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Abstract 

Autocorrelation of signals and measurement data makes it difficult to estimate their statistical characteristics. 

However, the scope of usefulness of autocorrelation functions for statistical description of signal relation is 

narrowed down to linear processing models. The use of the conditional expected value opens new possibilities in 

the description of interdependence of stochastic signals for linear and non-linear models. It is described with 
relatively simple mathematical models with corresponding simple algorithms of their practical implementation.  

The paper presents a practical model of exponential autocorrelation of measurement data and a theoretical analysis 

of its impact on the process of conditional averaging of data. Optimization conditions of the process were 

determined to decrease the variance of a characteristic of the conditional expected value. The obtained theoretical 

relations were compared with some examples of the experimental results. 
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1. Introduction 
 

Intense worldwide technological development poses new challenging tasks for metrology. 
In measurement models, relations between stochastic variables (signals) should be taken into 
account. Stochastic relations make it harder to estimate the statistical characteristics of signals 

and measurement data. The majority of existing documents and measurement recommendations  

intended for use do not take into account the impact of stochastic relations between data [1−4]. 
Familiarity with the characteristics which describe stochastic relations is the primary 

question in solving many issues in science and technology. The most commonly used 
characteristics of stochastic relations are correlation functions. The need to take data correlation 

into account in evaluation of the measurement result uncertainty is indicated by many authors 
in specialised publications. An analysis of time series in the form of auto-correlated numerical 

sequences is presented in the study [5]. Determination of the impact of autocorrelation through 
an alternative measure, the so-called effective number of independent observations, was 

undertaken in a number of publications [6−8]. The derivation, analysis and examples of the use 
of formulae on the unbiased single measurement variance estimators and the arithmetic mean 

for correlated data, and a discussion on metrological usability of the proposed characteristics 

were presented in the works [9−11]. Simulation research into the impact of the instability 
of estimates of a normalised autocorrelation function on the uncertainty of the arithmetic mean 
value was carried out using the Monte Carlo method in the paper [12]. The application 
of Allan’s variance in the analysis of correlated data is shown in the paper [13].  

The theoretical correlation characteristics, which give effective results with linear relations, 
lose their benefits in the analysis of signals and systems with nonlinear characteristics 

of relations. In practice, in measurement of data with stochastic relations, correlation 
characteristics tend to create computational difficulties. There is a need to determine 
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the behaviour of the autocorrelation function and the sign of correlation. Moreover, the 

literature does not provide accurate results in the estimation of the variance of a characteristic 
for any probability distributions describing signals. 

The above-listed limitations pose a barrier to normative applications of correlative relations 

in the final measurement assessments with stochastic relations. Therefore, in studies and 
publications, other probabilistic characteristics describing the relationships of a stochastic 

nature are introduced and applied [14]. Methods of measurement and analysis of such 
characteristics are being developed intensively.  

In performing a metrological identification of signals and systems, developing models and 

making research into stochastic signals, the authors use the theory and techniques of conditional 
signal averaging. In the paper there is examined a real approximate model of exponential 

correlation and its impact on the process of conditional data averaging. Continuity of the 
derivative of autocorrelation function was evidenced for the examined model of signal 
correlation. This makes possible the theoretical research into  the correlation of conditionally 

averaged implementations of the signal. The conditions of averaging aimed at reducing the 
variance of the conditional average value were determined. The theoretical model 

of exponential correlation was compared with the results of experimental research. 
 
 

2. Models of autocorrelation function  

 

Linear and exponential models of the autocorrelation function (ACF) are most frequently 
applied in descriptions of data autocorrelation. Linear and exponential autocorrelation functions 

Rx(τ) of an argument τ = 0 have a common feature – a lack of continuity of their derivatives, 

which in many situations makes analysis and calculations difficult when processing the signals. 
Such functions are called non-differentiable and they are characterized by the infinite value 
of the derivative variance.  

A binary synchronous signal of parameters A, T and with an even distribution of moments 
of changes in the signal value (Fig. 1a) is characterized by a linear autocorrelation function 

(Fig. 1b). These kinds of signals occur in digital processing systems, e.g. after sampling and 
quantization; the analogue signals are transformed into bivalent signals. 

 
                                  a)                                                                 b) 

 

Fig. 1. A binary synchronous signal: a waveform (a); an autocorrelation function (b). 

 
                                  a)                                                                 b) 

 

Fig. 2. A binary asynchronous signal: a waveform (a); an autocorrelation function (b). 
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Binary asynchronous signals with a random distribution of moments of changes in the signal 

value (Fig. 2a) are characterized by the ACF with an exponential shape, as presented in Fig. 2b. 
These kinds of signals occur in radioactive radiation trajectories.  

An autocorrelation function with an exponential shape is also obtained by the output signal 

of a low-pass RC filter, when applying a white noise filter with a constant power spectral density 

( )
0

GfG
x
= at the input: 

                                                           ( ) RC
x

e
RC

G
R

τ

τ

−

=
0

.                                                   (1) 

The exponential shape of the ACF is a relatively frequent model when processing and 
describing analogue stochastic signals. In practice, an approximate model of exponential 

correlation is obtained for signals with a limited bandwidth with the features of white noise, 
passing physical inertial systems. Distributions of physical signals are usually normal or quasi 

normal, due to the central limit theorem and the inertia of typical processing systems.   
 

3. Conditional averaging of auto-correlated data  

 
The autocorrelation function is the main characteristic in the time domain describing the 

relation of stochastic signals. As a mixed second-order moment, it creates certain calculation 
difficulties, especially in assessment of the characteristic variance of auto-correlated data. The 

scope of usefulness of the ACF is narrowed down to linear models in probabilistic relations.  
Restrictions for the measurement applications of correlation characteristics cause seeking 

other forms of description of stochastic relations for signals in the time domain. New 

possibilities in this scope for linear and non-linear models in metrological applications appear 
thanks to the use of functional and numerical conditional characteristics, in particular those 

of the conditional expected value and the conditional variance [14, 15]. The conditional 
expected value ensures the best estimate of interdependencies of stochastic signals in the mean 
square sense.  

The conditional expected value in the time domain as the first-order central moment is 
described by relatively simple mathematical models with equally simple algorithms of their 

practical implementation corresponding to them [15]. In metrological applications 
of conditional averaging a right selection of the averaging condition enables to reduce 

the variance of estimates of experimental characteristics, which is one of the main objectives in 
measurement. 

In basic applications of conditional averaging of Gaussian random signals, the characteristics 

of linear regression are used. For a single stationary signal with a distribution N(0, σx) and 

a normalized ACF ρx(τ), the conditional expected value and the conditional variance are 
described by the following relations:  

                                                          ( ) ( )
112
xxxE

x
τρ= ,                                                      (2) 

                                                    ( ) ( )( )τρσ
22

12
1

xx
xxVar −= ,                                                (3) 

where: x1 and x2 are values of signal x(t) at moments t1 and t2, respectively; 
12
tt −=τ . 

In a simplified model of averaging non-correlated M fragments of x(t), after exceeding 

the ( )
p

xtx =  level [14], the assessment of the relative standard uncertainty of the conditional 

value of arithmetic mean is:  
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In algorithms of conditional averaging using the maximum number of conditions ( )
p

xtx =  

initiating the averaging, correlation of subsequently averaged fragments of the signal becomes 

problematic.  
The following part of the paper presents the results of studies into correlation depending on 

a level xp, which initiates conditional averaging. The studies were carried out assuming a normal 
distribution and an exponential correlation of a signal x(t). 
 

4. Assessment of auto-correlated data 

 

Transition of white noise with a flat power spectral density in the B band, equal to 

( ) BG
2

σω = , through an RC inertial system is described by the relation of one-sided spectral 

density at the system output:  

                                        ( ) ( )
( ) ( )[ ]2
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The ACF at the inertial system output is described by: 

                                  ( ) ( )
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After transformations, for τ = 0 we arrive at: 
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The autocorrelation of subsequent instances exceeding a given level xp by a signal x(t) can 

be determined provided that the ACF ρx(τ) and statistical assessments of time intervals between 
appropriate instances exceeding the level

 
xp are known. 

In order to assess the autocorrelation of subsequent signal fragments, after exceeding the 

given level xp, the ratio of the maximum interval correlation km
τ  and the average interval 

p
τ  is 

determined for  the signal x(t) exceeding the level 
p

x .  

The average time of  passing the level xp by a signal x(t) is described by [16]:  
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where: ( )
p

xM  τ  an average number of signals x(t) passing the level xp with a derivative of one 

sign in a given time unit; 
x1
ω − an average frequency of the spectrum of  a random signal x(t) 

determined by: 
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where: ( )0"

x
ρ  − the second derivative of normalized ACF of a signal x(t) for τ = 0. Taking (5) 

and (9) into account, after necessary calculations, we obtain: 

                                     ( )
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Based on the relations (8) and (10), the average time between signals x(t) passing the level 

xp with a derivative of one sign is: 

                                          

( )

2

2

2

2
1

2

21

2
x

p
x

p
e

BRCarctg

BRC

RC

σ

π

π

π

τ









−

= .                                    (11) 

For the maximum interval of autocorrelation 
m
k

τ  of a signal x(t) with an exponential ACF, 

equal to RC
kmk

33 == ττ , the ratio 
m
kp ττ  is described by: 
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Example 2: 

For given relative values of the level 
xpp

x σν =  initiating conditional averaging and for 

the data included in Example 1, the ratio 
m
kp ττ  is: 
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Calculated and rounded values of the ratio 
m

kp ττ for several values νp are presented 

in Table 1. 
 

Table 1. The values of ratio .

m
p kτ τ  

p
ν  0 1 2  2 

m
k

p

τ

τ

 0.70 1.15 1.90 5.16 

 

For values 
xp

x σ≥ , the averaged implementations of a signal x(t) exceeding the level xp with 

a derivative of one sign can be practically considered to be non-correlated. 

Average implementations of x(t), initiated by subsequent instances exceeding the level xp 
with a derivative of any sign, can be described by the average time of a signal x(t) being above 

the level 
xpp

x σν = : 
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where: ( ) dze

p
z

∫

−

=

ν

π

νΦ

0

2
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2

1
 – the Laplace’s integral. 

A chart of relation (14) is presented in Fig. 3.  

 

 
Fig. 3. An average time during which a signal x(t) remains above the level vp. 

 

Calculated and rounded values of the ratio 
m
kp ττ

±
 for several values νp are presented 

in Table 2. 

 
Table 2. The values of ratio .

m
p kτ τ
±

 

p
ν  0 1 2  2 

m
k

p

τ

τ
±
 0.35 0.18 0.15 0.12 

 
It can be concluded from the provided comparison that the time intervals between subsequent 

instances exceeding  the level 0≥
p

x  by a signal x(t) are on average significantly lower than 

the maximum interval of correlation 
m
k
τ . The ratio of the arithmetic mean of two time intervals 

between subsequent instances exceeding the level 2=
p

ν  with derivatives of various signs 

and the maximum correlation interval is: 

                                                             95.0
9

2 1
≈=

±

e

m
k

p

π

τ

τ

.                                                     (15) 

In the publications [17, 18] it was indicated that the optimal value of the level initiating 

conditional averaging of a signal with a normal distribution and an exponential ACF is included 
in the following interval: 

                                                        
xpx

x σσ 22 ≤≤ .                                                      (16) 

Using the obtained results to optimize the process of estimating the conditional expected 
value, we can perform the following sequence of calculations, basing on a random signal 

digitally registered in time: 

1. Assume an averaging level xp, xpx x σσ 22 ≤≤ . 
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2. In the time interval ( )
m

krr
TT τ≥−0  average subsequent M/2 of implementations exceed 

the level 
p

x  with a positive derivative. 

3. Start and perform averaging with a delay by the first implementation in time Tr from the 

previous point also in the time interval 
r

T−0 ; subsequent M/2 of implementations exceed 

the level xp with a negative derivative. 

4. Perform synchronic averaging of values of partial characteristics from points 2 and 3. 
Assessment of the relative standard uncertainty of determining the conditional average value 

for ( )
r

T≤≤ τ0  can be calculated from the relation (4). 

 

5. Experimental studies 

 
The low-pass white noise x(t) with a distribution N(0 V, 0.3 V) and a frequency band 

B = 25 kHz was applied on the inputs of first-order inertial systems with three different time 

constants Tc of: 10 μs, 30 μs and 100 μs. Figs. 4b−4d provide the obtained functions of the 

conditional average value (CAV) ( )
p

xx τ , which are proportional to appropriate 

autocorrelation functions ρx(τ) . For comparison, in Figure 4a the behaviour ( ) )(ττ fxx
p
=  of the 

original signal x(t) was presented.  
 

a)  b) 

    

c) d) 

    
 

Fig. 4. The behaviour of functions of CAV: the low-pass white noise: N(0 V, 0,3 V), B = 25 kHz  

and after the noise passed the first-order inertial system with various time constants Tc (a):  

Tc = 10 μs (b); Tc = 30 μs (c); Tc = 100 μs (d). 

 

The characteristics were designated using a RIGOL digital oscilloscope, with the level 

initiating averaging of  xp = 0.5 V and the number of averages M = 256. 
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The compliance of the experimentally obtained values ( ) ,
x
k tρ ∆  determined based on the 

conditional function of the average value, was confirmed by calculating the normalized value 

of autocorrelation from the relation ( ) k
ek
−

=ρ . The obtained analytical results for Tc = 100 μs, 

∆t = 100 µs and 
c
Ttk ∆=  are presented in Table 3.  

 

Table 3. The values of function ( ) k
ek
−

=ρ  obtained from calculations. 

k  0 1 2 3 4 5 

( )kρ  1 0.36 0.14 0.05 0.018 0.007 

 
Figure 5 illustrates the behaviour of experimentally determined normalized ACF of the low-

pass white noise: N(0 V, 0.3 V), B = 25 kHz when it passed the first-order inertial system with 

a time constant Tc = 100 μs. The values ρ(k) presented in Table 3 were marked on the chart with 

crosses. A significant compliance of the results obtained experimentally and analytically is 
visible.   

 

 
 

Fig. 5. The experimental behaviour of normalized autocorrelation function ( )tk
x
∆ρ  of the low-pass white noise 

N(0 V, 0.3 V), B = 25 kHz after it passed the first-order inertial system with a time constant Tc = 100 μs 

(continuous line) and the calculated autocorrelation values (points x). 

 

 

6. Summary 

 
1. In practice, the exponential autocorrelation model is obtained using white noise signals with 

a limited B band, passing physical inertial systems with a time constant Tc. In the 

implemented experiment for a product 5.2≥
c

BT , the function ( )
x
k tρ ∆  for 0=τ  has 

a derivative, and for 0>τ  the function shape is exponential. The presented realistic signal 

model is useful in practical applications.  
2. Due to simple theoretical and practical models, when developing the auto-correlated 

measurement data with normal and quasi-normal distributions, conditional averaging 
algorithms can be used. It is especially beneficial in the case of strong data autocorrelation. 

The conditional average value is proportional to the ACF, therefore it can be used to assess 
interdependencies of measurement data, e.g. exponentially auto-correlated data.  
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3. In exponential autocorrelation models for a threshold condition value xpx σ≥ , initiating 

subsequent conditional averaging, averaged implementations of a signal x(t) exceeding the 

level xp with a derivative of one sign can be practically considered to be non-correlated.  
4. In the exponential autocorrelation model, the subsequent averaged implementations 

of a signal x(t) exceeding the level xp with a derivative of any sign are significantly 
correlated.  

5. The process of conditional averaging  a signal x(t) can be optimized: through selecting 

a value of the level xp, and average conditional components determined with a lack of data 

correlation for instances exceeding the level 
px

 with derivatives of any sign.  

6. When estimating the conditional expected value for exponential oscillatory data 

autocorrelation models, relatively large values of maximum intervals of correlation kmτ  

should be taken into account when averaging with the use of non-correlated samples with 

a time kmpT τ≥ . Assessing values and signs of autocorrelations when averaging using 

correlated samples also needs to be considered.  
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