
563Bull. Pol. Ac.: Tech. 66(5) 2018

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 66, No. 5, 2018
DOI: 10.24425/124272

Abstract. This paper presents the high accuracy hardware implementation of the hyperbolic tangent and sigmoid activation functions for artificial
neural networks. A kind of a direct implementation of the functions in a few different versions is proposed and investigated both by software
and hardware modeling. A single precision floating point arithmetic is applied. Apart from conventional design style with hardware description
language coding, high level synthesis design techniques with the Matlab HDL coder and Xilinx Vivado HLS have also been investigated.

Key words: FPGA, hyperbolic tangent, sigmoid, floating point arithmetic.

Hardware implementation of hyperbolic tangent
and sigmoid activation functions

Z. HAJDUK*
Rzeszów University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

presented in [9]. A Taylor series approximation is considered
in [10]. The usage of the coordinate rotation digital computer
(CORDIC) algorithm for implementation of activation func-
tions is featured in [3]. An implementation based on the dis-
crete cosine transform (DCT) interpolation is portrayed in [11].
Direct realization of the Gaussian type activation function for
probabilistic neural networks is proposed in [12].

With the exception of [6, 9, 12], all of the papers mentioned
above have considered fixed point arithmetic for implementa-
tion of the activation function. Some of the papers (e.g. [3, 9])
did not reveal any implementation details. The others (e.g.
[4, 10, 12]) only presented a rough idea of how the proposed
method has been implemented (only a simplified block diagram
of a data-path has been featured).

In this paper a kind of a direct implementation of the hyper-
bolic tangent and sigmoid activation functions is proposed. In
this approach, the main implementation difficulty is shifted to
the approximation of the exponent function. Applying a LUT
with either the McLaurin series or Padé polynomials is pro-
posed in order to accomplish the approximation. Contrary to the
traditional approach for FPGA design, which is based on fixed
point arithmetic [13], a single precision floating point arithmetic
is used. Applying this kind of arithmetic for the implementation
of the activation function and, consequently, a whole ANN, al-
lows an ANN’s learning process to be conducted by exercising
a PC software (e.g. Matlab) and then the calculated weights
can be directly transferred to the FPGA. However, obtaining
consistent results between PC-realized and trained ANN, and
its FPGA-based counterpart, requires a high accuracy of the
activation function calculation. Therefore, the important goal of
the proposed solution was to attain as accurate of a calculation
of the activation function as possible.

Unlike many other already published works, the paper is not
concentrated on the mathematical side of the activation function
realization, but it is focused on its actual digital implementa-
tion (both data-path and detailed control-path have been pre-
sented). The basic idea of the proposed implementation method
has already been briefly portrayed in [14]. This paper describes

1.	 Introduction

Artificial neural networks (ANNs) have found many applica-
tions in areas including pattern recognition, prediction, image
processing, data filtering, features selection, optimization, con-
trol systems, etc. [1, 2]. ANNs can be implemented exercising
software solutions (e.g. PC platforms, microprocessors systems)
as well as hardware platforms, particularly field programmable
gate arrays (FPGAs). Hardware implementation of ANNs may
deliver a faster computing speed, which is related to the par-
allelism offered by hardware. Yet, due to a large number of
computations the hardware realization of ANNs is more dif-
ficult than software, and it requires much more efforts on the
part of the designer.

The most important, expensive and hard to implement part
of any hardware realization of ANNs is the non-linear acti-
vation function of a neuron [3]. Commonly applied activation
functions are the sigmoid and the hyperbolic tangent [4]. There
are a number of papers considering a hardware implementation
of activation functions. They differ in the accuracy obtained,
applied approximation method, cost of implementation, type of
arithmetic used (fixed or floating point), etc. A frequently used
approximation method for the sigmoid and hyperbolic tangent
functions is the piece-wise linear (PWL) interpolation, which
divides the approximated function into numerous linear sec-
tions. This method has been applied in works [2, 4‒7]. In [8]
the hyperbolic tangent function has been realized exercising
a look-up table (LUT) with 8192 elements and implemented
using the LabView software and the CompactRIO hardware
platform. A similar technique – a LUT with linear interpola-
tion between LUT’s points has been applied in [1]. A study of
polynomial approximation of the hyperbolic tangent function,
exercising Lagrange, Chebyshev and least square method, is

*e-mail: zhajduk@kia.prz.edu.pl

Manuscript submitted 2017-06-29, revised 2017-11-10, initially accepted for
publication 2017-12-04, published in October 2018.

564

Z. Hajduk

Bull. Pol. Ac.: Tech. 66(5) 2018

the proposed method in details introducing numerous new ele-
ments, such as considering 10 slightly different implementation
versions, analyzing the absolute and relative errors, analyzing
the FPGA resources requirement and calculation speed of these
versions, and utilizing the software modeling for the estimation
of the properties of the versions proposed. Additionally, other
design techniques for the activation function realization, such
as the usage of the Matlab HDL coder and Xilinx Vivado HLS
tools, have also been investigated.

The rest of the paper is structured as follows. Section 2 de-
scribes a general idea of the proposed implementation method
and presents some accuracy issues related to the developed soft-
ware model of the proposed algorithm. Details of the FPGA
implementation of the method along with the obtained accuracy,
calculation speed and resources requirement are included in
Section 3. Section 4 discusses, in turn, the feasibility of the
usage of high level synthesis design tools, whereas Section 5
concludes the paper.

2.	 Realization method

The sigmoid activation function is given by the following for-
mula:

	 S(x) = 
1

1 + e–x ,� (1)

whereas the hyperbolic tangent function is expressed by the
equation [4]:

	 T(x) =  e2x ¡ 1
e2x + 1

 =  2
1 + e–2x

 ¡ 1.� (2)

Direct realization of equation (1) or (2) requires the calculation
of the exponent function, which is not straightforward. An inter-
polation of the exponent function by means of a McLaurin se-
ries and Padé polynomials has been proposed and investigated.

2.1. McLaurin interpolation. The McLaurin interpolation of
the exponent function is given by the following formula:

	 ex ¼ 1 + 
N

i =1
∑ xi

i!
,� (3)

where N denotes the degree of the polynomial. Equation (3)
can also be rewritten in a different form, more convenient for
a practical implementation, e.g. for N = 7 we obtain:

	
ex ¼ 1 + x

Ã

1 +  x
2

Ã

1 +  x
3

Ã

1 +  x
4

Ã

1 +

ex ¼ 1 +  x
5

Ã

1 +  x
6

Ã

1 +  x
7

!!!!!!

,
� (4)

It is important to note that equations (3) and (4) are only
valid for the exponent arguments of the function limited to
a narrow interval [10], i.e. x 2 (–1, 1). However, for a wider
range of the arguments we can use a simple formula:

	 ex = e p + f = e p ¢ e f ,� (5)

where p +  f = x, p is an integer part of x, whereas f denotes
a fraction, f  2 (–1, 1). The expression e f can be directly calcu-
lated using equation (3), while e p may derive from a look-up
table. The number of elements of a LUT requires, however,
a separate consideration. We can note that either the sigmoid
or hyperbolic tangent values of the function become constant
for arguments jx j ¸ M, where M is an unsigned integer value.
Since the exponent values of the function for both positive
and negative arguments need to be considered, the size of
a LUT is equal to 2(M ¡ 1). The size can be reduced to M ¡ 1,
however, if the activation symmetry feature of the function
is exploited.

Having solved the problem of the exponent function ap-
proximation, the sigmoid and hyperbolic tangent function can
be directly calculated using equations (1) or (2). Yet, the values
of the M and N parameters must be determined first. In order
to do this, the proposed algorithm has been modeled using the
Matlab software as well as the C programming language. The
C language turned out to be more convenient for the sake of
the existence of an embedded single precision floating point
data type (using this data type in Matlab is not as simple as
applying the C language) and a lower calculation time. The
modeled function has been sampled using 1E6 points, equally
spaced within the interval [–10, 10]. The values returned by
the software modeled function has been compared, in terms of
relative and absolute errors, with the results originated from the
calculation of equations (1) or (2) where the exponent function
came from the C compiler library or Matlab set of embedded
functions. The errors have been obtained using the following
formulas:

	

E A
max =  max

i = 0, …, 106 ¡ 1
jy(xi) ¡ y ̂ (xi)j,

E A
avg = 

Ã
106 ¡ 1

i =0
∑ jy(xi) ¡ y ̂ (xi)j

!
 ¢ 10– 6,

ER
max =  max

i = 0, …, 106 ¡ 1 j y(xi) ¡ y ̂ (xi)

y(xi)
j,

ER
avg = 

Ã
106 ¡ 1

i =0
∑ j y(xi) ¡ y ̂ (xi)

y(xi)
j
!

 ¢ 10– 6,

� (6)

where E A
max, E A

avg, ER
max, ER

avg, stands for the maximum absolute
error, average absolute error, maximum relative error and av-
erage relative error respectively, whereas y(xi) means the accu-
rate function value and y ̂ (xi) is the function value obtained by
means of the proposed realization method.

565

Hardware implementation of hyperbolic tangent and sigmoid activation functions

Bull. Pol. Ac.: Tech. 66(5) 2018

Table 1 and Table 2 show the absolute and relative errors
of the proposed direct realization of the hyperbolic tangent
function, acquired for different values of the two parameters.
It can be noted that increasing the values beyond N = 10 and
M = 18 yields very little impact on the improvements of the
accuracy. Therefore, these values were admitted for the basic
version of the hardware realization of the hyperbolic tangent
function.

Table 1
Errors of the hyperbolic tangent function calculations for different

values of the N parameter (M = 18)

N
Absolute error Relative error

Max Avg. Max Avg.

16 1.882E-04 1.321E-06 4.073E-04 2.448E-06

17 2.396E-05 1.482E-07 5.185E-05 2.726E-07

18 2.861E-06 1.565E-08 2.861E-05 2.919E-08

19 4.768E-07 2.420E-09 2.861E-05 5.211E-09

10 2.384E-07 1.482E-09 2.861E-05 3.501E-09

11 2.384E-07 1.473E-09 2.861E-05 3.488E-09

12 2.384E-07 1.475E-09 2.861E-05 3.492E-09

Table 2
Errors of the hyperbolic tangent function calculation for different

values of the M parameter (N = 10)

M Absolute error Relative error

Max Avg. Max Avg.

15 7.153E-07 2.929E-08 2.861E-05 3.131E-08

16 2.384E-07 1.034E-08 2.861E-05 1.236E-08

17 2.384E-07 2.970E-09 2.861E-05 4.989E-09

18 2.384E-07 1.482E-09 2.861E-05 3.501E-09

19 2.384E-07 1.449E-09 2.861E-05 3.469E-09

A distribution of absolute and relative errors for the pro-
posed realization method of the hyperbolic tangent function is
presented in Fig. 1. As seen, the values of the absolute errors
seem to be strongly quantized with the lowest level of quan-
tization reaching to approx. 0.7E-7 (actually, it slightly fluc-
tuates from 6.801E-08 to 7.192E-08 with an average value of
6.979E-08). The relative error values are significantly higher
for the arguments of the function coming from a narrow interval
around the beginning of the coordinate system. Therefore, for
Fig. 1b, the y-axis has been limited to the interval [–1.5E-6,
1.5E-6], whereas the full range of the function’s values include
[–2.86E-5, 7.82E-6].

It can also be noted that the values of the absolute as well as
relative errors are significantly higher for the positive values of
the arguments. Since the hyperbolic tangent function has a sym-
metry point located at the beginning of the coordinate system,
the modeled values of the function can be calculated only for
negative arguments and then properly adjusted by changing

the sign for positive arguments. The results of the calculations
carried out in this way are presented in Table 3 (option A) and
Fig. 2. As expected, the maximum absolute error has slightly
dropped, yet the maximum relative error has significantly in-
creased by almost two orders of magnitude. The average error
values have also significantly increased, which can be observed
in Fig. 2, particularly for positive argument values.

Fig. 1. Distribution of absolute (a) and relative (b) errors for the soft-
ware modeled hyperbolic tangent function (N = 10, M = 18)

(a)

(b)

Table 3
Errors of the hyperbolic tangent function calculation with the usage

of the symmetry feature (N = 10, M = 18)

Option Absolute error Relative error

Max Avg. Max Avg.

A 1.788E-07 2.744E-08 1.776E-03 4.903E-08

B 2.384E-07 2.771E-08 2.252E-03 5.020E-08

566

Z. Hajduk

Bull. Pol. Ac.: Tech. 66(5) 2018

It is important to note that Fig. 2b shows only relative error
values restricted to the interval [–1.5E-6, 1.5E-6], whereas the
range of the values includes a much higher interval [–1.8E-3,
3.2E-4]. As Fig. 2b shows, relative errors are very high within
a narrow interval, located close to the symmetry point. A sim-
ilar situation also takes place when the function’s values are
calculated only for positive arguments and analogously ad-
justed for negative arguments, which is documented in Table 3
option B.

where

	g = 

f  ⇔ j f j < 0.5

f  ¡ 0.5 ⇔ f  ¸ 0.5

f  + 0.5 ⇔ f  ∙ 0.5

, h = 

0 ⇔ j f j < 0.5

– 0.5 ⇔ f  ¸ 0.5

0.5 ⇔ f  ∙ – 0.5

.� (8)

The constant values of the expression eh from equation (7) can
be stored in a another LUT, whereas e g would be calculated
using equation (3).

The results of the hyperbolic tangent function calculation,
carried out in this way, are presented in Table 4. It can be noted
that a quite good accuracy is attained for N = 7, while using
a wider interval of the N = 10 argument of the function was
needed. The maximum relative error is also lower than for
N = 10. However, apart from the usage of a second, two-el-
ement LUT, the reduction of the polynomial degree has been
attained at the cost of performing additional subtraction and
multiplication operations. Moreover, these operations cannot
be accomplished in parallel, as far as hardware implementation
is concerned.

Table 4
Errors for the hyperbolic tangent function calculations with restricted

range of exponent’s argument and different N values (M = 18)

N Absolute error Relative error

Max Avg. Max Avg.

5 1.311E-05 6.598E-08 2.839E-05 1.180E-07

6 1.073E-06 5.448E-09 2.334e-06 1.003E-08

7 2.384E-07 1.631E-09 1.109E-06 3.269E-09

8 2.384E-07 1.525E-09 1.109E-06 3.081E-09

9 2.384E-07 1.520E-09 1.109E-06 3.073E-09

Similar evaluations have also been carried out for the sigmoid
activation function. It turned out that for the following values
of the parameters N = 10, M = 11 and the interval [–10, 10],
the maximum absolute and relative errors are smaller than for
the hyperbolic tangent function, and amount to 1.192E-07 and
2.728E-07 respectively. Contrary to the hyperbolic tangent, the
usage of the symmetry feature of the sigmoid function does not
lead to excessive values of relative errors; however, it requires
performing an additional subtraction operation.

2.2. Padé approximation. The Padé approximation of order
(m, n) of the exponent function can be expressed in the frac-
tional form [15]:

	 e– x ¼ 
Pm(x)
Qn(x)

,� (9)

where Pm(x) and Qn(x) are the following polynomials:

Fig. 2. Distribution of absolute (a) and relative (b) errors for the
hyperbolic tangent function with the usage of a symmetry feature

(N = 10, M = 18)

(a)

(b)

Another line of investigation has regarded a possibility of
the usage of a lower degree of the McLaurin series (lower N
parameter), keeping a similar accuracy at the same time. This
would allow the reduction of the overall calculations time. The
decrease of the N parameter value can be attained, for example,
by restricting the interval of the exponent function argument
from (–1, 1) to (– 0.5, 0.5). Thus, the expression e f from equa-
tion (5) can be replaced by the following product:

	 e f = e g ¢ eh ,� (7)

567

Hardware implementation of hyperbolic tangent and sigmoid activation functions

Bull. Pol. Ac.: Tech. 66(5) 2018

	

Pm(x) = 
m

k =0
∑ (m + n ¡ k)!m!

(m + n)!k!(n ¡ k)!
(– x)k,

Qn(x) = 
n

k =0
∑ (m + n ¡ k)!n!

(m + n)!k!(n ¡ k)!
(– x)k.

� (10)

It is of note that for n = m we have Pn(x) = Qn(–x), which
means that the numerator and denominator coefficients have the
same absolute value. This fact allows the number of multiplica-
tion operations to be significantly reduced which is an important
feature, particularly in terms of hardware implementation.

Table 5 shows the absolute and relative errors of the direct
realization of the hyperbolic tangent activation function with
the Padé approximation of the exponent function. Apart from
the presented results, other evaluations for different orders of
the numerator and denominator have also been carried out. It
turned out, however, that the approximation errors are signifi-
cantly higher in these cases. Therefore, these results were not
included in the table.

Table 5
Errors of the hyperbolic tangent function calculation using Padé

approximation of the exponent

Approx.
order

Absolute error Relative error

Max Avg. Max Avg.

(3,3) 4.172E-06 5.207E-08 2.252E-03 1.094E-07

(4,4) 2.384E-07 1.878E-09 2.252E-03 1.436E-08

(5,5) 2.384E-07 1.811E-09 3.623E-03 1.866E-08

The results from Table 5 suggest that the increase of the
approximation order beyond the (4.4) value does not bring the
decrease of the approximation errors. Thus, this approximation
order and the following formula of the exponent function cal-
culation have been admitted for further consideration:

	 e– x ¼  1680 ¡ 840x + 180x2 ¡ 20x3 + x4

1680 ¡ 840x + 180x2 ¡ 20x3 + x4
.� (11)

It is important to note that, similar to the McLaurin inter-
polation, Padé approximation is also valid within a narrow in-
terval of the function’s argument, i.e. x 2 (–1, 1). Therefore,
equation (5) and a LUT are still needed for a wider range of
the exponent arguments of the function. The number of the
elements of LUT should also be the same as for the McLaurin
interpolation, i.e. M = 18. This value was used for the errors
calculations from Table 5.

The usage of the symmetry feature for the Padé approxi-
mation has also been examined. Yet, contrary to the McLaurin
interpolation, it does not bring an improvement of the accu-
racy. It is also worth noting that for the Padé approximation
the maximum relative error is higher than for the McLaurin
interpolation.

The Padé approximation of order (4,4) applied for the di-
rect realization of the sigmoid activation function brings the

following maximum absolute and relative errors: 1.192E-07
and 2.917E-07 respectively. Virtually, the errors are the same
as for the McLaurin interpolation.

3.	 FPGA implementation

Once the software has been modeled and the algorithm of the
activation function realization has been tested, the solution can
be implemented in hardware, which is described in the fol-
lowing subsections.

3.1. Activation function module. An FPGA implementation of
the method described in the previous section requires the usage
of floating point (FP) components, accomplishing three basic
arithmetic operations: the multiplication, addition and division.
These components may come from FPGA vendors as intellec-
tual property (IP) cores or they can be specially designed, e.g.
such as in [16]. Having the FP components, the general block
diagram of the hardware module, performing calculations of the
activation function, can be very simple as it is shown in Fig. 3.

Fig. 3. Block diagram of the activation function module

Apart from the FP adder (FPADD), multiplier (FPMUL),
divider (FPDIV) blocks, it contains a LUT table (physically
implemented as a distributed ROM) for the e p constant values
from equation (5), and a control unit (CU). Each of the FP
blocks has three 32-bit data buses dubbed xA (the first operand),
xB (the second operand), xY (the operation result), and two
control signals named xND (assertion of new data) and xRDY
(completion of the operation), where here the x prefix denotes
the type of the operation (ADD, MUL, DIV). The AOP signal
for FPADD block determines when the addition (AOP = 0) or
subtraction (AOP = 1) operation should be performed. The
control unit has two external data buses: X for the activation
argument of the function and Y for calculations result, and three
control signals: ND (new data are present), RDY (the result is
ready) and TAN (the type of the activation function).

3.2. Control unit specification. The control unit from Fig. 3
plays a pivotal role in the calculations of the activation func-

568

Z. Hajduk

Bull. Pol. Ac.: Tech. 66(5) 2018

tion. The detailed algorithmic state machine (ASM) diagram,
describing the operations performed by the control unit for the
McLaurin interpolation of the exponent function, is presented
in Fig. 4. The signals names denoted using capital letters relate
to external input/output buses and signals, whereas non-capital
letters are used to mark internal variables (registers).

The diagram also applies syntax elements similar to those
used in the Verilog hardware description language (HDL). For
example the expression {~X[31], X[30:0]} denotes the concat-
enation of the inverted 31-st bit of the X vector and the partial

selection of the bits for 30 down to 0 of the same vector. It is
also important to recall a binary representation of floating point
numbers. The representation is as follows:

	 (–1)s£1.m£2e-bias,� (12)

where s is the sign bit of a number (the most significant bit
of the binary representation), m is the mantissa and e is the
exponent. For single precision floating point numbers, the bias
amounts to 127, the mantissa has 23 bits whereas the exponent

Fig. 4. Basic version of the ASM diagram describing the control unit operations for the McLaurin interpolation

569

Hardware implementation of hyperbolic tangent and sigmoid activation functions

Bull. Pol. Ac.: Tech. 66(5) 2018

counts 8 bits. Thus, the operation w < – {»X[31], X[30:0]},
performed in the state S0 of the ASM, means that the activa-
tion function’s argument with inverted sign is assigned to the
internal 32 bits w variable.

The ASM from Fig. 4 considers both types of activation
functions. The external signal TAN determines whether the
sigmoid (TAN = 0) or hyperbolic tangent (TAN = 1) function
should be calculated. If the hyperbolic tangent function is taken
into account then the function’s argument should be multiplied
by –2.0, which is performed in the states S0 and S1 of the
ASM. The next step of the proposed implementation method
includes the determination of an integer part (and a little later,
a fractional part) of the exponent function’s argument, and the
determination whether the integer part is less than a selected
constant value (the M parameter from the previous section).
In order to accomplish this, the value of the expression e-bias
from notation (5) is calculated and assigned to the 9 bits k
variable. If the calculation result is negative than this means
that the absolute value of the exponent function’s argument is
less than 1.0, and the exponent can be directly calculated using
expression (3) or (4). Otherwise, the value of the k variable is
tested and the integer part (the 6 bits p variable) is constructed
accordingly, exercising specific features of the floating point
notation. Along with the determination of the p variable, the
floating point representation of an integer part is also con-
structed and asserted to the second input (ADDB) of the FP
adder block. If the integer part of the w variable is less than
18, which is the case when k < 4 or k = 4 and the three most
significant bits of the mantissa of the w variable are not set,
then the fraction part is calculated by subtracting the floating
point representation of the integer part from the w variable.
The subtraction result is assigned to the 32 bits f variable
subsequently. When the integer part is greater or equal to 18,
the ASM goes to state S3. In this state the final result of the
activation function calculation (the Y variable) is determined,
depending on the sign of the w variable and the actual type of
the activation function.

After the determination of the fractional part (the f vari-
able), the exponent function can be calculated using equation
(3) or (4). The ASM from Fig. 4 exercises equation (4) with 10
terms of the McLaurin series. The calculations are conducted
through states S5 ... S10 of the ASM. Instead of performing
divisions from equation (4), multiplications by reciprocated
values are accomplished. This ensures faster execution of the
algorithm – the FP division block requires considerable more
pipeline stages (more clock cycles) than the FP multiplier block,
in order to achieve similar clock frequency (see subsection 3.4).

It is also important to note that some arithmetic operations
are performed in parallel. When the multiplication of the ex-
ponent function’s argument (the f variable) by a constant value
is accomplished, the addition of the 1.0 value to a previous
intermediate calculations result is performed at the same time.
This shortens the overall calculations time. Yet, it should be
noted that two operations in parallel are performed alternatively
with a single operation at a time, i.e., the multiplication and
addition are accomplished in state S6 whereas only the addition
is performed in state S7.

After completion of the exponent function calculations
for the fractional part as an argument (the e f expression from
equation (5)), the calculations result should be multiplied by
a constant value, which represents the value of the exponent
function for the integer part as an argument (the e p expression
from equation (5)). The multiplication is not necessary when
the integer part is equal to 0 (the 1 bit me variable is also equal
to zero in this case). The mentioned operation is accomplished
in states S10 and S11 of the ASM. Further operations include
the addition of the 1.0 constant value to the overall result of the
exponent function calculations (only if the integer part differs
from zero, otherwise the constant is added in state S9) as well
as division and subtraction, according to equation (1) or (2).

The ASM from Fig. 4 exercises equation (4) for which only
two operations are performed concurrently. Yet, the calcula-
tions can be rearranged using equation (3), which allows the
utilization of all three arithmetic blocks of the control unit at
the same time. The altered fragment of the ASM, performing
calculations in this way, is featured in Fig. 5. The fragment can
be integrated with the ASM from Fig. 4 by replacing the part of
the ASM marked with the A, B and C symbols.

The fragment from Fig. 5 seems to have a simpler architec-
ture than the analogous section from Fig. 4. It can be proved,

Fig. 5. Modification of the ASM from Fig. 4 allowing the calculation
of the exponent function using equation (3)

570

Z. Hajduk

Bull. Pol. Ac.: Tech. 66(5) 2018

however, that the fragment correctly implements equation (3)
for N = 10. Since the divider block requires more clock cycles
to complete calculations than the multiplier and adder, it would
be more appropriate to use an additional multiplier block in-
stead of the divider. This increases the requirement for FPGA
resources, but enables a remarkable shortening in the overall
calculations time.

All of the previous consideration has regarded the McLaurin
interpolation of the exponent function. As far as the Padé ap-
proximation is concerned, it can be applied analogously – the
part of the ASM from Fig. 4 comprising of states S5 ... S10
needs to be replaced by an ASM implementing equation (11).

However, applying the additional FP multiplier and adder would
allow more operations to be performed simultaneously. This,
in turn, would lead to the reduction of the calculations time.
The calculation sequence involving parallel computation of the
Padé polynomials with the usage of two FP multipliers and two
adders describes the ASM diagram depicted in Fig. 6. In order
to fully describe the calculation of the sigmoid and hyperbolic
tangent activation function, the ASM from Fig. 6 should be
connected to the points marked with the A and B symbols on
the ASM from Fig. 4, replacing the remaining part of the basic
version of the ASM. The architectures of the operational blocks
dubbed SUB1, SUB2 and SUB3 on the ASM from Fig. 6a are

Fig. 6. Continuation of the ASM from Fig. 4 for the Padé approximation of the exponent (a), and architectures of the SUB1 (b), SUB2 (c) and
SUB3 (d) operational blocks

a)

b) c) d)

571

Hardware implementation of hyperbolic tangent and sigmoid activation functions

Bull. Pol. Ac.: Tech. 66(5) 2018

presented in Fig. 6b, 6c and 6d respectively. These blocks deal
with the auxiliary flags (e.g. mmr, mar) which store the value
of the operation completion signals coming from the arithmetic
blocks (the operation completion signals are only set within
a single clock cycle, therefore they should be memorized for the
detection of the completion of parallel computations performed
by more than one arithmetic block).

The general idea of the paralleled computations described
by the ASM from Fig. 6 relies on the parallel calculation of the
numerator and denominator from equation (11). The primary
FP multiplier deals with the multiplication by subsequent co-
efficients of the Padé polynomials, whereas the secondary FP
multiplier, involving the data and control buses whose names
have the “2” suffix, calculates the subsequent powers of the
exponent argument of the function. The primary FP adder cal-
culates in turn the value of the numerator from equation (11),
whereas at the same time, the secondary FP multiplier calculates
the denominator value.

It is important to note that, according to the ASM from
Fig. 6, the 1680 constant value is added at the end of the calcu-
lation sequence of the value of the numerator and denominator.
This addition could also be accomplished in earlier stages of the
calculations, namely in state S5 where it could be performed
in parallel with the multiplication. In this case, however, due
to cumulative rounding errors, the overall maximum absolute
error of the activation function calculation noticeably increases.
Therefore, in order to match the errors level from Table 5, the
calculation sequence described by the ASM from Fig. 6 should
be applied.

It is also important to note that for the hyperbolic tangent
activation function calculation, the ASM from Fig. 6 uses the
formula with two exponent functions – the left hand side of the
equation (2). Since the values of the numerator and denominator
can be calculated simultaneously by two FP adders, the usage
of the formula with two exponents allows the calculations time
to be slightly decreased. It requires, however, an introduction
of small amendment to state S0 of the ASM from Fig. 4 – in-
stead of the negative value, the positive 2.0 constant should be
assigned to the MULB variable.

3.3. Accuracy of the implementation. In order to verify the
accuracy of the proposed implementation method of the acti-
vation function, the ASM from Fig. 4 has been described using
Verilog hardware description language and implemented in
Xilinx FPGAs. IP cores from Xilinx Core Generator software
have been used for the FP arithmetic blocks implementation
from Fig. 3. The accuracy of the activation function implemen-
tation has been tested in two ways: by simulations and using an
FPGA board. The simulations for 1E6 points took a very long
time (more than 11 hours for the Xilinx ISim simulator and
a PC with an Core-i7 CPU @3.1GHz), thus most of the exper-
iments have been conducted exercising a hardware platform.
As an FPGA board, the main module (with Xilinx Spartan-6
XC6SLX100 chip) of the previously developed multiprocessor
programmable controller [17] has been used. Apart from the
activation function block, described by the ASM from Fig. 4,
the implementation also included a specially designed com-

munication module, responsible for PC communication. An
architecture of the communication module was based on the
similar module, dedicated for the P1-TS fuzzy system [16]. The
module uses a simple RS-232 interface with 115.2 kbit/s baud
rate. A dedicated PC application, written in Visual C++, has
also been developed for sending data to the FPGA board and
analyzing results.

The obtained accuracy of the FPGA implementation of the
hyperbolic tangent and sigmoid functions, calculated for 1E6
points equally spaced within the [–10, 10] interval, is presented
in Table 6 and 7. Besides the basic version of the functions
implementation, described by the ASM from Fig. 4, a few of
its modifications have been considered as well. The versions
are as follows: A – basic version; B – the symmetry feature are
used (negative arguments are calculated); C – restricted range
of argument values, described by equations (6) and (7) are used,
N = 7; D – restricted arguments as in the C version with the
symmetry feature are exploited; E – the exponent is calculated
using the ASM form Fig. 5; F – the same as E, but instead
of the divider block, an additional multiplier is used; G – the

Table 6
Accuracy of the hyperbolic tangent function implementation

Version
Absolute error Relative error

Max Avg. Max Avg.

A 2.384E-07 1.728E-09 3.623E-03 2.414E-08

B 1.788E-07 2.758E-08 3.623E-03 6.102E-08

C 2.384E-07 1.732E-09 3.623E-03 2.416E-08

D 2.384E-07 2.790E-08 3.623E-03 6.173E-08

E 3.576E-07 4.136E-09 3.623E-03 4.067E-08

F 3.576E-07 4.134E-09 3.623E-03 4.067E-08

G 2.384E-07 2.905E-08 3.623E-03 7.270E-08

H 2.384E-07 2.903E-08 3.623E-03 7.247E-08

I 2.384E-07 3.341E-09 2.252E-03 2.269E-08

J 2.384E-07 3.997E-08 8.326E-03 8.842E-08

Table 7
Accuracy of the sigmoid function implementation

Version
Absolute error Relative error

Max Avg. Max Avg.

A 1.192E-07 1.706E-09 2.728E-07 1.603E-08

B 1.192E-07 1.453E-08 2.728E-07 2.96E-008

C 1.192E-07 1.699e-09 2.955E-07 1.766e-08

D 1.192E-07 1.486E-08 2.955E-07 3.305E-08

E 2.384E-07 4.166E-09 4.723E-07 3.040E-08

F 2.384E-07 4.136E-09 4.723E-07 3.036E-08

G 1.788E-07 1.596E-08 4.723E-07 4.248E-08

H 1.788E-07 1.602E-08 3.756E-07 4.303E-08

I 1.192E-07 3.268E-09 4.512E-07 3.428E-08

J 1.192E-07 3.268E-09 4.512E-07 3.428E-08

572

Z. Hajduk

Bull. Pol. Ac.: Tech. 66(5) 2018

symmetry feature is added to the F version; H – restricted range
of argument values is added to the G version, N=7; I – the
Padé approximation of the exponent is introduced (single FP
multiplier and single FP adder is exploited); J – the Padé ap-
proximation described by the ASM from Fig. 6 is applied (two
FP multipliers and two FP adders are involved). For all of the
versions the M parameter, related to the number of elements of
LUT, has been set to 18.

As seen, the lowest maximum absolute error for the hy-
perbolic tangent function amounts to 1.788E-7 and is obtained
for the basic version with the symmetry feature exploited. The
error for the sigmoid function is slightly smaller (1.192E-7) and
does not change within the versions, which exploit equation (4)
or (11) for the exponent function calculation. However, we can
notice that the maximum relative error for the hyperbolic tan-
gent function with the McLaurin interpolation of the exponent
is considerably higher than the one obtained from the software
model (see Table 1). The detailed investigation revealed that
this was caused by a rounding effect of the addition opera-
tion in state S9, where the 2.0 constant value is added to the
intermediate exponent calculation in the case that the func-
tion’s argument has no integer part (the me variable is equal

to zero). The software model performs the same operation in
two steps adding the 1.0 value in each of the steps. Yet, the
calculations of the ASM from Fig. 4 can be slightly rearranged
in order to mimic the calculation sequence of the software
model. The particular modification, which involves states S9,
S10 and S11 of the ASM, is shown in Fig. 7. This increases the
overall calculations time (a few more clock cycles are needed),
but it makes it so that the accuracy is exactly the same as in
the software model.

It is of note that the average absolute errors as well as the
relative errors for the Padé approximation of the exponent func-
tion, applied for the hyperbolic tangent activation function cal-
culation are different for the two considered implementation
versions. This is related to the fact that the J version exploits the
formula with two exponents (the left hand side of equation (2)),
whereas the I version as well as the other versions with Mc-
Laurin interpolation, use the formula with a single exponent
function.

Table 8 shows, in turn, a comparison of the obtained accu-
racy with other published results. The proposed implementa-
tion method gives a slightly lower accuracy only in comparison
with the CORDIC implementation [3] for 64 bits precision (the
proposed implementation exercised 32 bits, single precision
floating point format). It is also worth to note that the methods
described in [3, 6, 9] present the best accuracy the author was
able to find in published papers.

Table 8
Comparison of maximum absolute errors for different

implementation methods

Method Sigmoid Hyperbolic
tangent

Chebyshev interpolation [9] 1.929E-07

CORDIC realization, 64 bits [3] 9.97E-11 1.695E-07

CORDIC realization, 32 bits [3] 4.77E-05 1.153E-02

PWL with modifications [6] 2.18E-05

PWL [4] 7.470E-03

Proposed method 1.192E-07 1.788E-07

3.4. Speed and resources requirement. The overall calcula-
tion time of the proposed implementation method depends on
the ratio of the number of clock cycles needed to complete the
calculations and the actual clock frequency. The number of
clock cycles as well as the maximum allowable clock frequency
(the minimum clock period) is, in turn, strongly related to the
latencies introduced by the FP arithmetic blocks. The laten-
cies can be configured by the user within the Core Generator
software.

Table 9 shows selected results of the conducted experiments
regarding different latencies assigned to the divider, multi-
plier and adder blocks. The ASM from Fig. 4 and the Xilinx
Spartan-6 XC6SLX100 FPGA chip have been taken into con-
sideration for the experiments. Based on the obtained results,

Fig. 7. Altered calculations sequence for the ASM from Fig. 4 enabling
the same errors level as in the software model to be obtained

573

Hardware implementation of hyperbolic tangent and sigmoid activation functions

Bull. Pol. Ac.: Tech. 66(5) 2018

particularly taking the lowest calculations time into account, the
latency of 2 clock cycles for the multiplier and adder block, and
8 clock cycles for the divider has been chosen.

Table 9
Calculations time for different latency of FP blocks

Latency Min. clock
period [ns]

Max clock
cycles

Calculations
time [ns]DIV MUL/ADD

16 1 20.9 160 1254.5

16 2 14.9 185 1268.6

18 2 11.0 187 1958.0

12 2 11.0 191 1002.1

12 3 17.6 116 2044.7

12 4 19.0 141 1269.0

8 4 10.7 137 1472.6

12 5 18.6 166 1433.1

Table 10 shows the FPGA resources requirement and the
minimum allowable clock period for the different imple-
mentation versions. The versions roughly require a similar
number of FPGA flip-flops (FFs) and LUTs, which consti-
tutes 2.3% ... 4.1% of the total available resources of the se-
lected chip. Yet, the basic version (A) needs the least of the
resources, whereas the version with parallel calculation of the
Padé polynomials (J) requires the most of them. The versions
with two FP multiplier blocks require twice more embedded
digital signal processing (DSP) blocks. The differences re-
garding a minimum clock period are also insignificant between
the versions.

Table 10
FPGA resources requirement and minimum clock period

Version LUTs FFs DSPs Period [ns]

A 1885 1792 4 11.0

B 1916 1792 4 11.2

C 2066 1796 4 10.4

D 2039 1797 4 10.1

E 1903 1820 4 11.3

F 1960 1910 8 10.3

G 1976 1907 8 10.2

H 2034 1911 8 10.3

I 2080 1917 4 10.3

J 2624 1059 8 10.3

More considerable differences can be observed in terms of
the number of clock cycles needed to complete the calculations.
The details are presented in Table 11. The number of clock cy-
cles depends on the argument value of the activation function.
For example, when the hyperbolic tangent function and the H

version of its implementation are taken into consideration, the
relation between the number of clock cycles (L) and the func-
tion’s argument value (x) is as follows:

	 L = 

6 ⇔ jx j ¸ 9 ,

55 ⇔ jx j < 0.25,

61 ⇔ 0.5 > jx j ¸ 0.25,

65 ⇔ 9 > jx j ¸ 0.5 & j frac(2x)j < 0.5 ,

68 ⇔ 9 > jx j ¸ 0.5 & j frac(2x)j ¸ 0.5 ,

� (13)

where frac(x) means a fractional part of the x variable. The
other cases from Table 11 can be considered analogously.

Table 11
Number of clock cycles and calculation times

Version
Hyperbolic tangent Sigmoid

Cycles Time [ns] Cycles Time [ns]

A 6/77/87 1958.0 3/71/81 1891.0
B 6/77/87 1974.6 3/74/84 1940.8
C 6/81/87/94 1977.6 3/75/81/85 1884.0
D 6/63/69/73/76 1974.4 3/60/66/70 1707.0
E 6/129/139 1570.7 3/122/132 1491.6
F 6/63/73 1751.9 3/56/66 1679.8
G 6/63/73 1744.6 3/59/69 1703.8
H 6/55/61/65/68 1700.4 3/51/57/61 1628.3
I 6/56/63 1648.9 3/57/50 1587.1
J 6/44/51 1525.3 3/41/48 1494.4

The calculation times, given in Table 11, were determined
for the highest number of clock cycles and the minimum clock
periods from Table 10. The shortest calculation time for both of
the activation functions was attained for the J implementation
version involving parallel calculation of the Padé polynomials.
The second shortest calculation time and the shortest time for
the category of the McLaurin interpolation characterize the
H implementation version (a restricted range of the argument
values, the symmetry feature, equation (3) for N = 7, the ASM
fragment from Fig. 5, and two FP multipliers were applied). Yet,
the accuracy of the H version is slightly compromised.

It is worth to note that the number of clock cycles re-
quired for the calculation of the activation function using the
CORDIC algorithm [3] is significantly higher than for the pro-
posed method (i.e., for the hyperbolic tangent function, 157
and 273 cycles are required for 32 and 64 bits of the CORDIC
implementation, whereas 87 cycles are needed for the proposed
method with the best accuracy version).

The calculation speed of the proposed FPGA implementa-
tion of the activation function has also been compared with the
calculation speed offered by standard CPUs. The conducted tests

574

Z. Hajduk

Bull. Pol. Ac.: Tech. 66(5) 2018

have involved the calculations of the hyperbolic tangent func-
tion values for 1E6 points equally spaced within the [–10, 10]
interval. The obtained results are presented in Table 12.

Table 12
Calculation times of 1E6 values of the hyperbolic tangent function

for different platforms

Platform and processor type Calculations
time [ms]

PC desktop
Intel Core i7‒950 @ 3.1GHz 105

PC tablet
Intel Atom x5-Z8500 @ 1.4GHz 257

Raspberry Pi 2
ARM Cortex-A7 @ 900MHz 460.7

Xilinx Zynq (Processing System part)
ARM Cortex-A9 @ 667MHz 414.8

Arduino Uno R3
Atmel AVR (ATMEGA328) @ 16MHz 228 284

Xilinx Spartan-6
Xilinx IP core, MicroBlaze MCS @ 131.2MHz 380 924

Xilinx Spartan-6
IP core, PIC16F87x-based @ 67.8MHz 169 998

Xilinx Spartan-6
Proposed method, version B @ 87.5MHz 917.7

Xilinx Zynq (Programmable Logic part)
Proposed method version B @ 118.1MHz 679.5

Xilinx Spartan-6
Proposed method, version J @ 88.4MHz 543.7

Xilinx Zynq (Programmable Logic part)
Proposed method, version J @ 116.6MHz 412.2

Apart from two 64-bit processors from Intel dedicated for
PC computers other processors have been considered. These in-
clude two 32-bit processors with the ARM core (the Broadcom
BC2836 encountered in the Raspberry Pi 2 board and the Xilinx
Zynq XC7Z020 chip whitch integrates an ARM Cortex-A9 CPU
and the Artix-7 FPGA, exploited by the ZedBoard evaluation
board) and one 32-bit soft-microcontroller delivered by Xilinx
as an IP core (the MicroBlaze MCS implemented in the FPGA
board with a Spartan-6 chip), as well as two 8-bit microcon-
trollers (an Atmel AVR and the soft-microcontroller based on
the Microchip PIC16F87x, described in [18] and implemented
in a Spartan-6 FPGA chip) have been considered.

Table 12 also contains the calculation times for the proposed
FPGA implementation method of the activation function. Two
versions have been taken into account: the most accurate (B)
and the fastest (J), implemented in two different FPGA chips
from Xilinx (the Spartan-6 XC6SLX100 and Zynq XC7Z020).
The FPGA implementations, including the soft-microcontrol-
lers, have been clocked with the maximum allowable clock
frequency reported by the design tool. It is of note that, for
the same design, Zynq FPGAs enable the application of higher

clock frequency than Spartan-6 FPGAs. The calculation times
for all of the platforms, with exception of the Intel processors,
have been measured by the external universal counter. For the
Intel processors and PC platforms, the calculation times have
been obtained by reading the system time before and after the
calculations.

The obtained results revealed that the calculation time of the
test algorithm for the most accurate version of the proposed re-
alization method, implemented in the Xilinx Zynq FPGA chip,
in comparison with the calculation time attained by the Intel
processors and processors with the ARM core is 6.5, 2.6, 1.5
and 1.6 times longer respectively. However, the most powerful
feature of FPGA technology is that a single computational
block can be replicated multiple times within a FPGA chip.
Each block, in turn, can accomplish its computations in parallel
with the others. Therefore, FPGA implementation of a neural
network comprised of more than 7 neurons using the hyperbolic
tangent activation functions, realized according to the proposed
method, should offer a shorter calculation time than the same
neural network implemented by software with the usage of the
Intel Core i7‒950 CPU. Comparing to the processors with the
ARM core, the calculation time of the FPGA implementation
of a neural network consisting of more than 2 neurons should
be shorter. It is of note that the above estimations are valid
under the assumption that the ratio of the calculations time of
the single neuron output, delivered by a CPU and the FPGA
implementation, is very close to the calculation time ratio for
the hyperbolic tangent activation function.

The calculation times obtained with the usage of the Micro-
Blaze MCS soft-microcontroller (which turned out to be sur-
prisingly slow), AVR microcontroller and PIC16F87-x based
soft-microcontroller are much longer than for the FPGA imple-
mentation (560, 336 and 250 times respectively). This means
that the FPGA implementation of any neural network, as com-
pared to software implementations using these microcontrollers,
should result in an excellent performance.

The fastest FPGA implementation version of the activation
function with the parallel calculations of the Padé polynomials
brings 39.4% shorter calculation time of the test algorithm
in comparison with the most accurate version. However it is
achieved at the price of the 36.9% higher FPGA resources re-
quirement and the 33% lower accuracy perceived in terms of
the maximum absolute error.

4.	 Other design techniques

Manual HDL coding of any computational algorithm is not
a straightforward process. Compared to a software development
process, it always consumes much more time and requires a sig-
nificant effort from the designer. Fortunately, in recent years
new tools have become available, which allow the automatic
generation of HDL code from programming languages such
as C or Matlab. Since the proposed implementation method
of activation function implementation has been developed and
tested using the Matlab environment and C programming lan-
guage, automatic HDL code generation techniques have also

575

Hardware implementation of hyperbolic tangent and sigmoid activation functions

Bull. Pol. Ac.: Tech. 66(5) 2018

been investigated. Only the basic version of the proposed im-
plementation method with the McLaurin interpolation of the
exponent, applied for the hyperbolic tangent activation function
implementation, has been taken into consideration.

4.1. Matlab HDL Coder. The Matlab HDL Coder, introduced
some time ago by MathWorks company, automatically gen-
erates HDL code (Verilog or VHDL) from Matlab functions,
Simulink blocks or System Objects [19]. Yet, it only supports
fixed point arithmetic. Also some mathematical functions, such
as the exponent, are not supported for the HDL code generation.
Therefore, equations (1) or (2) cannot be directly used and the
method described in section 2 still must be applied.

In order to facilitate a fixed point design, the HDL coder
provides automatic conversion from fixed to floating point
arithmetic. Yet, in the case of the proposed implementation
method of the activation function, the fixed point code, gen-
erated by the HDL coder required some manual modifications
– the simulation of the code yielded incorrect results. It turned
out that the problem was caused by the division operation,
which in a fixed point code version was denoted by the HDL
coder as a purely integer division without a reminder. After
a proper alteration of the fixed point code, the simulations’ re-
sults were correct. However, another problem was encountered
after generating Verilog HDL code and it was still related to the
division operation. The Verilog code included a simple division
operator in a place where the fixed point division operation
was needed. For the Xilinx FPGA synthesis tools, the division
operator can only be used when the divisor is a constant and is
a power of 2. Therefore, the generated Verilog code had to be
altered by the usage of the divider IP core instance from the
Xilinx Core Generator, instead of a simple division operator.
The important issue was to properly adjust the bit width of the
divisor, dividend, quotient and fractional part of the divider
IP block. After introducing modifications, the code was fully
synthesizable and calculations were conducted correctly.

Table 13 shows the implementation results of the code gen-
erated by the HDL coder, obtained from Xilinx ISE Design
Suite for the Spartan-6 XC6SLX100 FPGA chip. Minimum
clock period time is given in nanoseconds. Two versions have
been considered: A – with an active option of the synthesis
tool regarding the usage of DSP blocks, B – the option was
inactive.

Table 13
Implementation results of the HDL coder generated code

Version LUTs FFs DSPs RAMB Period Cycles

A 6102 763 80 1 227.1 9

B 27892 831 17 1 245.2 9

The implementation of the code requires many more FPGA
resources than implementation of the same algorithm with
manual HDL coding (see Table 10, version A). It is particu-
larly observed in the case of version B, when no DSP usage is
chosen (yet, the DSP blocks are still utilized by the divider IP

block). Compared to the manual HDL coding, the implemen-
tation needs an additional Block RAM block (RAMB) as well.

The achieved minimum clock period time is also many times
higher than for manual HDL coding. The detailed analysis of
the Verilog code revealed that the HDL coder creates an almost
purely combinational description of a digital circuit. Although
there are available options in the HDL coder allowing insertion
of pipeline registers, but they are placed only at the inputs or the
outputs of the generated combinational circuit. Thus, they have
almost no influence on the minimum clock period time. In the
considered implementation, one input and one output pipeline
register has been chosen. The divider block needs 7 clock cycles
(this is the minimum available value for this IP block), therefore
the total number of clock cycles required for completion of
the calculations accounts for 9 cycles. This gives 2043.9 ns of
total calculation time. The accuracy of the implementation is no
different than for the software model – the maximum absolute
error amounts to 2.384E-07.

4.2. Vivado HLS. Another way of automatic HDL code gen-
eration from high-level programming languages is the usage
of Vivado HLS software as a part of the Vivado Design Suite
[20]. This is a relatively new tool from Xilinx, which allows
for algorithm specification in C/C++ or System C languages.
The Vivado HLS, unlike the Matlab HDL coder, also supports
floating point data types. It provides the ability of automatic
usage of Block RAM blocks, DSP blocks and floating point
libraries. Unfortunately, the Vivado HLS is only dedicated for
newer Xilinx FPGAs families, such as Virtex-7 or Kintex-7,
and does not support older Spartan-6 chips, considered in the
previous section.

Like the HDL coder, unfortunately the Vivado HLS also
does not support the exponent function. Yet, the previously
prepared C function, modeling the proposed algorithm, can be
almost directly used with the Vivado HLS. The only change
which was needed in the C function code was related to the
parameters of the function (for the Vivado HLS, returned values
should by conveyed by pointers).

Table 14 shows implementation results of the C code spec-
ified hyperbolic tangent activation function, and – for compar-
ison – the manually HDL coded analogous algorithm, described
by the ASM from Fig. 4. The XC7K160 chip from the Kintex-7
FPGA family has been taken into consideration. The minimum
clock period time is given in nanoseconds.

Table 14
Implementation results of the Vivado HLS and manually HDL

coded algorithms for Xilinx Kintex-7 family

Implement LUTs FFs DSPs Period Cycles

Vivado HLS 3077 2148 16 8.4 6/174/184

Man. coded 1852 775 2 7.7 6/77/87

As the results indicate, the implementation with manual
HDL coding gives considerably better results both in terms
of the FPGA resources requirement and calculations speed. In

576

Z. Hajduk

Bull. Pol. Ac.: Tech. 66(5) 2018

particular, the number of clock cycles needed to conduct the
calculations is more than twice lower for the manually HDL
coded algorithm. Conducted simulations also indicate that the
obtained accuracy is the same as for the C function modeling
the proposed algorithm.

5.	 Conclusions

It has been shown that a high accuracy of a FPGA implementa-
tion of the hyperbolic tangent and sigmoid activation function
can be obtained by applying the direct realization method with
the exponent function interpolation using the McLaurin series
or Padé polynomials. Conducted experiments with slightly dif-
ferent implementation versions revealed that, due to cumulative
rounding errors, an applied arithmetic operation sequence has
a considerable impact on the overall calculations accuracy. For
the hyperbolic tangent activation function, the best obtained ac-
curacy of the proposed implementation versions with a 32 bits
single precision floating point arithmetic is very close to the
most accurate solution reported so far – the 64 bits fixed preci-
sion CORDIC implementation (1.788E-07 vs. 1.694E-07 of the
maximum absolute error). Yet, the proposed method is faster
than the CORDIC (974.6ns/Spartan-6 vs. 2730ns/Virtex-5 of
the total calculations time), under comparable FPGA resources
requirement.

Compared to the PWL approximation or DCT interpolation,
a disadvantage of the proposed implementation method is a rel-
atively long calculation time. The method requires a significant
number of floating point operations, particularly for the Mc-
Laurin interpolation of the exponent function: 21/16 multiplica-
tions, 13/11 additions for the hyperbolic tangent/sigmoid func-
tion, and 1 division. Yet, some of the operations can be conducted
in parallel. The number of operations for the implementations
with the Padé approximation of the exponent function is smaller
and accounts for 8/7 multiplications, 11/10 additions and 2 divi-
sions respectively. The implementation of the PWL approxima-
tion or DCT interpolation may require only a few clock cycles
to complete calculations. This leads to a very short calculation
time of the activation function (e.g., in the case of [11] the cal-
culations time of the hyperbolic tangent function as short as
7.6 ns for the Xilinx Virtex-7 FPGA is reported). However, the
accuracy of the aforementioned methods is a few (3 ... 5) orders
of magnitude lower than the proposed method. It is of note that
the issues related to the calculations throughput are very rarely
considered in the published solutions (they are strongly focused
on the obtained calculations accuracy instead). Therefore, a solid
comparison in terms of the calculations speed between the pro-
posed method and other solutions is difficult to be carried out.

Despite the substantial number of operations, the accuracy
seems to be a significant advantage of the presented method.
Other conducted software simulations show that exercising
the proposed method for 64 bits double precision floating
point arithmetic, the maximum absolute error can be as low
as 2.980E-08 and 2.221E-16 for the hyperbolic tangent and
sigmoid functions respectively. It is also important to note that
for the hyperbolic tangent activation function and the McLaurin

interpolation of the exponent function, the formula with a single
exponent function – the right hand side of equation (2) – has
been taken into consideration. Such a formula is used e.g. by
the Matlab tansig function. Yet, if the formula from the left
hand side of equation (2) with two exponents is applied, then
the feasible accuracy can be remarkably higher. The maximum
absolute error can be as low as 5.960E-08 and 3.331E-16 for
a single and double precision floating point arithmetic respec-
tively. Unfortunately, it turned out that such accuracy cannot be
attained using the Padé approximation of the exponent function.
However, the advantage of the implementation method with
the Padé approximation is that it ensures shorter calculation
time (even 33% ... 46%) than the method with the McLaurin
interpolation of the exponent.

The calculation speed comparison of the FPGA implemen-
tation of the hyperbolic tangent function and its realization with
standard CPUs suggests that the parallel FPGA implementation
of a neural network, consisting of a few neurons with the acti-
vation function realized according to the proposed method, can
deliver shorter calculation time than the neural network imple-
mented by software executed on a relatively high performance
PC computer. The more neurons a neural network contains, the
more considerable the advantage of the calculation speed of the
FPGA implementation.

As far as design tools allowing automatic HDL code gener-
ation from high level programming languages are concerned, it
seems they have significant potential. They provide a fast proto-
typing feature and allow for the implementation of complicated
algorithms without a challenging and time-consuming manual
HDL coding process. Yet, a manual HDL coding still allows
obtaining better implementation results in terms of calculations
speed and FPGA resources requirement. The considerable draw-
back of the tools is a lack of a support for some mathematical
functions, such as the “exponent”.

References
	 [1]	 A. Gomperts, A. Ukil, and F. Zurfluh, “Development and Im-

plementation of Parameterized FPGA-Based General Purpose
Neural Networks for Online Applications”, IEEE Trans. on In-
dustrial Informatics 7(1), 78‒89 (2011).

	 [2]	 A. Armato, L. Fanucci, G. Pioggia, and D. De Rossi, “Low-error
approximation of artificial neuron sigmoid function and its de-
rivative”, Electronics Letters 45(21), 1‒2 (2009).

	 [3]	 V. Tiwari and N. Khare, “Hardware implementation of neural
network with Sigmoidal activation functions using CORDIC”,
Microprocessors and Microsystems 39, 373‒381 (2015).

	 [4]	 A. Armato, L. Fanucci, E.P. Scilingo, and D. De Rossi, “Low-
error digital hardware implementation of artificial neuron ac-
tivation functions and their derivative”, Microprocessors and
Microsystems 35, 557‒567 (2011).

	 [5]	 M.T. Tommiska, “Efficient digital implementation of the sigmoid
function for reprogrammable logic”, IEEE Proc. Comput. Digit.
Tech. 150(6), 403‒411 (2003).

	 [6]	 P. Ferreiraa, P. Ribeiroa, A. Antunesa, and F. Morgado Dias,
“A high bit resolution FPGA implementation of a FNN with
a new algorithm for the activation function”, Neurocomputing
71(1‒3), 71–77 (2007).

577

Hardware implementation of hyperbolic tangent and sigmoid activation functions

Bull. Pol. Ac.: Tech. 66(5) 2018

	 [7]	 M. Bajger and A. Omondi, “Low-error, High-speed Approxima-
tion of the Sigmoid Function for Large FPGA Implementations”,
Journal of Signal Processing Systems 52, 137–151 (2008).

	 [8]	 T. Orlowska-Kowalska and M. Kaminski, “FPGA Implementa-
tion of the Multilayer Neural Network for the Speed Estimation
of the Two-Mass Drive System”, IEEE Trns. on Industrial In-
formatics 7(3), 436‒445 (2011).

	 [9]	 D. Baptista and F. Morgado-Dias, “Low-resource hardware
implementation of the hyperbolic tangent for artificial neural
networks”, Neural Computing and Applications 23(3), 601‒607
(2013).

	[10]	 I. del Campo, R. Finker, J. Echanobe, and K. Basterretxea, “Con-
trolled accuracy approximation of sigmoid function for efficient
FPGA-based implementation of artificial neurons”, Electronics
Letters 49(25), 1598‒1600 (2013).

	[11]	 A.M. Abdelsalam, J.M. Pierre Langlois, and F. Cheriet, “A Con-
figurable FPGA Implementation of the Tanh Function using DCT
Interpolation”, IEEE 25th Annual Int. Symp. on Field Program-
mable Custom Computing Machines, 168‒171, (2017).

	[12]	 F. Zhoua, J. Liua, Y. Yua, X. Tiana, H. Liub, Y. Haoa, S. Zhanga,
W. Chena, J. Daia, and X. Zhenga, “Field-programmable gate
array implementation of a probabilistic neural network for motor
cortical decoding in rats”, Journal of Neuroscience Methods 185,
299–306 (2010).

	[13]	 D. Sanchez-Roman, G. Sutter, S. Lopez-Buedo, I. Gonzalez,
F.J. Gomez-Arribas, J. Aracil, and F. Palacios, “High-Level
Languages and Floating-Point Arithmetic for FPGA Based CFD
Simulations”, IEEE Design & Test of Computers 28(4), 28‒37
(2011).

	[14]	 Z. Hajduk, “High accuracy FPGA activation function implemen-
tation for neural networks”, Neurocomputing (Brief papers) 247,
59‒61 (2017). DOI: 10.1016/j.neucom.2017.03.044

	[15]	 M. Vajta, “Some remarks on Padé-approximations”, Tempus-In-
tcom Symposium, Sept. 2000, 1‒6 (2000).

	[16]	 J. Kluska and Z. Hajduk, “Hardware implementation of P1-TS
fuzzy rule-based systems on FPGA”, Proc. Artif. Intell. Soft
Comput. 7894, 282‒293 (2013).

	[17]	 Z. Hajduk, B. Trybus, and J. Sadolewski, “Architecture of FPGA
Embedded Multiprocessor Programmable Controller”, IEEE
Trans. Ind. Electron. 62(5), 2952–2961 (2015).

	[18]	 Z. Hajduk, “An FPGA embedded microcontroller”, Micropro-
cessors and Microsystems 38(1), 1–8 (2014).

	[19]	 C. Maxfield, “MathWorks’ MATLAB now supports HDL code
generation”, EETimes, 2012, available at http://www.eetimes.
com/document.asp?doc_id=1317035

	[20]	 M. Santarini, “Xilinx unveils vivado design suite for the next
decade of ‘all programmable’ devices”, Xcell Journal 79, 8‒13
(2012).

