Dynamics of the Affective States During and After Cheerleading Training in Female Athletes

Abstract: Cheerleading is a new sport, practiced in 110 nations; since 2016 enjoys provisional Olympic status. Its leaders claim that it is a “happy” sport, but research on its psychological effects is lacking. In this field-study we examined core-affect, positive-affect, and negative-affect in 65 cheerleaders before, during, after, and one-hour after a cheerleading training. Core-affect was more positive during and immediately after training, but it tapered off one hour following the training when feeling states were still more positive than at baseline. Negative-affect declined linearly from baseline to one-hour following training when it became significantly lower than its previous values. Positive-affect showed quadratic dynamics, in parallel with arousal, being higher during and immediately after training than during baseline, or one-hour after training. These results demonstrate for the first time that cheerleading is a “happy” sport, which apart from the skill-development also yields positive psychological emotions both during and after training.

Keywords: Activation, Affect, Exercise, Emotion, Feeling state
to be a “happy sport” (Kellogg, 2015) that should yield positive changes in affect during and/or after training. Despite the posited natural link between the sport’s profile and anticipated psychological benefits, no studies have examined the affective changes associated with cheerleading training. However, the mere lack of past work does not fully justify the new research effort, but the presumed happy nature of this relatively new sport warrants scholastic verification considering a relevant theory. The “affect theory of happiness” suggests that people infer happiness from situations or life events that generate positive affect (Schwarz & Strack, 1991). Apart from physical exercise, the specific components of cheerleading, such as dance and music (Campion & Levita, 2013), could boost affect during and after training. Hence, the dynamics in affect linked to this sport could have both theoretical and practical implications.

Ekkekakis and Petruzzello (2002) presented a dimensional approach, known as the circumplex model (Posner, Russell, & Peterson, 2005), which is useful in examining affect during and after exercise. To gauge overall affect, one can conceptualize core affect (Russell, 2003) as a two-dimensional construct characterized by both affective valence (ranging from feeling states of pleasure to displeasure) and subjectively perceived activation (i.e., state of arousal; Russell, 2003). Hence, the dynamic states of affect could be conceptualized as a combination of these two dimensions yielding four quadrants (a) high-arousal, pleasant affect (e.g., excited), (b) high-arousal, unpleasant affect (e.g., anxious), (c) low-arousal, unpleasant affect (e.g., lazy) and (d) low-arousal, pleasant affect (e.g., tranquil; Ekkekakis & Petruzzello, 2002). Previous research has revealed increased pleasant-activated affect after various aerobic forms of exercise (e.g. Hall, Ekkekakis, & Petruzzello, 2002; Van Landuyt, Ekkekakis, Hall, & Petruzzello, 2000). In fact, changes in activation (arousal) and valence (affect) are hard to distinguish because affective responses are organized in a circumplex fashion and, therefore, changes in affect include a certain degree of shift in arousal and vice versa (Barrett & Bliss-Moreau, 2009). Similar psychological dynamics in affect are expected in cheerleading, as based on its movement and environmental components clearly affecting one’s state of arousal.

While core affect reflects a distinct and conscious momentary feeling state, changes in positive- and negative affect could provide additional information and a more complex picture about the acute effects of exercise. Although these constructs were presumed to be relatively independent of each other (Mackinnon et al., 1999), a recent comprehensive meta-analysis of the neuroimaging literature concluded that there is a flexible affective neural workspace that, based on neuroimaging evidence, is involved in both positive and negative affect (Lindquist, Satpute, Wager, Weber, & Barrett, 2015). These results, at the level of regional brain activity, might imply that there is no single brain region, or even neural pathway, that distinguishably represents positive- or negative affect. This conclusion matches the bulk of the current views on the relationship between positive- and negative affect and thus opposite changes (bipolar) stemming from an intervention, such as exercise, may not be necessarily observed (Crawford & Henry, 2004; Green & Salovey, 1999).

In the current study we examined affective states before (control, or baseline), during (in middle of the training), and after (within 5 minutes) and one hour after cheerleading training. The hypothesis was that cheerleading induces positive changes in affect, which persist after one hour following training. The study was conducted “in-situ”, that is in the habitual training environment of the athletes.

Method

Participants

A priori sample size was determined with the G*Power (v. 3) software (Faul et al., 2007), which indicated that the minimum required sample size for the current research design (repeated measures multivariate analysis of variance) was 60 (as based on: $f = .25, \alpha = .05, r = .20$ (minimal assumed r between repeated measures) and 1- $\beta = .95$). With the help of a coach, athletes were recruited through personal solicitation for participation in the study. In total, 65 female cheerleading athletes (mean age $= 21.92 \pm$ SD $= 2.99$ years) have volunteered for the study. They all were members of a large university’s sport association’s cheerleading division. They performed the sport at a competitive level and were involved in cheerleading sport for an average of 28.34 months (SD $= 20.68$). All participants signed an informed consent before taking part in the study. Ethical permission for the research was obtained from the Research Ethics Committee of the Faculty of Education and Psychology at the Eötvös Loránd University in Budapest, Hungary. The research was conducted in total accord with the ethical regulations and guidelines of the World Medical Association’s Declaration of Helsinki (World Medical Association, 2008).

Instruments

The circumplex model of affect was assessed by two-single item scales, the Feeling Scale (FS; Hardy & Rejeski, 1989) and the Felt Arousal Scale (FAS; Svebak & Murgatroyd, 1985). The former measures affective valence on an 11-point Likert scale ranging from -5 (feeling very bad) to $+5$ (feeling very good), while the later measure activation on a 6-point Likert scale ranging from 1 (low arousal) to 6 (high arousal). Further, we also employed the Hungarian version (Gyollai, Simor, Köteles, & Demetrovics, 2011) of the psychometrically validated 10-item short version of the Positive Affect Negative Affect Schedule (PANAS; Thompson, 2007). Each item is rated on a 5-point Likert scale ranging from 1 (very slightly or not at all) to 5 (very much). A total score is then obtained for both positive (5) and negative (5) items. The internal
Psychological Benefits of Cheerleading

reliability of the PANAS was reported to be (Cronbach’s alpha) .78 for positive affect and .76 for negative affect (Thompson, 2007); for the Hungarian short version internal reliability values ranged between .73 to .79 for positive affect and between .65 to .67 for negative affect (Gyollai et al., 2011). In a more recent study these values were .82 and .83, respectively (Szabo & Kocsis, 2017).

Procedure

Volunteering participants completed the three questionnaires at four times: (a) within 5 minutes before the start of the two-hour long training session, (b) after the first hour of the training session, right at the midpoint, (c) within five minutes immediately after the training session, and (d) one hour after the training session. The time between the third and the fourth assessment was spent with preparing for going home and actual commuting home, given that the training session was normally scheduled for late evening. All participants carried a mobile phone with alarm function that was set for a reminder – at 60-minutes after training – to fill out the questionnaires for the last time within 5 minutes after the alarm sound. After completion, these questionnaires were immediately forwarded as a picture image to the researchers using a Smartphone communication channel (later the paper versions of the scales were also handed to the researchers). Apart from requesting this image transmission for time-control (to ensure that the questionnaires were completed at the solicited time, i.e., 60 minutes after the end of the training session), the participants were also requested to notify the researchers if any “non-ordinary” event(s) – that could have had a notable impact on affect – has taken place within the last 60 minutes after the training. No such event was reported by any of the participants.

Results

A repeated-measures multivariate analysis of variance (MANOVA) yielded a statistically significant multivariate time main effect (Pillai’s Trace = .751, $F_{12, 53} = 13.31$, $p < .001$, effect size: partial Eta squared (η^2_{p}) = .751). The univariate results revealed that all the four dependent measures (felt arousal, feeling sates, positive affect, and negative affect) have changed statistically significantly over the four assessment times ($p < .001$ all, η^2_{p} range: .119-.280). Feeling states showed both linear ($F_{1, 64} = 24.61$, $p < .001$, $\eta^2_{p} = .278$) and quadratic ($F_{1, 64} = 23.44$, $p < .001$, $\eta^2_{p} = .268$) dynamics over time; Felt arousal exhibited a quadratic pattern over time ($F_{1, 64} = 67.64$, $p < .001$, $\eta^2_{p} = .514$); Negative affect manifested a linear decrease over time ($F_{(1, 64)} = 26.01$, $p < .001$, $\eta^2_{p} = .289$); Positive affect, again, exhibited a quadratic pattern ($F_{(1, 64)} = 57.14$, $p < .001$, $\eta^2_{p} = .472$). These patterns of changes over time, in the four dependent measures, are illustrated in Figure 1. The means and standard deviations recorded at the four times of the assessment, along with the results of

Figure 1. Pattern of changes in the four dependent measures across four different times (1) pre-training, (2) middle of the training, (3) post-training, and (4) one-hour post-training, depicting the statistically significant linear and quadratic patterns
the Bonferroni post-hoc tests, are illustrated in Table 1. The results illustrating the changes in core affect, by considering the circumplex model, are shown in Figure 2.

Figure 2. Pattern of changes in core affect – defined as the junction of perceived feeling state (affective valence/horizontal axis) and felt arousal (activation/vertical axis) – at four times of assessment: (A) pre-training; (B) 60 minutes (middle) of training; (C) immediately after training; (D) 60 minutes after training. (For exact values at the four points refer to Table 1)

Table 1. Mean and standard deviations of the four dependent measures at four times of assessment also embedding the results of the Bonferroni-corrected post-hoc tests

<table>
<thead>
<tr>
<th></th>
<th>Pre-training (1)</th>
<th>60 min into training (2)</th>
<th>Post-training (3)</th>
<th>One hour after training (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeling state</td>
<td>2.15 (2.01)</td>
<td>3.52 (1.71)</td>
<td>3.78 (1.64)</td>
<td>3.38 (1.53)</td>
</tr>
<tr>
<td>Felt arousal</td>
<td>3.68 (1.17)</td>
<td>4.94 (0.93)</td>
<td>4.85 (1.23)</td>
<td>3.85 (1.44)</td>
</tr>
<tr>
<td>Negative affect</td>
<td>6.21 (1.69)</td>
<td>6.00 (1.72)</td>
<td>5.72 (1.46)</td>
<td>5.20 (0.54)</td>
</tr>
<tr>
<td>Positive affect</td>
<td>16.92 (4.05)</td>
<td>20.43 (3.88)</td>
<td>19.71 (4.20)</td>
<td>16.58 (4.59)</td>
</tr>
</tbody>
</table>

Note: Superscript numbers denote Bonferroni correction-based statistically significant differences from cells having the indicated column number (i.e., Feeling state pre-training differs from values at the other three times, while those three do not differ from each other).

Discussion

The current findings reveal positive acute changes in affect associated with training in cheerleading. These findings are the first to profile affective states in context of cheerleading. In contrast to several exercises and affect investigations that measure affective changes at pre- (baseline) and post-exercise (e.g., Berger, Darby, Zhang, Owen, & Tobar, 2016; Szabo et al., 2015; Teixeira Guimaraes, 2015), the current work also assessed affect during and one hour after the training session to obtain a more complete picture about the dynamics in affect. The results are in accord with the bulk of the literature reporting favourable changes in affect as a result of various sports and exercises (Dasilva et al., 2011; Hoffman & Hoffman, 2008; Li & Yin, 2008; Rokka et al., 2010; Stark et al., 2011; Streeter et al., 2010; Szabo, 2003; Szabo et al., 2015; 2017; Tolnai et al., 2016; Toskovic, 2001; Valentine & Evans, 2001; Wang et al., 2010). Findings pertaining to affect in the middle of the two-hour training and one-hour post-training, however, may be solely relevant to cheerleading. Therefore, these results are difficult to discuss with reference to other forms of sport or exercise activities.

The reported pattern of feeling states (affective valence) was linear in that it increased from baseline and was consistently higher during and at two times after training. However, it was quadratic too, because it started to taper off from the peak experienced immediately after exercise, even though the two post-training measurements (immediately after and one hour after) of this variable were statistically not significantly different. The fact that feeling states were significantly higher even one hour after training in contrast to the baseline shows that the practice of cheerleading had positive impact on affect that lasted for at least 60 minutes. Thus, the prolonged positive experiences may provide an extended interval for inference about athlete’s subjective feelings and contribute to the overall appraisal of happiness considering the affective theory of happiness (Schwarz & Strack, 1991).

Subjectively experienced felt arousal unfolded as expected and displayed a quadratic pattern in that training increased arousal, which was still noticeable immediately after, or within five minutes after exercise, but it has returned to baseline one hour after the training. Indeed, while the baseline and one-hour post-training measures did not differ significantly from each other, they were significantly lower than the felt arousal reported during as well as immediately after exercise, which did not differ significantly from one another. Accordingly, core affect was the highest immediately after exercise and due to decreased activation shifted back towards the baseline one hour after exercise (refer to Figure 2) while affective valence was still higher than that recorded at baseline. Therefore, a reversal in core affect one hour after cheerleading training was due to physiological decrease in arousal, whilst subjectively experienced feeling states were still significantly higher than at baseline (refer to Table 1).

This quadratic pattern in core affect, driven by the change in arousal, is complemented by results observed in
forms of sports and exercise. They are also recommended for future studies examining experienced affective states one-hour after the training, but times after training. We have re-assessed the subjectively only pre- and post-training, but also during and at several times after training. The present findings are limited by women, although men are also involved to a lesser extent to female athletes (but cheerleading is primarily performed by women, although men are also involved to a lesser extent) and further research with males is warranted. Our results also demonstrate the need for measuring affect not only pre- and post-training, but also during and at several times after training. We have re-assessed the subjectively experienced affective states one-hour after the training, but further assessments, at two and three hours, after training are also recommended for future studies examining the dynamics in affective states in the context of various forms of sports and exercise.

Finally, positive affect showed a quadratic pattern akin to arousal (refer to Figure 1) and while in contrast to the baseline it was higher during and immediately after training, one hour after training returned to baseline level. At the same time, reported feeling states were still significantly above the baseline. This observation can be ascribed to the lowest negative affect reported one hour after training, suggesting that affective valence is mentally appraised in terms of a balance between positive and negative affect. Such findings are consistent with the flexible affective neural workspace (Lindquist et al., 2015) presumed to regulate affect.

Our findings are consistent with relevant reports from the literature in that exercise training is associated with increased levels of high-arousal positive affect (Hogan, Mata, & Carstensen, 2013). In contrast to a recent exercise study in which the self-reported arousal increased during exercise and tapered off immediately after exercise (Bird, Hall, Arnold, Karageorghis, & Hussein, 2016), in our work the decrease in arousal was noticeable only one hour after exercise. The discrepancy in the results may be related to the duration of exercise (20 vs. 120 minutes) and the form of exercise (stationary cycling vs. cheerleading). As noted earlier it is difficult to discuss the current findings by considering similar works, because the unique nature of the cheerleading sport in which the apart from movement, the group-social interaction and music could also influence the affective measures. Indeed, Bird et al. (2016) have shown that music affects core affect during exercise above the movements’ effects.

Taken together, these findings show that cheerleading is indeed a happy sport, if such a conclusion can be drawn upon improved core affect, decreased (to virtually none) negative affect after training and increased positive affect during and immediately after training. These findings also lend support to the independence of negative- and positive affect considering the parallel decrease in both during the hour following training. The present findings are limited to women athletes (but cheerleading is primarily performed by women, although men are also involved to a lesser extent) and further research with males is warranted. Our results also demonstrate the need for measuring affect not only pre- and post-training, but also during and at several times after training. We have re-assessed the subjectively experienced affective states one-hour after the training, but further assessments, at two and three hours, after training are also recommended for future studies examining the dynamics in affective states in the context of various forms of sports and exercise.

References

Psychological Benefits of Cheerleading

