise, it is 
assumed that orientation of the virtual robot satisfies 

Application of transverse functions

Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Comparing Figs. 14e and 14f it can be stated that path (
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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Rm×(n−m) and A2 ∈R(n−m)×(n−m). Using (9) and recalling def-
inition of C allows one to rewrite matrix M as follows

M(α) = X( f (α))C̄(α), (10)

where C̄(α) := [C −A(α)] ∈ Rn×n. Since X is the full rank
matrix and p = n−m the condition given by (6) is ensured
when C̄(α) is invertible. Next, computing determinant of C̄
one has: detC̄ = detA2. As a result for p= n−m transversality
condition is given by

∀α ∈ Tn−m,detA2(α) �= 0. (11)

Relation (11) can be used explicitly to verify if f is a transverse
function for the chosen set of parameters, [42].

Selection of a transverse function for the given driftless
affine system is not unique. Basically, such a function should
satisfy quite general conditions covered by (6) and (8). The
constructive method of computation of a transverse function
has been proposed in [11]. It is based on the exponential map
of non-commuting vector fields with harmonic inputs in order
to find implicitly a new direction in the tangent space. This al-
gorithm can be successfully applied to many driftless systems,
see for example [43]. When the exponential map cannot be
found precisely, one can take advantage of approximated re-
sults, [19] or apply coordinate transformations, cf. [13]. How-
ever, in many cases formal results of these computations can
be seen as an initial candidate for a transverse function. This
is due to the fact that one needs to select a proper set of param-
eters or introduce some modifications to get a required design
flexibility. For example, on a Lie group it is possible to find
generalized transverse functions (GTF) which can be shrunk
to the origin without violating transversality condition. As a
result of this feature these functions can be employed to de-
sign a controller ensuring asymptotic tracking of some kind of
reference trajectories, [12, 42].

2.4. Companion system and decoupling control The fun-
damental property of the control method taking advantage of
transverse functions is an approximate decoupling of a control-
lable nonlinear system in spite of kinematic constraints and a
possible additive drift. In the considered case one can apply
this technique to get an almost linear system.

Assume that z ∈ G denotes auxiliary configuration. Next,
suppose that for t > 0, z(t) and configuration g(t) evolve
in a similar way, such that g(t) ∈ Bε(z(t)), where Br(p) =
{g ∈ G : dist(g, p)< r}. Let the distance between elements,
z and g, be determined by transverse function f . Then defining
an error on Lie group G one can write

z−1g := f . (12)

Alternatively, from (12) one can easily find that

z = g f−1. (13)

To obtain a more general result we assume that f is dependent
not only on α , but also on an exogenous variable δ ∈ Rl with
bounded derivative δ̇ . In such a case time derivative of f be-
comes: ḟ = ∂ f

∂α α̇ + ∂ f
∂δ δ̇ . Recalling (9) and using basis X(·)

one can rewrite ḟ as follows: ḟ = X( f )(A(α)α̇ +Aδ (α)δ̇ ),

where Aδ (α) ∈ Rn×l . Next, computing time derivative of (13)
and following analysis presented in [12] we consider the com-
panion system defined by

ż = X(z)AdX ( f )
(

C̄(α)ū−Aδ (α)δ̇
)
, (14)

where ū := [u� α̇�]� ∈ Rn is the extended input. Since
X(z)AdX ( f )C̄(α) ∈ Rn×n is the invertible matrix one con-
cludes that z can be changed arbitrarily using bounded input
ū. Consequently, system (14) can be seen as an unconstrained
system evolving on G.

The controller which linearises system (14) can be proposed
as follows.

PROPOSITION 1 Decoupling controller. Applying the fol-
lowing control law

ū = C̄−1(α)
(

AdX ( f−1)X−1(z)w+Aδ (α)δ̇
)
, (15)

where w ∈Rn is a new input, to (14) gives fundamental decou-
pled linear system

ż = w. (16)

Formally, term w in (16) can be regarded as vector field in
g. Computing this field in the basis one can introduce

ν := X−1(z)w. (17)

Consequently, using ν in (15) yields

ū = C̄−1(α)
(

AdX (
f−1)ν +Aδ (α)δ̇

)
. (18)

Taking into account that

C̄−1 =

[
I −A1A−1

2

0 −A−1
2

]
, (19)

recalling definition of ū and using (18) one can consider the
following augmented dynamics

α̇ = ωα (α)ν +ωδ (α) δ̇ , (20)

where

ωα (α) :=−A−1
2 [0 I]AdX (

f−1 (α)
)
, (21)

ωδ (α) :=−A−1
2 [0 I]Aδ (α). (22)

This dynamics is essential since it governs evolution of the
transverse function. Thus it has a significant impact on evolu-
tion of the controlled system and robustness of the closed loop-
system to unmodelled perturbations. Consequently, properties
of (20) should be carefully taken into account when application
of this control scheme is considered.

3. Selection of transverse function for a unicycle-
like vehicle

3.1. Model Here we recall basic definitions and operators
which can be employed for a control of the unicycle kinemat-
ics, cf. [12]. Assume that G ∼= SE(2) is the Lie group with
operation given by

gh := g+

[
R(gθ ) 0

0 1

]
h, (23)
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y) is almost the same while in Experiment E5 the robot mo-
tion is executed using the zig-zac pattern. Clearly, this kind 
of motion is less effective and for the same velocity bounds 
the task is performed in about twice longer – cf. time plots in 
Figs. 19 and 20.

7.	 Conclusions

The paper studies the application of the controller using 
transverse functions in order to overcome limitations imposed 
by nonholonomic constraints. We propose the non classic 
control structure which can be efficiently used for a differ-
entially driven robot to solve a navigation task. It is important 
to emphasize that this is a relatively new idea which can be 
used to execute also non-standard motion tasks where inde-
pendent orientation control is required. Additionally, it turns 
out that a possible relaxation of required precision of heading 
control allows increasing robustness of the closed-loop con-
trol system to measurement uncertainties. For example, it is 
observed that sensitivity of the controller when the robot 
moves with low velocity is not significant. It confirms that 
the controller ensures a suitable level of robustness near the 
equilibrium point.

The discussed stability analysis of the motion controller 
offers a possibility of finding some tuning rules. In particular 
one can predict oscillatory response and estimate frequency of 
a cycle when an infeasible direction is approximated. Addition-
ally, it is possible to avoid zig-zag motion patterns by a proper 
selection of parameters of the transverse function. These aspects 
are critical in practice, especially when the robot dynamics in-
cluding restrictions imposed on acceleration bounds must be 
taken into account.

The proposed control idea based on approximated decou-
pling can be adapted for other kinematics including car-like 
vehicle and vehicle with trailers. Moreover, it can be used to 
specify fundamental motion patterns which can be employed 
by a planner to find possible trajectories connecting points in 

a free task space. Additionally, the considered control strategy 
can be useful for a navigation purpose using potential approach. 
In particular, we believe that it could be efficiently used to over-
come local minimum of potential functions, similarly as it can 
be done for holonomic systems. In this case the possibility of 
approximation of any direction in the state space becomes an 
important advantage of this method.

A.	 Appendix

A.1. Transversality condition – selection of parameter ε3. 
Let ρ := ε2cosα 2 [¡ε2, ε2]. To simplify our consideration we 
assume that ε2 ≤ π, that can be easily motivated from a practical 
point of view.

Using ρ in Eq. (33) gives:
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A. Appendix
A.1. Transversality condition – selection of parameter ε3.
Let ρ := ε2 cosα ∈ [−ε2,ε2]. To simplify our consideration
we assume that ε2 ≤ π , that can be easily motivated from a
practical point of view.

Using ρ in Eq. (33) gives:

γ(ρ) =
1
ε2

2

(
(sincρ −4ε3 cosρ)ρ2 +2ε3ε2

2 cosρ
)
. (92)

Suppose that ε3 = ε∗3 (ρ) such that γ(ρ)|ε3=ε∗3 (ρ) = 0. Conse-
quently, ε∗3 (ρ) satisfies

ε∗3 (ρ) =
ρ tanρ

2(2ρ2 − ε2
2 )

. (93)

Notice that at ρ ∈
{
±

√
2

2 ε2,±π
2

}
function (93) becomes un-

bounded. Next, introduce sets

D+ :=
{

ρ ∈ [−ε2,ε2] : 2ρ2 − ε2
2 > 0

}
(94)

and
D− :=

{
ρ ∈ [−ε2,ε2] : 2ρ2 − ε2

2 < 0
}
. (95)

In order to satisfy γ(ρ)> 0 parameter ε3 has to satisfy

sup
ρ∈D+

ε∗3 < ε3 < inf
ρ∈D−

ε∗3 . (96)

To analyse function ε∗3 (ρ) one computes

dε∗3 (ρ)
dρ

=−
ρ
(
2ρ2(sinc(2ρ)−1)+ ε2

2 (1+ sinc(2ρ))
)

2(ε2
2 −2ρ2)2 cos2 ρ

=
ρ(1+ sinc(2ρ))

(
2ρ2 1−sinc(2ρ)

1+sinc(2ρ) − ε2
2

)

2(ε2
2 −2ρ2)2 cos2 ρ

(97)

Define γ1(ρ) := 2ρ2 1−sinc(2ρ)
1+sinc(2ρ) and investigate roots of the fol-

lowing equation:
γ1(ρ)− ε2

2 = 0 (98)

for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
even, we compute solution to Eq. (98) for positive ρ . Recalling
that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
where ρ̄1 ≈ 1.1394 there is no solution to (98). Then, notic-
ing that ∀ρ ∈ R, sinc(2ρ) + 1 > 0 it can be concluded that
∀ρ ∈ [−ε2,ε2],γ1(ρ)−ε2

2 < 0 and there is only one root, ρ = 0,

of equation dε∗3 (ρ)
dρ = 0. Consequently, at ρ = 0 function (93)

has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =

tanε3
2ε3

.
Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
that ε2 �= ρ̄2 =

√
2

2 π (cf. Fig. 21), function (93) has local max-
ima mε∗3 := ε∗3 (±ρm) – see Figs. 23 and 24. Simultaneously
from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =

{
1
2 tancε2 if ε2 ∈ (0, ρ̄1)

ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
(99)
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Fig. 21. Root of function γ1(ρ)+ ε2
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Fig. 22. Plot of function ε∗3 for ε2 ∈ (0, ρ̄1)

with tancσ := tanσ
σ for σ ∈ R.
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)

Bull. Pol. Ac.: Tech. XX(Y) 2016 17

.� (93)

Notice that at ρ 2 f±

Application of transverse functions

A. Appendix
A.1. Transversality condition – selection of parameter ε3.
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we assume that ε2 ≤ π , that can be easily motivated from a
practical point of view.
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for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
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that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
where ρ̄1 ≈ 1.1394 there is no solution to (98). Then, notic-
ing that ∀ρ ∈ R, sinc(2ρ) + 1 > 0 it can be concluded that
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2 < 0 and there is only one root, ρ = 0,
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dρ = 0. Consequently, at ρ = 0 function (93)

has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =
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2ε3

.
Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
that ε2 �= ρ̄2 =

√
2

2 π (cf. Fig. 21), function (93) has local max-
ima mε∗3 := ε∗3 (±ρm) – see Figs. 23 and 24. Simultaneously
from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =

{
1
2 tancε2 if ε2 ∈ (0, ρ̄1)

ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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A.1. Transversality condition – selection of parameter ε3.
Let ρ := ε2 cosα ∈ [−ε2,ε2]. To simplify our consideration
we assume that ε2 ≤ π , that can be easily motivated from a
practical point of view.

Using ρ in Eq. (33) gives:

γ(ρ) =
1
ε2
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(
(sincρ −4ε3 cosρ)ρ2 +2ε3ε2

2 cosρ
)
. (92)

Suppose that ε3 = ε∗3 (ρ) such that γ(ρ)|ε3=ε∗3 (ρ) = 0. Conse-
quently, ε∗3 (ρ) satisfies

ε∗3 (ρ) =
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2(2ρ2 − ε2
2 )
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Notice that at ρ ∈
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}
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{
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2 > 0

}
(94)

and
D− :=

{
ρ ∈ [−ε2,ε2] : 2ρ2 − ε2

2 < 0
}
. (95)

In order to satisfy γ(ρ)> 0 parameter ε3 has to satisfy

sup
ρ∈D+

ε∗3 < ε3 < inf
ρ∈D−

ε∗3 . (96)

To analyse function ε∗3 (ρ) one computes

dε∗3 (ρ)
dρ

=−
ρ
(
2ρ2(sinc(2ρ)−1)+ ε2

2 (1+ sinc(2ρ))
)

2(ε2
2 −2ρ2)2 cos2 ρ

=
ρ(1+ sinc(2ρ))

(
2ρ2 1−sinc(2ρ)

1+sinc(2ρ) − ε2
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)

2(ε2
2 −2ρ2)2 cos2 ρ

(97)

Define γ1(ρ) := 2ρ2 1−sinc(2ρ)
1+sinc(2ρ) and investigate roots of the fol-

lowing equation:
γ1(ρ)− ε2

2 = 0 (98)

for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
even, we compute solution to Eq. (98) for positive ρ . Recalling
that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
where ρ̄1 ≈ 1.1394 there is no solution to (98). Then, notic-
ing that ∀ρ ∈ R, sinc(2ρ) + 1 > 0 it can be concluded that
∀ρ ∈ [−ε2,ε2],γ1(ρ)−ε2

2 < 0 and there is only one root, ρ = 0,

of equation dε∗3 (ρ)
dρ = 0. Consequently, at ρ = 0 function (93)

has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =

tanε3
2ε3

.
Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
that ε2 �= ρ̄2 =

√
2

2 π (cf. Fig. 21), function (93) has local max-
ima mε∗3 := ε∗3 (±ρm) – see Figs. 23 and 24. Simultaneously
from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =

{
1
2 tancε2 if ε2 ∈ (0, ρ̄1)

ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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Let ρ := ε2 cosα ∈ [−ε2,ε2]. To simplify our consideration
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practical point of view.

Using ρ in Eq. (33) gives:

γ(ρ) =
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2 cosρ
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Suppose that ε3 = ε∗3 (ρ) such that γ(ρ)|ε3=ε∗3 (ρ) = 0. Conse-
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and
D− :=
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sup
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Define γ1(ρ) := 2ρ2 1−sinc(2ρ)
1+sinc(2ρ) and investigate roots of the fol-
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for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
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that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
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ing that ∀ρ ∈ R, sinc(2ρ) + 1 > 0 it can be concluded that
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2 < 0 and there is only one root, ρ = 0,

of equation dε∗3 (ρ)
dρ = 0. Consequently, at ρ = 0 function (93)

has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =

tanε3
2ε3

.
Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
that ε2 �= ρ̄2 =

√
2
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from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =
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1
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ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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Let ρ := ε2 cosα ∈ [−ε2,ε2]. To simplify our consideration
we assume that ε2 ≤ π , that can be easily motivated from a
practical point of view.

Using ρ in Eq. (33) gives:

γ(ρ) =
1
ε2

2

(
(sincρ −4ε3 cosρ)ρ2 +2ε3ε2

2 cosρ
)
. (92)

Suppose that ε3 = ε∗3 (ρ) such that γ(ρ)|ε3=ε∗3 (ρ) = 0. Conse-
quently, ε∗3 (ρ) satisfies

ε∗3 (ρ) =
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Notice that at ρ ∈
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}
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∀ρ ∈ [−ε2,ε2],γ1(ρ)−ε2

2 < 0 and there is only one root, ρ = 0,
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at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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To analyse function ε3(ρ) one computes
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Recalling inequality (96) one can formulate the following
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
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that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
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has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =
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Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
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ima mε∗3 := ε∗3 (±ρm) – see Figs. 23 and 24. Simultaneously
from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =

{
1
2 tancε2 if ε2 ∈ (0, ρ̄1)

ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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for ρ 2 [¡π, π]. Taking into account that function γ1(ρ) is 
even, we compute solution to Eq. (98) for positive ρ. Recalling 
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that |ρ| ∙ ε2 from Fig. 21 it can be found that for ε2 2 (0, ρ ̄ 1), 
where ρ ̄ 1 ¼ 1.1394 there is no solution to (98). Then, no-
ticing that 8ρ 2 ℝ, sinc(2ρ) + 1 < 0 it can be concluded that 
8ρ 2 [¡ε2, ε2], γ1(ρ)¡ε2

2 < 0 and there is only one root, ρ = 0, of  
equation 
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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local maximum ε3(0) = 0. Since there are no other local ex-
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practical point of view.

Using ρ in Eq. (33) gives:

γ(ρ) =
1
ε2

2

(
(sincρ −4ε3 cosρ)ρ2 +2ε3ε2

2 cosρ
)
. (92)

Suppose that ε3 = ε∗3 (ρ) such that γ(ρ)|ε3=ε∗3 (ρ) = 0. Conse-
quently, ε∗3 (ρ) satisfies

ε∗3 (ρ) =
ρ tanρ

2(2ρ2 − ε2
2 )

. (93)

Notice that at ρ ∈
{
±

√
2

2 ε2,±π
2

}
function (93) becomes un-

bounded. Next, introduce sets

D+ :=
{

ρ ∈ [−ε2,ε2] : 2ρ2 − ε2
2 > 0

}
(94)

and
D− :=

{
ρ ∈ [−ε2,ε2] : 2ρ2 − ε2

2 < 0
}
. (95)

In order to satisfy γ(ρ)> 0 parameter ε3 has to satisfy

sup
ρ∈D+

ε∗3 < ε3 < inf
ρ∈D−

ε∗3 . (96)

To analyse function ε∗3 (ρ) one computes

dε∗3 (ρ)
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=−
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(
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Define γ1(ρ) := 2ρ2 1−sinc(2ρ)
1+sinc(2ρ) and investigate roots of the fol-

lowing equation:
γ1(ρ)− ε2

2 = 0 (98)

for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
even, we compute solution to Eq. (98) for positive ρ . Recalling
that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
where ρ̄1 ≈ 1.1394 there is no solution to (98). Then, notic-
ing that ∀ρ ∈ R, sinc(2ρ) + 1 > 0 it can be concluded that
∀ρ ∈ [−ε2,ε2],γ1(ρ)−ε2

2 < 0 and there is only one root, ρ = 0,

of equation dε∗3 (ρ)
dρ = 0. Consequently, at ρ = 0 function (93)

has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =

tanε3
2ε3

.
Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
that ε2 �= ρ̄2 =
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2 π (cf. Fig. 21), function (93) has local max-
ima mε∗3 := ε∗3 (±ρm) – see Figs. 23 and 24. Simultaneously
from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =

{
1
2 tancε2 if ε2 ∈ (0, ρ̄1)

ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
(99)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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π (cf. Fig. 21), function (93) has local maxima 
mε3

 := ε3(§ρm) – see Figs. 23 and 24. Simultaneously from 
Fig. 21 it follows that for ε2 = ρ ̄ 2 ρm = 

D. Pazderski

Table 1. Basic motion patterns

Case Motion νx νθ νy

I feasible straight line ± 0 0
II pure rotation 0 ± 0
III feasible arc ± ± 0
III infeasible straight line ± 0 ±
IV infeasible arc ± ± ±

where

ω̄α (α) =
[
0 0 1

]
AdX (

f−1 (α)
)

=
[
sin fθ − fx cos fθ − fy sin fθ cos fθ

]
(α) . (37)

Consequently, the augmented dynamics becomes

α̇ =− 1
ε1ε2γ (α)

ω̄α (α)ν . (38)

4.1. Evolution of augment dynamics Now we focus on time-
evolution of dynamics (38) with respect to input ν governing
motion of the virtual omnidirectional frame. Components of ν
can be interpreted from (35) assuming that f approaches e that
gives AdX ( f−1)≈ I. Then using (19) one obtains

[
u1

u2

]
≈

[
νx

νθ

]
−A1A−1

2 νy. (39)

Hence, it can be concluded that components νx and νθ are as-
sociated with the real kinematic inputs u1 and u2 of the unicy-
cle, respectively. Alternatively, νy is an infeasible input in the
sense that the motion defined by it cannot be directly executed
by the unicycle.

Since it is difficult to formulate precise conclusions for the
general case, we consider particular cases in the sequel. In or-
der to do this we define fundamental motion patterns (manoeu-
vres) collected in Table 1. We distinguish two kinds of patterns
– feasible, which can be realized straightforward by the unicy-
cle and infeasible which violate nonhnolonomic constraints.
To simplify analysis it is assumed that input ν is constant at
least during some time interval.

Let α0 be an equilibrium point of system (38), namely

ω̄α (α0)ν = 0. (40)

In order to investigate the stability of (38) we introduce the
following positive definite function

V :=
1
2

α̃2, (41)

where α̃ := α −α0 and compute its time derivative V̇ . Substi-
tuting (38) to V̇ one has

V̇ =− 1
ε1ε2γ (α̃ +α0)

α̃ω̄α(α̃ +α0)ν . (42)

4.2. Case I: feasible straight motion Assume that νx �= 0
while νθ and νy = 0. Computing ω̄α ν , in view of (37), one
has

ω̄α ν = sin fθ νx = sin(ε2 cosα)νx. (43)

The equilibrium α0 ∈
{
−π

2 ,
π
2

}
. It can be found that for ε2 ∈

(0,π) the following relationship holds

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =−π
2

sign(νx). (44)

Consequently, it follows that α0 = −π
2 sign(νx) is the locally

asymptotically stable equilibrium point.

4.3. Case II: pure rotation Let νx = νy = 0 and νθ �= 0 which
implies from (37) that

ω̄α ν =−( fx cos fθ + fy sin fθ )νθ =−κ1(α)ε1 sinανθ , (45)

where

κ1(α) := cos(ε2 cosα)+2ε2ε3 cosα sin(ε2 cosα) . (46)

It can be shown (see Appendix A.2) that

∀α ∈ S1,ε3 >−(2ε2 tanε2)
−1,κ1 (α)> 0. (47)

Hence, in view of (46), the equilibrium point satisfies sinα0 =
0. Consequently, using (42) one can prove that

∀α̃ ∈ (−π,0)∪ (0,π), V̇ < 0 for α0 =

{
π if νθ > 0
0 if νθ < 0

. (48)

4.4. Case III: feasible motion along arc In this case we have
νx = const �= 0, νθ = const �= 0 and νy = 0. Then it follows
from (37) that

ω̄α ν = sin fθ νx − ( fx cos fθ + fy sin fθ )νθ = κ2(α,νx,νθ ),
(49)

where

κ2(α,νx,νθ ) := sin(ε2 cosα)νx −κ1(α)ε1 sinανθ . (50)

Considering equation κ2(α,νx,νθ ) = 0 one concludes that
there is no closed formula to describe its roots in the general
case. Basically, the value of the equilibrium point is depen-
dent on the relation between inputs νx and νθ , as well as the
selection of parameters ε1, ε2 and ε3.

One can find an approximate solution assuming that ε2 se-
lected is small enough such that κ1 satisfies

κ1(α)≈ 1+2ε2
2 ε3 cos2 α ≈ 1 (51)

and κ2 can be approximated as follows

κ2(α,νx,νθ )≈ κ̄2(α,νx,νθ ) := ε2 cos(α)νx − ε1 sin(α)νθ .
(52)

Roots of κ̄2(α0,ν1,ν2) = 0 satisfy

tanα0 =
ε2νx

ε1νθ
. (53)

Next, using (53) and investigating the sign of V̇ defined by (42)
one can compute value of the asymptotically stable equilibrium
point as follows

α0 = atan2(−ε2νx,−ε1νθ ), (54)

where atan2(·, ·) stands for the four-quadrant inverse tangent
function.

Alternatively, it is possible to find sets of equilibrium points
by solving (49) numerically for the given parameters. The
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 and ε3(§ρm) is un-
bounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following 
constraint: ε3 < mε3

, where

	

Application of transverse functions

A. Appendix
A.1. Transversality condition – selection of parameter ε3.
Let ρ := ε2 cosα ∈ [−ε2,ε2]. To simplify our consideration
we assume that ε2 ≤ π , that can be easily motivated from a
practical point of view.

Using ρ in Eq. (33) gives:

γ(ρ) =
1
ε2

2

(
(sincρ −4ε3 cosρ)ρ2 +2ε3ε2

2 cosρ
)
. (92)

Suppose that ε3 = ε∗3 (ρ) such that γ(ρ)|ε3=ε∗3 (ρ) = 0. Conse-
quently, ε∗3 (ρ) satisfies

ε∗3 (ρ) =
ρ tanρ

2(2ρ2 − ε2
2 )

. (93)

Notice that at ρ ∈
{
±

√
2

2 ε2,±π
2

}
function (93) becomes un-

bounded. Next, introduce sets

D+ :=
{

ρ ∈ [−ε2,ε2] : 2ρ2 − ε2
2 > 0

}
(94)

and
D− :=

{
ρ ∈ [−ε2,ε2] : 2ρ2 − ε2

2 < 0
}
. (95)

In order to satisfy γ(ρ)> 0 parameter ε3 has to satisfy

sup
ρ∈D+

ε∗3 < ε3 < inf
ρ∈D−

ε∗3 . (96)

To analyse function ε∗3 (ρ) one computes

dε∗3 (ρ)
dρ

=−
ρ
(
2ρ2(sinc(2ρ)−1)+ ε2

2 (1+ sinc(2ρ))
)

2(ε2
2 −2ρ2)2 cos2 ρ

=
ρ(1+ sinc(2ρ))

(
2ρ2 1−sinc(2ρ)

1+sinc(2ρ) − ε2
2

)

2(ε2
2 −2ρ2)2 cos2 ρ

(97)

Define γ1(ρ) := 2ρ2 1−sinc(2ρ)
1+sinc(2ρ) and investigate roots of the fol-

lowing equation:
γ1(ρ)− ε2

2 = 0 (98)

for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
even, we compute solution to Eq. (98) for positive ρ . Recalling
that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
where ρ̄1 ≈ 1.1394 there is no solution to (98). Then, notic-
ing that ∀ρ ∈ R, sinc(2ρ) + 1 > 0 it can be concluded that
∀ρ ∈ [−ε2,ε2],γ1(ρ)−ε2

2 < 0 and there is only one root, ρ = 0,

of equation dε∗3 (ρ)
dρ = 0. Consequently, at ρ = 0 function (93)

has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =

tanε3
2ε3

.
Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
that ε2 �= ρ̄2 =

√
2

2 π (cf. Fig. 21), function (93) has local max-
ima mε∗3 := ε∗3 (±ρm) – see Figs. 23 and 24. Simultaneously
from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =

{
1
2 tancε2 if ε2 ∈ (0, ρ̄1)

ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
(99)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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 for σ 2 ℝ.
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tion κ1. Defining ρ := ε2cosα 2 [¡ε2, ε2] and using this term 
in (46) yields

	

Application of transverse functions

A. Appendix
A.1. Transversality condition – selection of parameter ε3.
Let ρ := ε2 cosα ∈ [−ε2,ε2]. To simplify our consideration
we assume that ε2 ≤ π , that can be easily motivated from a
practical point of view.

Using ρ in Eq. (33) gives:

γ(ρ) =
1
ε2

2

(
(sincρ −4ε3 cosρ)ρ2 +2ε3ε2

2 cosρ
)
. (92)

Suppose that ε3 = ε∗3 (ρ) such that γ(ρ)|ε3=ε∗3 (ρ) = 0. Conse-
quently, ε∗3 (ρ) satisfies

ε∗3 (ρ) =
ρ tanρ

2(2ρ2 − ε2
2 )

. (93)

Notice that at ρ ∈
{
±

√
2

2 ε2,±π
2

}
function (93) becomes un-

bounded. Next, introduce sets

D+ :=
{

ρ ∈ [−ε2,ε2] : 2ρ2 − ε2
2 > 0

}
(94)

and
D− :=

{
ρ ∈ [−ε2,ε2] : 2ρ2 − ε2

2 < 0
}
. (95)

In order to satisfy γ(ρ)> 0 parameter ε3 has to satisfy

sup
ρ∈D+

ε∗3 < ε3 < inf
ρ∈D−

ε∗3 . (96)

To analyse function ε∗3 (ρ) one computes

dε∗3 (ρ)
dρ

=−
ρ
(
2ρ2(sinc(2ρ)−1)+ ε2

2 (1+ sinc(2ρ))
)

2(ε2
2 −2ρ2)2 cos2 ρ

=
ρ(1+ sinc(2ρ))

(
2ρ2 1−sinc(2ρ)

1+sinc(2ρ) − ε2
2

)

2(ε2
2 −2ρ2)2 cos2 ρ

(97)

Define γ1(ρ) := 2ρ2 1−sinc(2ρ)
1+sinc(2ρ) and investigate roots of the fol-

lowing equation:
γ1(ρ)− ε2

2 = 0 (98)

for ρ ∈ [−π,π]. Taking into account that function γ1(ρ) is
even, we compute solution to Eq. (98) for positive ρ . Recalling
that |ρ| ≤ ε2 from Fig. 21 it can be found that for ε2 ∈ (0, ρ̄1),
where ρ̄1 ≈ 1.1394 there is no solution to (98). Then, notic-
ing that ∀ρ ∈ R, sinc(2ρ) + 1 > 0 it can be concluded that
∀ρ ∈ [−ε2,ε2],γ1(ρ)−ε2

2 < 0 and there is only one root, ρ = 0,

of equation dε∗3 (ρ)
dρ = 0. Consequently, at ρ = 0 function (93)

has local maximum ε∗3 (0) = 0. Since there are no other local
extrema in domains D− and D+ one can consider value of (93)
at boundary |ρ| = ε2 – cf. Fig. 22. To be more specific we
have: mε3 := ε∗3 (±ε2) =

tanε3
2ε3

.
Now assume that ε2 ∈ [ρ̄1,π]. In such a case there are real

solutions to (98) denoted by ±ρm. At these points, assuming
that ε2 �= ρ̄2 =

√
2

2 π (cf. Fig. 21), function (93) has local max-
ima mε∗3 := ε∗3 (±ρm) – see Figs. 23 and 24. Simultaneously
from Fig. 21 it follows that for ε2 = ρ̄2 ρm = π

2 and ε∗3 (±ρm) is
unbounded. In this particular case a local minimum is not met.

Recalling inequality (96) one can formulate the following
constraint: ε3 < mε3 , where

mε3 =

{
1
2 tancε2 if ε2 ∈ (0, ρ̄1)

ε∗3 (±ρM) if ε2 ∈ (ρ̄1,π)
(99)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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A.2. Analysing augmented dynamics – description of func-
tion κ1 Defining ρ := ε2 cosα ∈ [−ε2,ε2] and using this term
in (46) yields

κ1(ρ) := cos(ρ)+2ε3ρ sin(ρ). (100)

Next, assume that κ1(ρ∗) = 0 and compute

ε3(ρ) =− 1
2ρ tanρ

. (101)
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Obviously ε3(ρ) is unbounded when ρ ! 0. Computing deriv-
ative of ε3(ρ) one has

	

D. Pazderski

Obviously ε3(ρ) is unbounded when ρ → 0. Computing
derivative of ε3(ρ) one has

ε ′3(ρ) =
1
2 sin2ρ +ρ
2(ρ sinρ)2 =

sinc(2ρ)+ 1
2

2ρ sin2 ρ
. (102)

Noticing that there is no solution in real domain for sinc(2ρ)+
1
2 = 0 we conclude that function ε3(ρ) does not have extrema.
Hence minimum values in the range ρ ∈ [−ε2,ε2] can be found
at the boundaries, namely

inf
ρ∈[−ε2,ε2]

ε3 = ε3(±ε2) =− 1
2ε2 tanε2

. (103)
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