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Abstract. Thread mapping is one of the techniques which allow for efficient exploiting of the potential of modern multicore architectures. 
The aim of this paper is to study the impact of thread mapping on the computing performance, the scalability, and the energy consumption for 
parallel dense linear algebra kernels on hierarchical shared memory multicore systems. We consider the basic application, namely a matrix-ma-
trix product (GEMM), and two parallel matrix decompositions (LU and WZ). Both factorizations exploit parallel BLAS (basic linear algebra 
subprograms) operations, among others GEMM. We compare differences between various thread mapping strategies for these applications. 
Our results show that the choice of thread mapping has the measurable impact on the performance, the scalability, and energy consumption of 
the GEMM and two matrix factorizations.
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Determining the efficiency of the thread mapping depends 
on the machine and the application. There is not a single thread 
mapping strategy that suits all the applications. In this work, 
we are going to try to state rules which guide us to determine 
efficient thread mapping to improve the performance, the scal-
ability, power and energy consumption of parallel numerical 
linear algebra applications on shared memory multithreaded 
machines with hierarchical memory.

Efficient parallel numerical algorithms and their implemen-
tations on different contemporary parallel machines are crucial 
for engineering applications and computational science. One of 
the important problems of numerical linear algebra is the ma-
trix factorization which is the matrix decomposition into factor 
matrices of a simpler structure or of some specific properties. 
The most known factorizations are the LU, QR, and Cholesky 
factorizations. In this work, we study the LU factorization, and 
another less known form of the factorization, namely the WZ 
factorization. We assume that the factorized matrix is dense, 
non-singular, square. For both factorizations (LU and WZ), we 
consider block versions which use a standard set of basic linear 
algebra subprograms (BLAS) [9]. BLAS collects all the vec-
tor-matrix operations.

The basic matrix operation, namely the matrix multiplica-
tion (GEMM) from BLAS library was analyzed. Furthermore, 
we considered GEMM which was implemented in Intel MKL 
library (Math Kernel Library [16]). and discussed a multi-
threaded version of the block LU factorization which is avail-
able in the Intel MKL library too. Another factorization which 
we considered was the WZ factorization which uses level 3 
BLAS routines. The WZ factorization was introduced in [11]. 
It was a novel method for solving linear systems in parallel, 
for SIMD (single instruction multiple data, [12]) computers. 
A tiled WZ factorization (here, ‘tiled’ means a block version 
[3] with all the blocks being square matrices of the same size) 
was implemented by the authors with the use of multithreaded 

1.	 Introduction

The advance of the shared memory multicore and manycore 
architectures caused a rapid development of one type of paral-
lelism, namely the thread level parallelism. This kind of paral-
lelism relies on splitting the program into subprograms which 
can be executed concurrently. Each of such subprograms is 
performed by one or more software threads.

A software thread is a running sequential part of the program 
and there are also hardware threads. A hardware thread is an in-
dependent physical processing unit – as seen by the operating 
system. Such a hardware thread can execute one sequential soft-
ware thread at any particular moment. Operating systems on 
the shared memory multicore and manycore architectures run 
numerous software threads and these threads share a complex 
hierarchical memory. Since the architecture consists of many 
processing units, these software threads have to be assigned to 
appropriate processing units (that is, hardware threads). Such 
an assignment is called thread mapping [8]. Using inadequate 
thread mapping strategies can produce a bad utilization of the 
computing power and the memory hierarchy. The adequate ones 
should be used to efficiently exploit the potential of modern 
multiprocessors.

The thread mapping can also improve the energy efficiency 
of parallel applications by reducing the execution time. Energy 
consumption will be reduced proportionally since the processor 
is in a high power-consumption state for less time. Energy ef-
ficiency is being recently considered as important as raw per-
formance and has become a critical aspect of the development 
of scalable systems.
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BLAS operations and the OpenMP standard on multicore ar-
chitectures.

We studied the OpenMP thread mapping strategies for ma-
trix decompositions on multicore architectures in our work 
[6]. The results show that the choice of thread affinity has the 
measurable impact on the executed time of the matrix fac-
torizations. Here, we extend this investigation into analyzing 
the performance, the scalability and the energy efficiency. 
We also add power profiles based on Intel՚s RAPL (Intel 
Running Average Power Limit) [13] technology that allows 
measuring power and energy seamlessly by using hardware 
counter technology available on multicore processors. We not 
only investigate the matrix decompositions but also add the 
research GEMM operation, which is a component of the matrix 
decompositions.

The rest of this paper is organized as follows. In Section 2, 
we present different thread mapping strategies. Section 3 re-
views the matrix decompositions, namely LU and WZ. Sec-
tion 4 shows the results of numerical experiments carried out on 
shared memory multicore architectures and evaluates different 
thread affinities for all GEMM and matrix factorizations. Fi-
nally, Section 5 concludes our research and presents the future 
plans.

2.	 Thread mapping strategies

Most operating systems have smart algorithms to allocate 
software threads on multicore architectures. They model the 
structure of the underlying hardware in order to describe the 
distance between units. Computer machines have the hierar-
chical structure in which hardware threads share a common 
core including functional units and first level cache. Logically, 
a computer system can be treated like a tree of packages, cores, 
and hardware threads. Each package contains one or more 
cores, and each core contains one or more hardware threads. 
Figure 1 presents the topology of the hardware used in our 
experiments. In our studies, we have machines consisting of 
2 packages each; each package consists of 12 cores and each 
core has 2 hardware threads.

In order to avoid the operating system moving threads 
around, it is possible to bind a thread. The goal of the thread 
mapping is to bind software threads to the hardware threads in 

such a way that memory accesses to data shared between soft-
ware threads are optimized and all the cores are equally loaded. 
Thread mapping aims to improve the performance and en-
ergy efficiency. Thus, it is important to choose an appropriate 
thread mapping strategy. Some thread mappings can be applied 
directly through options of the runtime environment without 
modifying the parallel application. There are various utilities 
to control the thread mapping on a modern Linux system. The 
OpenMP 4.0 or 4.5 [17] specification provides the vendor-neu-
tral  and  environment variables 
which specify how the software threads in a program are 
bound to hardware threads. These two environment variables 
are often used in conjunction with each other.  
is used to specify the places in the multicore architecture to 
which the threads are mapped (for example cores, threads). 
Cores denote that the software thread can migrate between 
cores. Threads denote that the software thread cannot migrate 
between cores.  is used to specify the mapping 
policy which determines how the threads are bound to places 
(for example , ). Spread mapping denotes that the 
OpenMP runtime distributes the threads as evenly within the 
places in the system, as possible. Close mapping denotes that 
the OpenMP runtime packs the threads in the same place, as 
closely to one another.

We consider several examples of binding software threads to 
hardware threads. Let the number of the software threads be equal 
to 24. Let Ti denote ith hardware thread (where i = 0, …, 23), 
STi denote ith software thread.

Example 1. For

we have the following binding:
●	 ST0 is bound to T0,
●	 ST1 is bound to T24,
●	 ST2 is bound to T1,
●	 ST3 is bound to T25,

●	 ST22 is bound to T11,
●	 ST23 is bound to T35.

It means that each core has exactly two software threads, 
P1 package is idle, the hyperthreading is used, and there is no 
thread migration.

Fig. 1. The topology of the hardware used in the experiments (P – package, C – core, T – thread)
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Example 2. For

we have the following binding: 
●	 ST0 is bound to T0,
●	 ST1 is bound to T12,
●	 ST2 is bound to T1,
●	 ST3 is bound to T13,

●	 ST22 is bound to T11
●	 ST23 is bound to T23.

It means that both packages are loaded evenly. Each core has 
exactly one software thread, the hyperthreading was not used, 
and there is no thread migration.

Some vendors recommend setting the thread mapping 
on the OpenMP threads to associate them with a particular 
processing units. The Intel OpenMP runtime library has the 
ability to bind OpenMP threads to physical processing units. 
The  environment variable in the Intel compilers 
allows adjusting software threads to hardware threads. This en-
vironment variable has got the following form:

       level, type

We can set the level of the granularity to  or . 
Software threads can migrate between processing units in accor-
dance with the operating system preferences. Averting the mi-
gration inhibits transferring temporary data between cores and 
caches. Forcing the static mapping of the threads of a particular 
program can give a performance growth. If the granularity is 
set to , the threads can migrate – although only within one 
core. To forbid threads to migrate at all, the granularity should 
be set to .

The optional  modifier in the  vari-
able leads to printing the mapping information. This informa-
tion regards the machine topology e.g. the number of packages, 
the number of cores in each package, the number of hardware 
threads for each core and the actual software threads pinned 
to hardware threads (for the  granularity) or sets of the 
hardware and software threads (for the  granularity). This 
modifier  allows checking the thread mapping in our 
examples.

The  environment variable for CPU can have 
the following main values for type: , , and 

. Threads remain unbound for the  value. However, 
in this case, the operating system assigns threads according 
to its own algorithm. If  is set to , it 
means that all threads are put close together. The new thread 
is first allocated to one core until the core reaches its max-
imum load. For the  value, all threads are put far apart. 

 spreads threads evenly across the system. The new 
thread is firstly allocated to the package that has the lightest 
load.  is the opposite of .

We consider several examples of binding software threads 
to hardware threads. Let the number of the software threads be 
equal 24. Let Ti denote ith hardware thread (where i = 0, …, 23) 
and STi denote ith software thread.

Example 3. For 
        , 

we have the following binding: 
●	 ST0 is bound to T0,
●	 ST1 is bound to T24,
●	 ST2 is bound to T1,
●	 ST3 is bound to T25,

●	 ST22 is bound to T11,
●	 ST23 is bound to T35.

It means that the P1 package is idle. Each core has exactly two 
software threads, the hyperthreading was used, and there is lack 
of the thread migration. This is like Example 1.

Example 4. For
        , 

we have the following binding: 
●	 ST0 is bound to T0,
●	 ST1 is bound to T12,
●	 ST2 is bound to T1,
●	 ST3 is bound to T13,

●	 ST22 is bound to T23,
●	 ST23 is bound to T11.

It means that both packages are loaded evenly. Each core has 
exactly one software thread, the hyperthreading was not used, 
and there is lack of the thread migration. This is like Example 2.

3.	 Matrix decomposition

The decomposition of a matrix or the factorization of a matrix 
is used to solve an n£n system of linear equations [1, 11], to 
find the inverse of the matrix, to compute the determinant of 
the matrix or as the preconditioning for iterative methods [4, 5]. 
The LU decomposition factorizes a matrix into two matrices, 
namely a lower triangular matrix L and an upper triangular ma-
trix U. For improving computing performance, a block version 
of the LU decomposition is applied in high performance com-
puting. The block LU decomposition is a matrix decomposition 
of a block matrix into a lower block triangular matrix L and an 
upper block triangular matrix U. The block version of the LU 
decomposition was implemented in LAPACK (Linear Algebra 
PACkage) [1] That implementation is based on BLAS. The par-
allelism of that block version of the LU factorization arises from 
the use of a multithreaded BLAS. The MKL library provides 
exactly such an implementation of BLAS and such a parallel 
version of the block LU decomposition.

In the latter [2] the concept of tiled algorithms is reminded 
and a class of parallel tiled linear algebra algorithms (LU, QR 
and Cholesky factorization) for multicore architectures is pre-
sented. In our work, we investigate the tiled WZ decomposition. 
The WZ factorization is described in [7, 11, 15]. Let’s assume 
that A is a square nonsingular matrix of the size n£n (we con-
sider only even n, for simplicity’s sake). We are to find matrices 
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W and Z that fulfill WZ = A where the matrices W and Z have 
the structure shown in Fig. 2 – here, gray fields are non-zeros. 
The main diagonal of the matrix W consists only of ones. The 
second diagonal consists of zeros.

These diagonals divide the matrix into four triangles. The 
left and right triangles contain non-zeros, and the top and 
bottom ones contain only zeros. The matrix Z has non-zeros 
where the matrix W has zeros or ones – and vice versa.

The first part of the WZ factorization algorithm consists of 
setting successive parts of columns of the matrix A to zeros. 
In the first step, we do that with the elements in the 1st and 
nth columns – from the 2nd row to the n ¡ 1st row. Next, we 
update the inner submatrix A of the size (n ¡ 2)£(n ¡ 2) and 
for k = 2, …, n/2 we zero elements in the kth and (n ¡ k + 1) st 
columns – from the (k + 1)st row to the (n ¡ k)th row.

In order to achieve high efficiency of the WZ factorization 
algorithm on a shared memory multicore system, we use a tiled 
algorithm.   The tiled WZ factorization algorithm performs the 
majority of its floating-point operations  (flop) using the level 3 
BLAS operations, which use the memory hierarchy. That hier-
archy is utilized very efficiently, and thus, the modern BLAS 
implementations achieve almost the peak performance of the 
processor. Let’s assume that the A is a square nonsingular ma-
trix of an even size n and it is partitioned into r£r (r is also 
even) parts (r of each side – rows and columns). The tiled WZ 
algorithm consists of repeating four stages r/2 times.

Stage 1 consists in the WZ factorization of a matrix built 
from four corner blocks of the input matrix. Stage 2 computes 
2s (where s = n/r) columns of the matrix W – s right columns 
and s left columns. Stage 3 computes 2s rows of the matrix 
Z – s bottom rows and s top rows. Stage 4 updates the inner 
submatrix A – that is, A without outer 2s columns and 2s rows. 
In the next step, the algorithm is repeated for this inner matrix.

The tiled algorithm for the WZ factorization will be based 
on the following set of elementary operations.
●	     . This subroutine performs a sequential WZ fac-

torization for matrix B.
●	        . This BLAS sub-

routine is used to compute X = A–1 ¢ B (denoted by ), or 
X = B ¢ A–1 (denoted by ), where X and B are s£s ma-
trices, A is a unit ( ) or non-unit ( ), upper ( ) or 
lower ( ) triangular matrix.

●	     . This BLAS subroutine is used to compute 
A = –B ¢ C + A, where A, B, and C are s£s matrices.

●	      . This BLAS subroutine is used to 
compute A = –B ¢ C + D, where A, B, C, and D are s£s 
matrices.
Algorithm 1 presents the tiled WZ factorization algorithm 

expressed by the above-mentioned operations ( , , 
, ) for a nonsingular matrix A partitioned 

into r£r blocks. The matrices W and Z are the results of this 
algorithm.

Fig. 2. The form of the result matrices in the WZ factorization
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processor. Let’s assume that the A is a square nonsingular ma-
trix of an even size n and it is partitioned into r× r (r is also
even) parts (r of each side — rows and columns). The tiled WZ
algorithm consists of repeating four stages r/2 times. Stage 1
consists in the WZ factorization of a matrix built from four
corner blocks of the input matrix. Stage 2 computes 2s (where
s = n

r ) columns of the matrix W — s right columns and s left
columns. Stage 3 computes 2s rows of the matrix Z — s bot-
tom rows and s top rows. Stage 4 updates the inner submatrix
A — that is, A without outer 2s columns and 2s rows. In the
next step, the algorithm is repeated for this inner matrix.

The tiled algorithm for the WZ factorization will be based
on the following set of elementary operations.

• . This subroutine performs a sequential WZ
factorization for matrix B.

• . This BLAS
subroutine is used to compute X = A−1 ·B (denoted by ),
or X = B ·A−1 (denoted by ), where X and B are s× s ma-
trices, A is a unit ( ) or non-unit ( ), upper ( ) or lower
( ) triangular matrix.

• . This BLAS subroutine is used to com-
pute A =−B ·C+A, where A, B, and C are s× s matrices.

• . This BLAS subroutine is used
to compute A =−B ·C+D, where A, B, C, and D are s× s
matrices.

Algorithm 1 presents the tiled WZ factorization algorithm
expressed by the above-mentioned operations ( , ,

, ) for a nonsingular matrix A partitioned
into r× r blocks. The matrices W and Z are the results of this
algorithm.

4. Numerical experiments
4.1. Environment. In this section, we compare the differ-
ent thread mapping strategies on a shared hierarchical mem-
ory multicore architecture. We present the performance, the
speedup, power and energy consumption. These evaluations
were conducted by the execution of parallel versions of the
following applications:

• a multithreaded implementation of GEMM routines from the
MKL library which computes a matrix multiplication. This
operation is denoted by GEMM.

• a multithreaded implementation of the routine from
the MKL library, which computes the complete LU factor-
ization of a general matrix with pivoting. In our case, the
matrices are square of the size n×n. In the implementation
of the routine the panel factorization (factorization
of a block of columns) is used, as well as the level 3 BLAS
routines ( and ). This LU factorization is de-
noted by LU.

• a parallel tiled WZ factorization with the use of level 3
BLAS routines ( and ) and the OpenMP stan-
dard (denoted by TWZ(r)-OpenMP). OpenMP is used to
parallelize loops (lines: 9, 18 and 25 in Algorithm 1) with

scheduler.

Algorithm 1 Tiled WZ factorization algorithm for even r
based on four elementary operations
Require: A, r
Ensure: W, Z

1: for k ← 1,r/2−1 do
2: k2 ← r− k+1
3: The WZ for the corner blocks of A, STAGE 1

4: B ←

[
Akk Akk2

Ak2k Ak2k2

]
, (B, WB, ZB)

5:

[
Wkk Wkk2

Wk2k Wk2k2

]
← WB,

[
Zkk Zkk2

Zk2k Zk2k2

]
← ZB

6: Computing the kth and k2nd columns of W — STAGE 2
7: Zkk D Zkk2
8: E Zk2k D Zk2k2
9: for i ← k+1,k2 −1 do

10: Aik2 Aik D ;
11: E Wik2 Aik2
12: Aik Wik2 Zk2k ;
13: Zkk Wik Aik
14: end for
15: Computing the kth and k2nd rows of Z — STAGE 3
16: Wkk D Wk2k
17: E D Wkk2 Wk2k2
18: for i ← k+1,k2 −1 do
19: Ak2i D Aki ;
20: E Zk2i Ak2i
21: Aki Wkk2 Zk2i ;
22: Wkk Zki Aki
23: end for
24: The update of the matrix A — STAGE 4
25: for j ← k+1,k2 −1 do
26: for i ← k+1,k2 −1 do
27: Ai j Wik Zk j ;
28: Ai j Wik2 Zk2 j
29: end for
30: end for
31: end for

Table 1
Hardware and software used in the experiments

CPU Intel R©Xeon E5-2670 v.3 (Haswell)

# cores 2 sockets × 12 cores = 24 cores
# threads 48 threads
Clock speed 2.30 GHz
Level 1 instruction cache 32kB per core
Level 1 data cache 32kB per core
Level 2 cache 256 kB per core
Level 3 cache 30 MB
Host memory 128 GB
Compiler Intel icc 16.0.0
BLAS, LAPACK MKL 2016.0.109

Table 1 shows details of the specification of the hardware
and software used in the numerical experiment.
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4.	 Numerical experiments

4.1. Environment. In this section, we compare the different 
thread mapping strategies on a shared hierarchical memory mul-
ticore architecture. We present the performance, the speedup, 
power and energy consumption. These evaluations were con-
ducted by the execution of parallel versions of the following 
applications:
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●	 a multithreaded implementation of GEMM routines from 
the MKL library which computes a matrix multiplication. 
This operation is denoted by GEMM.

●	 a multithreaded implementation of the  routine from 
the MKL library, which computes the complete LU factor-
ization of a general matrix with pivoting. In our case, the 
matrices are square of the size n£n. In the implementation 
of the  routine the panel factorization (factorization 
of a block of columns) is used, as well as the level 3 BLAS 
routines (  and ). This LU factorization is de-
noted by LU.

●	 a parallel tiled WZ factorization with the use of level 3 
BLAS routines (  and ) and the OpenMP stan-
dard (denoted by TWZ(r)-OpenMP). OpenMP is used to 
parallelize loops (lines: 9, 18 and 25 in Algorithm 1) with 

 scheduler.
Table1 shows details of the specification of the hardware 

and software used in the numerical experiment.

Table 1 
Hardware and software used in the experiments

CPU Intel ®Xeon E5‒2670 v.3 (Haswell)

# cores 2 sockets

# threads 48 threads

Clock speed 2.30 GHz

Level 1 instruction cache 32kB per core

Level 1 data cache 32kB per core

Level 2 cache 256 kB per core

Level 3 cache 30 MB

Host memory 128 GB

Compiler Intel icc 16.0.0

BLAS, LAPACK MKL 2016.0.109

All applications were compiled with  using the following 
options: , , , . Here, the  op-
tion generates instructions for the highest instruction set and 
the processor available on the compilation host machine. The 

 and  options link the program with two libraries 
(MKL and OpenMP). The last one, , orders the compiler to 
optimize the code automatically with the use of vectorization 
and parallelization (among others). The MKL library already 
provides vectorized implementations of BLAS routines.

All floating point calculations were performed with the 
double precision. The input matrices were generated by the 
authors. They were random (all off-diagonal elements were 
generated with the use of a uniform distribution) matrices with 
a dominant diagonal (diagonal elements were increased above 
the sum of all the other elements in the same row – to ensure 
the existence of the factorization without pivoting). The ma-
trices’ sizes are chosen as powers of two (and their multiples, 
namely: 128, 256, 512, 1024£{1, …, 14}). Because using the 
power of two can be a bad idea for cache layout we tested 
additionally codes for other matrix sizes (namely as a multiple 

of 1000 {1000, 2000, …, 15 000}) only for GEMM and LU 
factorization from MKL library. The number of tiles equals 
r = 128 was tested for WZ factorization (a different number 
of tiles was tested in [6]).

The times were measured with the use of a standard func-
tion, namely  from OpenMP Standard. We set 
the number of the OpenMP threads using the  
environment variable. The MKL uses OpenMP and thus, this 
variable enables a parallel execution with the given number of 
threads.

Another environment variables used in the tests are 
 and , which are set to one of the 

three values:
●	       ,      denoted 

by  (see Example 1)
●	       ,      de-

noted by  (see Example 2).
Another environment variable used in the tests is  

delivery Intel, which is set to one of the three settings:
\begin{itemize}

●	           ,   denoted
by  (see Example 3)

●	           ,   denoted 
denoted by  (see Example 4)

●	        denoted by .
To better control assigning software threads to hardware 

threads we chose the granularity as . Such a setting 
enables treating each hardware thread separately. Thus, each 
software thread is mapped to one hardware thread. If we used 
the  granularity, one core would be treated as a unit con-
taining two software threads (because it consists of two hardware 
threads through hyperthreading) and can cause thread migration.

The MKL procedures are available in the form of precom-
piled DLLs. However, they use the OpenMP standard internally, 
and thus, the user can set the above-mentioned environment 
variables and these variables do influence the MKL behavior 
(they are not compile-time settings but the run-time ones). The 
MKL is built to allow such a tuning and the affinity mapping 
can be adjusted by a user during launching the application.

We begin by introducing our energy consumption measure-
ment methodology along with the metrics used to analyze the 
results on the multicore system.

4.2. Performance. In our experiments, we use the number of 
floating-point operations per second (flops) as a metric. The 
number of floating point operations for GEMM equals n3. Both 
the LU factorization and the WZ factorization have the number 
of floating point operations equal 2/3n3 + O(n2), so this numer 
approximately equals 2/3n3.

Thus, to obtain the metric in Gflops (= 109 flops) we use 
the following formulas

n3

T ¢ 109
, for GEMM

2n3

3 ¢ T ¢ 109
, for both factorization matrix
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where T is the execution time of a measured implementation. 
This metric allows comparing all applications with the same 
measure.

Figures 3, 4 and 5 present the performance (in Gflops) 
of the GEMM, LU, and WZ for the fixed number of threads 

as a function of the matrix size depending on the thread 
mapping.

The thread mapping had an important impact on the per-
formance of all the tested applications. All three applications 
are the most efficient for  or , and the least 
efficient for  and  – and they do not depend on 
the matrix size. Such results were connected with the fact the 
multicore machine was evenly loaded for  or  
and one package was idle for  and . The same 
results were obtained for the matrix size being powers of two 
(or the multiple of powers of two) as and for the multiple of 
1000. The decrease in the performance was observed only for 
4096 and 8192 matrix size and it seemed to be connected with 
the cache size. In the latter part of the article, we will only in-
vestigate the matrix size being the multiple of the power of two.

4.3. Speedup. Figure 6 presents the speedup of the GEMM, LU 
and WZ for the fixed matrix size as the function of the number 
of threads depending on the thread mapping in relation to the 
application version executed on one core. These figures show 
the scalability of applications when the number of threads is 
increased on the multicore system. Our algorithm scales well 

Fig. 3. The performance of GEMM from the MKL library
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Fig. 4. The performance of LU from the MKL library

Fig. 5. The performance of authors’ WZ implementation
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up to 24 threads. To achieve the best speedup, it is the advisable 
to use all the physical cores (here, 24 threads), without hyper-
threading (the MKL trims the number of the threads down to 
the number of physical cores, because the hyperthreading gives 
almost no improvement when the cache is well utilized). The 
hyperthreading also impairs the results for  in some cases 
and it does not improve the results.

However, we can see a speedup breakdown in all these Fig-
ures. It is caused by the fact that the machine frequency is not 
always the same (thanks to turbo boost mode it is higher when 
the machine is less loaded and lower when it is more loaded). 
Also, it can seem that the breakdown should be somewhat ear-
lier – but we do not know the real frequencies used (apart from 
the fact they are between a producer-specified minimum and 
maximum).

All three implementations scale best with regard to the 
threads and to the matrix size when the environment variables 
are set to  or .

4.4. Power and energy. In this section, we focus on a detailed 
study of power and energy characteristics. We measured the 
power and the energy consumption of three numerical algo-

rithms with different settings of the thread mapping. The Intel 
RAPL counter monitor was considered as the measurement tool 
with an adjustable sampling rate that we set to 100 ms, similarly 
to the work [10]. This sampling rate was sufficient to show 
important transitions. Using the RAPL, values can be read from 
the Intel processor’s registers and the power consumption of 
the CPU and DRAM can be estimated in a very accurate way. 
We measured the power and energy for two CPUs (denoted by 
Package 0 and Package 1) and two DRAMs (denoted by DRAM 
0 and DRAM 1) because our system was dual-socket, thus al-
lowing us to see which of the subsystems was more heavily 
loaded.

In this section, we show the results for a selected matrix of 
the size 14336. The results are very similar for other sizes of 
matrices. For these experiments, we use the optimal number of 
threads and the thread count is equal to the number of physical 
cores, namely 24.

4.4.1. Power. Figure 7 shows three graphs of the power con-
sumption of GEMM for matrix size of 14336 with different 
settings of the thread mapping (we obtained the similar graphs 
for LU and WZ). On each graph, we can see three levels of the 

Fig. 6. The speedup of GEMM (A) and LU (B) from the MKL library, and of the authors’ WZ implementation (C)
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power usage. The first one is idle or low power and is equal 
to about 20 W for both packages and close to 0 W for both 
DRAMs. The second level is the memory allocation and is equal 
to about 40 W for Package 0 and without change for Package 1 
(still 20 W) and about 5 W for DRAM 0 and without change for 
DRAM 1 (0 W). The third one is the proper computation and 
the power depends on the thread mapping (in Section \4.4.3 we 
study the energy consumption for this level).

For  (we obtained the similar graphs for ) 
we see that Package 0 consumes over 120 W, Package 1 about 
110 W, DRAM 0 consumes about 20 W and DRAM 1 about 
10 W. For  (we obtained the similar graphs for  ) 
we see that Package 0 consumes over 120 W, Package 1 about 
20 W. For no  settings (we obtained the similar graphs for 

 ), we can see that the results are not so balanced – some-
times one package uses more energy, sometimes the other one. 
The same goes for memory. For , both the sockets were 
loaded with computations – although one of the sockets had 
to manage the work division. For , only one socket was 
used, thus, the running time extended. For no  settings, we can 
see that the thread migration takes place because the loads of 
both sockets are different at various moments.

4.4.2. Power efficiency. We investigated the whole system 
which implies adding idle, or unused, components to any metric. 
We assumed a metric of the number of floating-point operations 
per second per Watt (flop/s/W) (as [14]). Table 2 compares the 
effects of the thread mapping on the power efficiency for three 
applications. We obtained better power efficiency for the thread 
mapping from the vendor-neutral runtime system OpenMP set-
tings. The best power efficiency is achieved for  and 

. In these cases, we observe load balanced system. 
The worst power efficiency is achieved for ,  or 

. The machine is badly load balanced in the case of 
 and .

Table 2 
Power efficiency [Gflop/s/W] for different thread mapping 

for GEMM, LU and WZ factorization

no  settings

GEMM 3.58 4.53 2.89 3.53 4.53 2.90

LU 2.09 2.78 1.79 1.99 2.69 1.86

WZ 1.88 2.41 2.41 1.88 2.38 2.38

Fig. 7. The power profiling of GEMM from the MKL library with RAPL (A: ; B: ; C: no  settings)
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The best power efficiency we obtained for GEMM. The 
worst power efficiency we obtained for WZ factorization.

4.4.3. Energy. When considering energy consumption, we 
considered the whole system which implies adding the energy 
consumption for all components namely Package 0, Package 1, 
DRAM 0 and DRAM 1. In Fig. 8 we see energy consumption of 
the computation level only for six tested settings of the thread 
mapping in three applications. It can be clearly seen that using 
the  or no  settings for GEMM and LU factorization and 

 and  for WZ factorization consumes more en-
ergy than  and  for GEMM and LU factoriza-
tion and than , ,  and no  settings for WZ 
factorization which may be expected.  and no  settings 
behave differently for GEMM and LU factorization than for 
WZ factorization.

consumption of the matrix decompositions which use BLAS op-
erations in their implementations. Our results showed that there 
is one thread mapping strategy adapted for block-based numer-
ical dense linear algebra on shared memory multicore architec-
tures. For the matrix decomposition, the environment variable 
should be set to  or  because in this way we 
efficiently exploit the potential of modern shared memory mul-
ticore machines and energy saving. With this setting, threads 
are put far from each other (as on different packages) which 
provides a better usage of hardware resources (uniform load) 
and reduces the execution time and the energy consumption.

In future works, the authors plan to research the impact of 
the thread mapping on numerical dense linear algebra on Intel 
Xeon Phi and to compare it with the results obtained in this 
work. The authors are going to use the vendor-neutral BLAS 
library and evaluate the results for other compilers on multicore 
and manycore architectures.
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