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Abstract: In monitoring vertical displacements in elongated structures (e.g. bridges, dams)
by means of precise geometric levelling a reference base usually consists of two subgroups
located on both ends of a monitored structure. The bigger the separation of the subgroups,
the greater is the magnitude of undetectable displacement of one subgroup with respect to
the other. With a focus on a method of observation differences the question arises which of
the two basic types of computation datum, i.e. the elastic and the fixed, both applicable in
this method, is more suitable in such a specific base configuration. To support the analysis of
this problem, general relationships between displacements computed in elastic datum and in
fixed datum are provided. They are followed by auxiliary relationships derived on the basis
of transformation formulae for different computational bases in elastic datum. Furthermore,
indices of base separation are proposed which can be helpful in the design of monitoring
networks.

A test network with simulated mutual displacements of the base subgroups, is used
to investigate behaviour of the network with the fixed and the elastic datum being applied.
Also, practical guidelines are given concerning data processing procedures for such specific
monitoring networks. For big separation of base subgroups a non-routine procedure is
recommended, aimed at facilitating specialist interpretation of monitoring results.

Keywords: vertical displacements, control networks, partitioned bases, elastic datum,
fixed datum, base separation indices

1. Introduction

In elementary guidelines for geodetic measurements of displacements (Lazzarini, 1977),
it was emphasized that reference benchmarks should be linked among themselves by
direct levelling lines, preferably with minimum number of level stations. In prac-
tice, however, especially in monitoring vertical displacements of elongated engineering
structures, e.g. bridges, dams, etc., one meets the situations when the reference base
has to be split into two subgroups each located on one side of a structure. Although
the base points within each subgroup can have direct observation links as required,

bielecka
Tekst maszynowy
10.2478/v10277-012-0001-1

bielecka
Tekst maszynowy



54 Witold Prószyński

the subgroups can be linked with each other only through the observations carried
out between the object points. Such a base configuration decreases the accuracy of
stable datum identification. And so, the bigger the separation between the subgroups,
expressed in terms of a number of instrument stations along the connecting levelling
lines, the greater the magnitude of undetectable mutual displacement of the subgroups.
Hence, the need for answering the question, which of the basic types of datum, i.e. the
elastic and the fixed, is more suitable in this specific base configuration. Although each
type of datum has a property of reducing the effect of previously computed mutual
displacement of the base subgroups, the one offering greater accuracy of object points
displacements should be recommended for practical use. By the term ”the computed
mutual displacement of the base subgroups” we understand mutual displacement of the
base subgroups computed with the use of elastic datum after completing the identifica-
tion procedure but prior to final computation of the object points displacements. Such a
displacement is a superposition of the true displacement and the apparent displacement,
i.e. induced by accumulation of observation random errors.

Although the elastic datum does not deform observations when reducing the com-
puted mutual displacement of the subgroups, it assigns residual displacements to the
reference points with their accuracy characteristics being of comparable magnitude to
those of the displacements of the object points. This does not correspond to the role
of the reference frame where proper accuracy gradation between the reference points
and the object points is expected. The fixed datum deforms observations in order to
cancel the computed mutual displacement of the subgroups, but the magnitudes of these
deformations are within the specified limits. With this datum the reference points, all
with zero displacements, form a stable frame for the displacements of the object points
and a zero-error reference for their accuracy characteristics.

It should be added that both types of computation datum enable one to verify the
correctness of the reference base identified at an earlier stage of data processing.

The choice of a more suitable type of datum is difficult, specifically due to the fact
that the mutual displacement between the base subgroups computed after completing
stable datum identification, lies within the uncertainty interval based on measurement
accuracies, network geometry and datum conditions. Thus, the true component of the
mutual displacement is undetectable.

The problem of the choice between the fixed and elastic computation datum does
not occur in a method of coordinate differences, since the elastic datum is the only
option there.

The analysis of basic types of datum in deformation monitoring in the case of
single or multiple reference bases can be found in a number of items of professio-
nal literature (e.g. Caspary, 1988; Even-Tzur, 2006; Prószyński and Kwaśniak, 2006).
The present paper deals with a specific case of single base which, although being
physically partitioned by the monitored object into two subgroups of points, satisfies
the criteria set in the procedure of stable base identification. So for final computation of
the object points displacements the base should be considered as one group of points.
The problem of the choice of suitable type of datum for such situations is investigated.
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However, the publications that might substantially support the research have not been
encountered as yet by the author of this paper.

The paper aims at formulating the principles for handling the problem of parti-
tioned bases in monitoring vertical displacements, with data processing based on a
method of observation differences.

2. Relationships between displacements computed in elastic and in fixed datum

We shall concentrate on a method of observation differences as applied to data pro-
cessing in a monitoring network with partitioned reference base (Fig. 1).

Fig. 1. Scheme of monitoring network with partitioned reference base

In the figure the following notation is used: M – the points of the monitored object
(in a number of m); B1, B2 – the base subgroups (with b1 and b2 points respectively);
NM,B – the subnetwork covering the object points and the base points which are directly
connected with the object points.

Let us consider a system of standardised observation equations together with re-
ference conditions for this network


AB 0

AB,M AM,B




dB

dM

 =


∆lB

∆lM,B

 +


vB

vM,B

 (1a)

[
HB 0

] 
dB

dM

 = 0 (1b)

where dB(b×1),dM(m×1) – the displacement vectors for the points B and M; b = b1+b2;
∆lB – differences of observations connecting B points themselves; ∆lM,B – differences
of observations connecting the points in a subnetwork NM,B; AM,B – a coefficient matrix
referring to a subnetwork NM,B (full rank); AB,M – a coefficient matrix referring to two
separated sets of observations connecting the points B1 and the points B2 directly with
the points M; HB – a coefficient matrix, the row dimension and the form of which
depend upon the type of computation datum applied (full rank).

All the quantities in the system (1a, 1b) except for dM will have a block structure
corresponding to reference base partition (B1, B2), e.g.
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dB =


dB1

dB2

 ; AB =


AB1 0
0 AB2

 ; AB,M =



AB1,M 0
0 AB2,M

0 0

 ; AM,B =



AM,B1

AM,B2

AM


(2)

The third row in matrices AB,M and AM,B refers to observations connecting M
points between themselves.

The results of least squares (LS) adjustment of the system (1a, 1b) will be deno-
ted by: d̂B{e}, d̂M{e} – the displacement vectors for elastic datum (i.e. the datum based
on a free network principle, in (Caspary, 1988) termed the minimum trace datum).
The free net condition is applied here to a reference base B. The matrix HB is such,
that ABHT

B = 0; d̂B{f}, d̂M{f} – the displacement vectors for fixed datum (i.e. d̂B{f} = 0);
HB = I; v̂M,B{e}, v̂M,B{f} – residuals for differences of observations ∆lM,B, correspondin-
gly in the elastic and in fixed datum.

The following relationships can be proved (see Appendix 1)

d̂M{f} − d̂M{e} = Kd̂B{e}; C[d̂M{f}] − C[d̂M{e}] = −K · C[d̂B{e}] ·KT (3)

v̂M,B{f} − v̂M,B{e} = (AM,BK − AB,M)d̂B{e} = − RM,BAB,Md̂B{e} (4)

where K = (AT
M,BAM,B)−1AT

M,BAB,M; RM,B = I −AM,B(AT
M,BAM,B)−1AT

M,B is the reliabi-
lity matrix for a subnetwork NM,B; C[d̂∗] is the covariance matrix for a vector d̂∗, with
a variance factor assumed to be equal to 1.

For a levelling network the matrix K has a specific structure, since

K · 1T

(1×b)
= − 1T

(1×m)
, or equivalently 1

(1×m)
·K · 1T

(1×b)
≡ Σ{K} = −m (5)

where 1 = [11...1], Σ{K} is the sum of elements of the matrix K.
One can see from formula (3) and (4) that differences between the adjustment

results in elastic and in fixed datum depend upon the structure of the subnetwork
NM,B as well as upon the magnitude of residual displacements of the base points,
determined in elastic datum. It should be noted that the residual displacements result
from the mutual displacement of the subgroups which can be determined in elastic
datum with a reference base located in one of the subgroups. The bigger the base
separation, the greater can be the apparent component in the above-mentioned mutual
displacement.

From the second formula in (3) it follows that, assuming the variance factor equal
to 1, the variances of displacements of the object points in a fixed datum are always
smaller than those in the elastic datum.

Comparing the number of degrees of freedom for this system, when using the
fixed and the elastic datum (denoted f{f} and f{e} respectively), we get:

f{f} = n − s · u(M); f{e} = n − [s · u(B) + s · u(M) − c] → f{f} − f{e} = s · u(B) − c (6)
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where n – number of observation differences; u(B) – number of points of the refe-
rence base; u(M) – number of points of the monitored object; s – network dimension;
c – network defect.

From the analysis of the relationship (6) for different types of networks with
partitioned bases it follows that we shall always have f{f} > f{e}. Since the critical value
in the global test on variance-factor estimator, i.e. (σo)crit = χ2

f ,α/ f , decreases with the
increase in f , we get the following relationship between the critical values in such a
test when using fixed or elastic computation datum

(σo{f})crit < (σo{e})crit (7)

with the significance level α being kept the same.
It is reasonable that the global test in a system with fixed datum is more rigorous

than that in a system with elastic datum, since it covers a check on displacement model.

3. Formulas for analyses of vertical displacements computed in elastic datum
with different bases

For elastic datum defined on a full base B, the coefficient matrix
[

HB 0
]

as in (1b)
denoted here by GB, will take the form

GB
(1×u)

=

[
1

(1×b)
0

(1×m)

]
(8)

where 1(1 × b) as in (5).
Similarly, for elastic datum defined on a subgroup B1 or B2, the corresponding

matrices G (see Eq.(8)), denoted as GB1 and GB2 , will be as follows:

GB1 =

[
1

(1×b1)
0

(1×b2)
0

(1×m)

]
GB2 =

[
0

(1×b1)
1

(1×b2)
0

(1×m)

]
(9)

where b1 and b2 are the numbers of benchmarks in the subgroup B1 and B2, respecti-
vely.

Using the transformation formulae for displacement vectors when changing from
the datum with a base Bi to that with a base B j, and reversely, from the datum with a
base B j to that with a base Bi (e.g. Caspary, 1988; Prószyński and Kwaśniak, 2006),
we obtain finally the following simple relationships:

d(B2) = d(B1) − d̄B2(B1) · 1
(u×1)

; d(B1) = d(B2) − d̄B1(B2) · 1
(u×1)

(10)

d(B2) = d(B) − d̄B2(B) · 1
(u×1)

; d(B) = d(B2) − d̄B(B2) · 1
(u×1)

(11)

where, for instance, d̄B2(B1) denotes displacement of the gravity centre of the subgroup
B2 in a datum with a base B1.

Combining the two formulae in (10) and those in (11) we get the expected relations
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d̄B1(B2) = −d̄B2(B1); d̄B2(B) = −d̄B(B2) (12)

We can also prove the following relationships

d̄B2(B) = −b1

b2
· d̄B1(B); d̄B2(B1) =

b1 + b2

b2
d̄B(B1) (13)

d̄B2(B1) = (1 +
b2

b1
)d̄B2(B) (14)

We should note that the relationships (13), (14) do not explicitly depend on a
number of monitored object points and are valid for any configuration of control
network as well as measurement accuracy.

Concentrating on Eq. (14), we get the relationship between the standard deviations
of d̄B2(B1) and d̄B2(B), i.e.

σ[d̄B2(B1)] = (1 +
b2

b1
) · σ[d̄B2(B)] (15)

which, as taken together with Eq. (14), means that the statistical significance of d̄B2(B1)
is identical with that of d̄B2(B), i.e.

d̄B2(B1)

σ[d̄B2(B1)]
=

d̄B2(B)

σ[d̄B2(B)]
(16)

Now, let us consider the relationship


d̄B1(Bi)

d̄B2(Bi)

 =



1
b1
· 1

(1×b1)
0

0 1
b2
· 1

(1×b2)

 ·


dB1(Bi)

dB2(Bi)

 (17)

where d̄B1(Bi), d̄B2(Bi) are displacements of the gravity centres of B1 and B2 in a datum
with a base Bi.

Introducing the covariance matrix

C


dB1(Bi)

dB2(Bi)

 =


C11 C12

C21 C22

 (18)

and applying the covariance propagation law for the relationship (17) we obtain finally

C


d̄B1(Bi)

d̄B2(Bi)

 =


1
b2

1

∑
{C11} 1

b1b2

∑
{C12}

1
b1b2

∑
{C21} 1

b2
2

∑
{C22}

 (19)

where
∑
{·} denotes the sum of all the elements of the matrix in parentheses.

Since HBi ·dBi = 0 (see (1b)), we have HBi ·C[dBi] = 0. Therefore, with HBi being
HB1 , HB2 or HB, respectively, we shall get



Problem of partitioned bases in monitoring vertical displacements... 59

HB1 :
∑
{C11} = 0;

∑
{C12} =

∑
{C21} = 0 (20a)

HB2 :
∑
{C22} = 0;

∑
{C12} =

∑
{C21} = 0 (20b)

HB :
∑
{C11} =

∑
{C22} = −

∑
{C12} = −

∑
{C21} (20c)

From Eqs (19) and (20c) we get

σ[d̄B1(B)]
σ[d̄B2(B)]

=
b2

b1
(21)

which could be obtained also from Eq. (13).

4. Indices of base separation defined in elastic datum

To evaluate inconsistency of the reference base B due to its partitioning {B1, B2} by the
monitored object, the following indices, of absolute and relative character, are proposed

µa = σ[d̄B2(B1)] µr =
σ[d̄B2(B1)]
σ̄[dB(i j)]

(22)

where: σ[d̄B2(B1)] – the standard deviation of the displacement of gravity centre of the
base B2 in elastic datum with a base B1, σ̄[dB(i j)] – the average value of standard
deviations of mutual displacements for pairs of benchmarks within base B1 and within
base B2.

The more elongated is the monitored object, and hence, the greater the inconsi-
stency of the reference base, the greater are the values of both indices. The index µr
enables one to compare base inconsistencies for different control networks.

For largely elongated objects, the value of µa may provide basis for checking at the
design stage the possibility of strengthening the network by introducing intermediate
measurements of height differences between the points of both the base subgroups
(e.g. by GPS levelling). By strengthening the network we might decrease the interval
of undetectable mutual displacement of these subgroups.

5. Responses to displacement between the base subgroups in elastic and in fixed
datum

As yet the author has not encountered the theoretically supported and empirically
verified rules for the choice between the elastic and the fixed datum, the more so for
the case of monitoring networks with partitioned reference bases. However, despite the
lack of suitable knowledge, the attempt will be made here to compare the functioning of
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both types of datum with respect to this specific case. We shall use the formulae derived
earlier in this paper (Section 2), as well as the conclusions drawn from numerical tests
carried out on simulated networks (Twardziak, 2010).

The more elongated is the monitored object, the greater is the chance for mutual
displacement between the base subgroups, due to different ground conditions on both
sides of the monitored object. Obviously, the greater is also the magnitude of unde-
tectable displacement between the subgroups. The quantity d̄B2(B1) which we compute
in elastic datum is a resultant displacement, being a superposition of the true and
the apparent displacement, as was mentioned in the Introduction. With d̄B2(B1) of the
magnitude being within the corresponding uncertainty interval, it is not possible to
isolate the components.

Let us now consider the formulae (3) and (4), which enable one to compare the
results of using the elastic and the fixed datum. Introducing the notation

∆lB,M = AB,Md̂B{e} =



AB1,M 0
0 AB2,M

0 0

 ·


d̂B1{e}
d̂B2{e}

 =



∆lB1,M

∆lB2,M

0

 (23)

where ∆lB,M is a vector of changes in connecting observations due to displacements
of the reference benchmarks in elastic datum, we get

d̂M{f} − d̂M{e} = (AT
M,BAM,B)−1AT

M,BAB,Md̂B{e} = NM,BAB,Md̂B{e} = NM,B · ∆lB,M

v̂M,B{f} − v̂M,B{e} = −RM,BAB,Md̂B{e} = −RM,B · ∆lB,M

The changes (23) can be interpreted as initial deformations imposed on a sub-
network NM,B at its both ends, due to zeroing the displacements of the reference
benchmarks in a fixed datum. We notice immediately that with d̂B{e} → 0, and hence
∆lB,M → 0, the adjustment results in fixed and in elastic datum tend to be identical
(obviously within the effect of random errors). It should be noted that small values
of d̂B{e} which can be obtained with d̄B2(B1) of small magnitude, may occur when
the true and the apparent component in d̄B2(B1) cancel each other. In such cases the
true displacement of the base subgroups is hidden by the accumulation of observation
random errors.

Having the above in mind, we shall take for testing the following three characteristic
cases of the structure of d̄B2(B1):
a) the true displacement is zero; the apparent displacement is of high value,
b) the true displacement and the apparent displacement being of high value each,

almost cancel out,
c) the true displacement is of high value; the apparent displacement is almost zero.

The 10-span levelling control network (Fig. 2) with simulated observations has
been used for testing the above cases. In all the three cases the displacements of the
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object points M relative to base B1 were kept equal to zero. The base separation indices
for the network were as follows:

µa = 0.43; µr = 2.42

Fig. 2. The test network with simulated observations

It should be noted that in each of the cases all the necessary checks (i.e. for
outlier detection and for stable base identification), preceding the main displacement
computations, have been carried out successfully.

To compare how closely the computed object displacements adhere to their true
values (i.e. zeroes) the following measures were determined for each analysed case:

ε{e} =

√√√√ n∑
i=1

(dM,i{e})2

n
; ε{f} =

√√√√ n∑
i=1

(dM,i{f})2

n

where dM,i{e}, dM,i{f} – the displacements of the i-th object point computed in elastic
and in fixed datum, respectively, each datum with a reference base B; n – number of
object points (here n = 18).

The diagrams below show the displacements computed in both the datums.
The tests enable one to formulate the following conclusions:

• with the true component of d̄B2(B1) being zero or of negligible magnitude, the
fixed datum yields object points displacements being closer to their true values
(ε{f}= 0.17 mm, ε{e}= 0.29 mm). It is quite natural, since the on-site situation
corresponds to the model assumption of absolute stability of the reference points.
The elastic datum, although reduces the effect of d̄B2(B1), but operates on its apparent
component being a randomly induced quantity;

• with the two components canceling each other the object displacements computed
in both the datums are almost identical. However, they do not adhere so closely to
their true values as in the case a) (ε{f} = ε{e} = 0.39 mm);

• with the true component being of high value and the apparent one being ne-
gligibly small, the more suitable (in terms of adherence of the computed object
points displacements to their true values) is the elastic datum (ε{e} = 0.17 mm,
ε{f} = 0.24 mm). Here, it reduces the effect of the true component, whereas the
fixed datum brings it to zero, ignoring the actual on-site situation.
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Fig. 3. Displacements computed for the case a)

Fig. 4. Displacements computed for the case b)

Fig. 5. Displacements computed for the case c)
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6. Practical recommendations for operating with partitioned bases

Maintaining all the diagnostic procedures commonly used in data processing in mo-
nitoring networks, the following specific precautions for the case of partitioned bases
can be recommended:
• the stable base identification should be carried out by analysis of mutual displace-

ments for all pairs of the base points. The procedure known of its high reliability
seems to be specially suited to partitioned bases. Its results will be verified in a
final computing of displacements in a chosen datum (i.e. either fixed or elastic);

• in case that there are well-grounded indications of mutual stability or instability of
the base subgroups, respectively the fixed datum and the elastic datum should be
given priority;

• the numbers of benchmarks in base subgroups should not differ much and best
be identical. Then, as follows from the previous analysis, the reference level for
displacements which is established in elastic datum reduces by half the computed
mutual displacement between the subgroups;

• with partitioned bases, the use of elastic datum results in a lack of distinct gradation
in displacement accuracy characteristics between the reference benchmarks and
the object benchmarks (see Introduction). Although it is an unavoidable effect of
this type of base configuration, it may impair the confidence of a non-surveyor
in the reference frame used for the determination of the object displacements.
Therefore, this effect should not be displayed to specialists, who analyse the results
of monitoring surveys in order to learn about the performance of the object and
assess the degree of its safety. So, instead of showing the computed displacements
and their standard deviations for the reference benchmarks, we should confine
ourselves to a statement, that magnitude of each displacement is insignificant with
respect to accuracy level of the measurement method applied, or more precisely,
that it falls within its confidence interval.

It is obvious that all the detailed information concerning the completed monitoring
surveys (the indices of reference base separation being included), should be kept as a
professional documentation in the archives of engineering surveyor.
• for large separations of base subgroups, expressed by high value of base separation

index µa, it may be reasonable to check whether it might be advantageous to
strengthen the network by spanning the subgroups directly with the use of other
levelling technique;

• for extremely large separations of the base subgroups, an extended strategy can
be recommended. It might contain routine computation of displacements but both
in elastic and in fixed datum, analysis of the discrepancies, and additionally, the
determination of some other quantities, useful in professional interpretation of the
monitoring results but less influenced by the separation of the subgroups. The best
choice can be mutual displacements for selected pairs of the object points and their
standard deviations (the use of elastic datum would be preferred for this purpose).
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7. Concluding remarks

The recommendations formulated in the present paper are not conclusive and there is
a need for further research on the problem of monitoring networks with partitioned
bases. To formulate rigorous rules that could facilitate the choice of the most appro-
priate data processing strategy, it is necessary to apply more thorough and advanced
statistical reasoning. That should lead to developing practical instructions, operating
with specified values of base separation indices.
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Problem rozdzielonych baz w monitorowaniu przemieszczeń pionowych wydłużonych budowli

Witold Prószyński
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Streszczenie

W monitorowaniu przemieszczeń pionowych wydłużonych budowli (np. mostów, zapór wodnych) przy
zastosowaniu precyzyjnej niwelacji geometrycznej, baza odniesienia zazwyczaj składa się z dwóch pod-
grup ulokowanych na obu krańcach monitorowanej budowli. Im większe jest oddalenie tych podgrup, tym
większa jest wielkość niewykrywalnego przemieszczenia jednej podgrupy względem drugiej. Przy kon-
centracji uwagi na metodzie różnic obserwacji powstaje problem, który z dwóch podstawowych rodzajów
obliczeniowego układu odniesienia, tj. elastyczny i sztywny, stosowalnych w tej metodzie, jest układem
bardziej odpowiednim przy tej specyficznej konfiguracji bazy. Celem stworzenia podstaw do analizy tego
problemu, sformułowano związki natury ogólnej między przemieszczeniami obliczonymi w elastycznym
i w sztywnym układzie odniesienia. Podane są następnie zależności wyprowadzone na podstawie wzorów
transformacyjnych dla różnych baz obliczeniowych w elastycznym układzie odniesienia. Ponadto, przed-
stawiono propozycje wskaźników separacji bazy, które mogą być pomocne w projektowaniu sieci. Do
badania zachowania się sieci przy zastosowaniu elastycznego i sztywnego układu odniesienia użyto sieć
testową z symulowanymi przemieszczeniami podgrup bazy.

Podane są także praktyczne wskazówki dotyczące procedur opracowania danych dla takich specy-
ficznych sieci do monitorowania przemieszczeń. Dla dużych separacji podgrup zalecona jest procedura
odbiegająca od rutynowej, nakierowana na ułatwienie specjalistycznej interpretacji wyników monitorowa-
nia.
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Appendix 1

Proof for properties (3) and (4)

For a fixed datum we get from (1a) the following system of observation equations

AM,BdM{f} = ∆lM,B + vM,B{f} (24)

and finally the LS estimators

d̂M{f} = (AT
M,BAM,B)−1AT

M,B∆lM,B (25)

v̂M,B{f} = −[I − AM,B(AT
M,BAM,B)−1AT

M,B] · ∆lM,B = −RM,B · ∆lM,B (26)

Assuming the elastic datum we shall form for (1a, 1b) the system of extended
normal equations with non-singular matrix of coefficients, i.e.



AT
BAB + AT

B,MAB,M AT
B,MAM,B HT

B

AT
M,BAB,M AT

M,BAM,B 0
HB 0 0

 ·



dB{e}
dM{e}

k

 =



AT
B∆lB + AT

B,M∆lM,B

AT
M,B∆lM,B

0

 (27)

where k is a vector of correlates;HB is such that ABHT
B = 0.

The second equation in (27) will have a form

AT
M,BAB,MdB{e} + AT

M,BAM,BdM{e} = AT
M,B∆lM,B (28)

This equation should be satisfied by the LS estimators d̂B{e}, d̂M{e}. So, with AM,B being
of full rank, we get from (28)

d̂M{e} = (AT
M,BAM,B)−1[AT

M,B∆lM,B−AT
M,BAB,Md̂B{e}] = (AT

M,BAM,B)−1AT
M,B∆lM,B−K·d̂B{e}

(29)
and substituting the relationship (25) we obtain finally

d̂M{f} − d̂M{e} = (AT
M,BAM,B)−1AT

M,BAB,Md̂B{e} = K · d̂B{e} ¥ (30)

From the second equation in (1a) we obtain

AB,Md̂B{e} + AM,Bd̂M{e} = ∆lM,B + v̂M,B{e}

and after substituting (29)

AB,Md̂B{e} + AM,B(AT
M,BAM,B)−1AT

M,B∆lM,B − AM,BK · d̂B{e} = ∆lM,B + v̂M,B{e}

which can be written as

AB,Md̂B{e} − RM,B∆lM,B − AM,BK · d̂B(e) = v̂M,B{e}
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or taking into account (26) and carrying out some simple operations we got

v̂M,B{f} − v̂M,B{e} = (AM,BK − AB,M)d̂B{e} = −RM,BAB,Md̂B{e} ¥

Now we shall write (30) in the form

d̂M{f} = K · d̂B{e} + d̂M{e}

or, equivalently

d̂M{f} =
[

K I
]
·


d̂B{e}
d̂M{e}

 (31)

Applying the covariance propagation law to equation (31), we obtain

C[d̂M{f}] = K ·C[d̂B{e}]·KT+Cov[d̂M{e}, d̂B{e}]·KT+K ·Cov[d̂B{e}, d̂M{e}]+C[d̂M{e}] (32)

To find the relationship between C[d̂B{e}] and Cov[d̂B{e}, d̂M{e}], we shall write the
inverse of the coefficient matrix as in (27) showing only the elements useful for the
proof, i.e. 

C[dB{e}] Cov[dB{e},dM{e}] ∗
Cov[dM{e}, dB{e}] C[dM{e}] ∗

∗ ∗ ∗

 (33)

Multiplying the second row of the coefficient matrix in (27) by the first column of the
inverse (33), we obtain

AT
M,BAB,MC[dB{e}] + AT

M,BAM,BCov[dM{e}, dB{e}] = 0

and after simple operations

Cov[dM{e}, dB{e}] = −(AT
M,BAM,B)−1AT

M,BAB,MC[dB{e}] = −K · C[dB{e}] (34)

Substituting (34) into equation (32) and reordering terms, we get

C[d̂M{f}]−C[d̂M{e}] = K ·C[d̂B{e}] ·KT−K ·C[d̂B{e}] ·KT−K ·C[d̂B{e}] ·KT = −K ·C[d̂B{e}] ·KT
¥

We proved the properties (3), (4) of the system (1a, 1b) as structured primarily for
levelling networks. However, the formulas used throughout the proof do not contain
matrices corresponding to base partition, and no restrictive assumptions as to network
dimension have been made within the proof. Therefore, we can conclude that the
properties (3) and (4) can be applied to 1D, 2D and 3D networks, with reference bases
either partitioned or not. Several numerical tests carried out on 1D and 2D networks
confirm the above conclusion.






