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Direct and indirect control of cancer populations
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Abstract. This paper presents a brief survey of our research in which we have used control theoretic methods in modelling and control of
cancer populations. We focus our attention on two classes of problems: optimization of anticancer chemotherapy taking into account both
phase specificity and drug resistance, and modelling, and optimization of antiangiogenic therapy. In the case of chemotherapy the control
action is directly aimed against the cancer cells while in the case of antiangiogenic therapy it is directed against normal cells building
blood vessels and only indirectly it controls cancer growth. We discuss models (both finite and infinite dimensional) which are used to
find conditions for tumour eradication and to optimize chemotherapy protocols treating cell cycle as an object of control. In the case of
antiangiogenic therapy we follow the line of reasoning presented by Hahnfeldt et al. who proposed to use classical models of self-limiting
tumour growth with variable carrying capacity defined by the dynamics of the vascular network induced by the tumour in the process of
angiogenesis. In this case antiangiogenic protocols are understood as control strategies and their optimization leads to new recommendations
for anticancer therapy.
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1. Introduction

Two major obstacles in successful chemotherapy are phase de-
pendence of cytotoxic drugs and drug resistance. Cell-cycle-
phase specificity is important since it makes sense to apply
anticancer drugs when cells gather in sensitive phases of the
cell cycle. It can be approached by considering dissection
of the cell cycle into an increasing number of disjoint com-
partments, with drug action limited to only some of them.
In many papers we have provided a classification of several
models of this kind and analyzed a problem of protocol opti-
mization basing on them. Mathematical problems encountered
include singularity and non-uniqueness of solutions and give
rationale for periodic protocols (e.g. [1–4]). The emergence of
resistance to chemotherapy has been first considered in a point
mutation model of Coldman and Goldie (e.g. [5]) and then
in the framework of gene amplification by Agur and Harnevo
(e.g. [6]). The main idea is that there exist spontaneous or in-
duced mutations of cancer cells towards drug resistance and
the scheduling of treatment should anticipate them. The point
mutation model can be translated into simple recommenda-
tions which have been even tested in clinical trials. The gene
amplification model was extensively simulated and also re-
sulted in recommendations for optimized therapy.

Although mathematical modelling of cancer dynamics and
anticancer therapy has had more than four decades of histo-
ry, regarding practical results it has been, with minor excep-
tions, a failure. The reasons for that failure are not always
clearly perceived. They stem from the direction of both bio-
medicine and mathematics: important biological processes are
ignored and crucial parameters are not known, but also the
mathematical intricacy of the models is not appreciated. Be-
cause of recent progress in methods of monitoring cancer cell

populations, new insights and more precise measurements be-
came possible. This, together with a progress in mathematical
tools has renewed hopes for improving chemotherapy proto-
cols. Moreover a new philosophy in molecular biology and
biotechnology called system biology builds a bridge between
many biologists and even clinicians from one side and math-
ematicians and engineers from the other.

In our research we have developed a model of chemother-
apy based on a stochastic approach to evolution of cancer
cells (e.g. [7–9]). Our works dealt with models with tridiago-
nal system matrix. They led to development of a methodology
for investigating such systems and formed a basis for further
generalisation. More recently (e.g. [10–12]) the research has
been pushed a step further, studying properties of a mod-
el, in which significantly less simplification has been made
and less additional assumptions are required. Moreover, it has
combined models that so far have been studied separately, tak-
ing into account both the phenomenon of gene amplification
and multidrug chemotherapy, in their different aspects.

As far as phase-specificity of chemotherapy is concerned it
was usually considered without any regard to problems stem-
ming from increasing drug resistance. Combining infinite di-
mensional model of drug resistance with the phase-specific
model of chemotherapy should move mathematical modelling
much closer to its clinical application. Despite long history
of research and rich literature devoted to problems of mod-
elling and control of infinite dimensional systems, almost all
efficient methods developed to deal with them present ap-
proaches suitable for PDE models and optimisation solutions
are often limited to LQ problems (see e.g. [13]). As shown in
our papers, studies of infinite dimensional models may lead to
compact results, convenient in further analysis, which would
be impossible or very difficult to obtain in finite dimensional
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approximation. On the other hand the optimality conditions
for such systems are usually much weaker than those for fi-
nite dimensional systems and their mathematical analysis is
far from being rigorous. Thus we decided to compare the re-
sults for such systems with the ones for finite dimensional
models which have been preliminary studied by us and our
co-workers (e.g. [14]). Optimization of the chemotherapy in
the presence of evolving drug resistance may be viewed as
the progress in overcoming this phenomenon.

The important factor which should be taken into account
is that while drug resistance is acquired by cancer cells the
normal tissues retain sensitive to the drugs. This negative fea-
ture of chemotherapy may be used as an advantage in the
antiangiogenic therapy which is directed towards special part
of normal tissues and only indirectly destroys tumor cells and
it is why it has been called by Kerbel [15] a therapy resis-
tant to drug resistance. We use a class of models proposed
by Hahnfeldt in [16] to find conditions for tumour eradication
in asymptotic sense and to optimize protocols of antiangio-
genic therapy. In contrast to the control problems arising in
phase-specific and drug resistant chemotherapy, modeling an-
tiangiogenic therapy leads to indirect control problems in the
sense that the control action is directed against normal tissues
and only indirectly enables formation of dynamics of cancer
populations.

2. Modeling drug resistance and phase-

specificity

The model, based on results of [6, 17–18] is general enough
to accommodate different interpretations (see e.g. [9]). The
original model of drug resistance evolution and its properties
were thoroughly discussed in e.g. [7, 8]. Briefly, we consider
a population of neoplastic cells stratified into subpopulations
of cells of different types, labelled by numbers i = 0, 1, 2, . . ..
If the biological process considered is gene amplification, then
cells of different types are identified with different numbers
of copies of the drug resistance gene and differing levels of
resistance. Cells of type 0, with no copies of the gene, are
sensitive to the cytostatic agent. Due to the mutational event
the sensitive cell of type 0 can acquire a copy of gene that
makes it resistant to the agent. Likewise, the division of re-
sistant cells can result in the change of the number of gene
copies. The resistant subpopulation consists of cells of types
i = 1, 2, . . .. The probability of mutational event in a sensi-
tive cell is of several orders smaller than the probability of the
change in number of gene copies in a resistant cell. Since we
do not limit the number of gene copies per cell, the number
of different cell types is denumerably infinite.

Cell division and the change of the number of gene copies
are stochastic processes with the following hypotheses:

1. The lifespans of all cells are independent exponentially
distributed random variables with means 1/λι for cells of
type i.

2. A cell of type i ≥ 1 may mutate in a short time interval (t,
t + dt) into a type i + 1 cell with probability bidt + o(dt)
and into type i−1 cell with probability didt+o(dt). A cell

of type i = 0 may mutate in a short time interval (t, t+dt)
into a type 1 cell with probability α dt+ o(dt), where α is
several orders of magnitude smaller than any of bi and di.

3. The drug action results in fraction ui of ineffective divi-
sions in cells of type i (hence 0 ≤ ui ≤ 1).

4. The process is initiated at time t = 0 by a finite population
of cells of different types.

If we denote Ni(t) the expected number of cells of type i
at time t, the model is described by the following system of
ODE’s:


















































Ṅ0(t) = [1 − 2u0(t)] λ 0N0(t) − αN0(t) + d1N1(t)

Ṅ1(t) = [1 − 2u1(t)] λ1N1(t) − (b1 + d1)N1(t)

+ d2N2(t) + αN0(t)

. . .

Ṅi(t) = [1 − 2ui(t)] λiNi(t) − (bi + di)Ni(t)

+ di+1Ni+1(t) + bi−1Ni−1(t),

. . .
(1)

Mainly the simplest case has been investigated, in which
the resistant cells are completely insensitive to drug’s action
and there are no differences between parameters of cells of
different type:










































Ṅ0(t) = [1 − 2u(t)] λN0(t) − αN0(t) + dN1(t)

Ṅ1(t) = λN1(t) − (b + d)N1(t) + dN2(t) + αN0(t)

. . .

Ṅi(t) = λNi(t) − (b + d)Ni(t) + dNi+1(t) + bNi−1(t),

i ≥ 2

. . .
(2)

However, using the same line of reasoning that has been
applied to that case, it is also possible to analyse less sim-
plified model [12]. If it is assumed that the parameters can
vary for arbitrarily chosen finite number of cells and are the
same only for the infinite dimensional tail of the system, the
following model can be investigated:

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
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




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


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


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

















Ṅ0(t) = [1 − 2u0(t)] λ0N0(t) − α N0(t) + d1N1(t)

Ṅ1(t) = [1 − 2u1(t)] λ1N1(t) − (b1 + d1)N1(t)

+ d2N2(t) + αN0(t)

. . .

Ṅl−1(t) = [1 − 2ul−1(t)] λl−1Nl−1(t)

− (bl−1 + dl−1)Nl−1(t) + dlNl(t) + bl−2Nl−2(t)

. . .

Ṅi(t) = λNi(t) − (b + d)Ni(t) + dNi+1(t) + bNi−1(t),

i ≥ l

. . .
(3)

Moreover, multivariable control is allowed, meaning that
either certain types of the resistant cells can be affected by
chemotherapy in different way or the different drugs are being
used.
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Now we are prepared to include phase specificity of the
drug in our model. The cell cycle is composed of a sequence
of phases undergone by each cell from its birth to division.
Actually, each drug affects cell being in particular phase and
it makes sense to combine these drugs so that their cumulative
effect on the cancer population would be the greatest. So far,
phase-specific chemotherapy has been considered only in the
finite-dimensional case, without any regard to problems stem-
ming from increasing drug resistance [1–4, 19]. Combining
infinite dimensional model of drug resistance with the phase-
specific model of chemotherapy should move mathematical
modelling much closer to its clinical application.

Once again, some modification of the assumptions un-
derlying mathematical model presented at the beginning of
this section should be introduced. The sensitive subpopulation
consists of two types of cells: type i = 0, being in the phase
G1+S and i = 1, being in the phase G2M. The phase-specific
drug affects only cells of type i = 1. Then the following set
of equations can represent the system dynamics























































Ṅ0(t) = −λ0N0(t) + [1 − u(t)] (2λ1 − α)N1(t) + dN2(t)

Ṅ1(t) = −λ1N1(t) + λ0N0(t)

Ṅ2(t) = λ2N2(t) − (b + d)N2(t) + αN1(t) + bN3(t)

. . .

Ṅi(t) = λNi(t) − (b + d)Ni(t) + dNi+1(t) + bNi−1(t),

i ≥ 3

. . .
(4)

Similarly, multidrug therapy including blocking drugs
[19, 20] (used to synchronise cancer cell cohorts) as well
as the killing agent could be analysed in the same way, as
presented in the subsequent sections.

3. Infinite dimensional bilinear models

All the models discussed above have the following state equa-
tion form:

Ṅ =

(

A +

m
∑

i=0

uiB̃i

)

N, (5)

where N = [N0 N1 N2 ... Ni ...]T is an infinite dimensional
state vector, A – the system matrix of the following form:

A =











Ã1 | 01

− − − − −
02 | Ã2

|











, (6)

Ã1 =













a00 a01 . . . a0,l−1 0

a10 a11 . . . a1,l−1 0
...

... . . .
... 0

al−1,0 al−1,1 . . . al−1,l−1 al−1,l













,

Ã2 =













c1 a2 a3 0 0 . . .

0 a1 a2 a3 0 0 . . .

0 0 a1 a2 a3 0 . . .
...

...
. . .

. . .
. . .

. . .
. . .













,

B̃i =













bi
0,0 bi

0,1 . . . bi
0,l−1

bi
1,0 bi

1,1 . . . bi
1,l−1

...
... . . .

...

bi
l−1,0 bi

l−1,1 . . . bi
l−1,l−1













,

u(t) – m + 1-dimensional control vector u =
[u0 u1 u2 ... um]T , 01, 02, – zero matrices of dimensions
∞ x l − 1, l − 2 x ∞ respectively, l > m.

It is important to note that model parameters satisfy the
following relations: a3 > a1 > 0, and a2 < 0. However,
complete problem analysis can be done in other possible cas-
es (e.g. when no additional conditions are to be satisfied by
parameters a1, a3), using exactly the same line of reasoning.
The specific structure of system and control matrices may be
used to decompose the system both for its analysis as well
as optimal control synthesis. To make analysis of the model
possible it is convenient to present it in the form of a block
diagram shown in Fig.1, effectively decomposing the mod-
el into two parts. The first one, of finite dimension, does
not require parameters to meet any particular assumptions.
The second subsystem is infinite dimensional, with tridiag-
onal system matrix, and does not include terms containing
control variables ui(t). It may be interpreted as decomposi-
tion of the cancer cells population into two compartments:
the one, finite dimensional which contains cells completely
or at least partially sensitive to the drug, and the second one,
infinite dimensional which contains drug resistant cells which
directly could not be controlled by variables representing the
effect of the drug. The positive feedback in the scheme rep-
resents reversibility of gene amplification process that should
be interpreted as possible two sided communication between
both compartments. Since only stepwise mutation is assumed
thus the (l-1)-th type of cells is the output of the first com-
partment and the l-th one is its input.

First, let us consider the infinite dimensional tail without
the influx of cells Nl−1:






































Ṅl(t) = a2 Nl(t) + a3Nl+1(t)

Ṅl+1(t) = a1 Nl(t) + a2 Nl+1(t) + a3Nl+2(t)

. . .

Ṅi(t) = a1 Ni−1(t) + a2 Ni(t) + a3Ni+1(t),

i ≥ l + 2

. . .

(7)
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Fig. 1. The model as a system with positive feedback

Using methods similar to that shown in our previous
works e.g. [4, 7–9], [21] it is possible to show that for ini-
tial condition Ni(0) = δik (Kronecker delta), i.e. Nk(0) = 1,
Ni(0) = 0 for i 6= k, following relations hold true:

Nk
l (s) =

1

a3

(

s − a2 −
√

(s − a2)2 − 4a1a3

2a1

)k−l+1

, (8)

Nk
Σ(s) =

1

s − (a1 + a2 + a3)


1 −
(

s − a2 −
√

(s − a2)2 − 4a1a3

2a1

)k−l+1


 ,

(9)

where Nk
l (s), Nk

Σ(s) – Laplace transforms of Nk
l (t) and

∑

i≥1

Nk
i (t) = Nk

Σ(t), respectively (superscript k is introduced

to underscore the index of the state variable with non-zero ini-
tial condition). The interesting finding is that similar transfer
functions could be found in some control systems with distrib-
uted delay [22–23]. Now, let us assume that k = l. Then, after
calculating inverse Laplace transform the following formulae
are obtained:

N l
l (t) =

1

a3

(√

a3

a1

)

I1

(

2
√

a1a3 t
)

t
exp(a2t), (10)

N l
Σ(t) =

∑

i̇ ≥ l

Ni(t) = exp [(a1 + a2 + a3)t]



1 −
(√

a3

a1

)

t
∫

0

I1

(

2
√

a1a3 τ
)

τ
exp [−(a1 + a3)τ ] dτ



,

(11)
where I1(t) – modified Bessel function of the first order.

Using an asymptotic expansion of (11) it has been found
[11] that, assuming a3 ≥ a1, a stability condition for the
autonomous system is given by

a2 ≤ −2
√

a1a3. (12)

Relation (8) can be used to determine the following trans-
fer function in the model

K1(s) =
Nl(s)

Nl−1(s)
=

c1

a3

s − a2 −
√

(s − a2)2 − 4a1a3

2a1
.

(13)
Moreover

∑

i≥l

Ni(t) = N l
Σ(t) + N+(t), (14)

where

N+(t) = c1

t
∫

0

N l
Σ(t − τ )Nl−1(τ )d τ , (15)

and N l
Σ(t) is defined by (11).

Let us now introduce the following notation:

B̂1 =













0
...

0

al−1,l













, C = [0, ..., 0, 1] – l-dimensional vector.

(16)

Then, applying standard control theory techniques, the fol-
lowing relation holds true for u(t) = 0

K2(s) =
Nl−1(s)

Nl(s)
= C(sI − Ã1)

−1
B̂1, (17)

where I is a unit matrix. Taking into account linear form of
such system, it is possible to present the model in the form
of block diagram shown in Fig. 2. This makes it possible to
analyse dynamical properties of the closed-loop system.

K2(s)

K1(s)

Nl-1(s)Nl (s)

Fig. 2. Block diagram of the system without control

Let us now consider the problem of stabilisation of the
system (5) by a constant control.

Then, the transfer function K2(s) representing the finite
dimensional subsystem in the Fig. 2 takes the following form:

K2(s) =
Nl−1(s)

Nl(s)
= C

[

sI −
(

Ã1 +

m
∑

i=0

B̃i

)]−1

B̂1. (18)

Again, standard control theory techniques, including the
Nyquist criterion [23] can be applied to find stability condi-
tions for such system.

Several control problems may be addressed basing on the
model. One of them is establishing constant control u (in that
case it leads to determination of feedback parameters) that sta-
bilises the infinite dimensional system. In biological terms, it
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refers to calculating constant dose of chemotherapeutic agent
that suppresses growth of the resistant subpopulation. How-
ever, the constant treatment protocol, which guarantees decay
of the cancer population after sufficiently long time, is not
realistic. Most of all, it does not take into account the cumu-
lated negative effect of the drug upon normal tissues. To make
the solution more realistic, it is justifiable to find the optimal
control, which minimises the performance index:

J =

l−1
∑

i=0

Ni(T ) + r1

∞
∑

i=l

Ni(T ) + r

m
∑

k=0

T
∫

0

uk(τ)dτ (19)

where r1, r ≥ 0 are weighing factors.
The idea on which such optimisation is based is to min-

imise the resistant cancer subpopulation at the end of therapy
with simultaneous minimisation of negative cumulative effect
of the drug represented by the integral component.

To formulate and solve control optimization problem relat-
ed to anticancer therapy a model transformation of the infinite
system of ODE’s into integro-differential form is proposed.

Let us denote

x̃ =









N0

...

Nl−1









. (20)

Let us also assume the initial conditions Ni(0) = 0 for
i > l − 1. Then, the equation describing dynamics of the
subpopulation of type l − 1, influenced directly by control,
as presented on Fig. 2, can be transformed into an integro-
differential form:

Ṅl−1(t) =
l−1
∑

j=0

m
∑

i=0

bj
l−1,iui(t)Nj(t) +

l−1
∑

i=0

al−1, iNi(t)

+ al−1,l

t
∫

0

k1(t − τ)Nl−1(τ)dτ ,

(21)

where k1(t) is the inverse Laplace transform of K1(s), given
by (13).

Similarly, other equations can also be rewritten in the same
way leading to the transformation of the model (4) into the
following form:

˙̃x = h(u, x̃) +

t
∫

0

f̃(x̃, t, τ)dτ , (22)

x̃(0) = x̃0,

where h(..), f̃(...) – respective l-dimensional vector functions

hk(u, x̃) =

l−1
∑

j=0

m
∑

i=0

bj
k,iui(t)Nj(t) +

l−1
∑

i=0

ak, iNi, (23)

f̃k(x̃, t, τ) =

{

0 for k < l − 1

al−1,lk1(t − τ)Nl−1(t) for k = l − 1
.

(24)

After transformation of the system, it is possible to address
effectively the arising optimal control problem.

Let the system be governed by the equation (4), which,
afterwards, is transformed into the form (21). The control is
bounded:

0 ≤ uk(t) ≤ 1, (25)

where uk(t) = 1 represents the maximum allowable dose of
the drug k and uk(t) = 0 represents no application of the
drug k.

The goal is to minimise the performance index given by
(19).

Due to particular form of both performance index and the
equation governing the model it is possible to find the solution
to the problem, applying an appropriate version of Pontryagin
maximum principle [24, 25].

It is important to notice that, although the performance
index (19) seems to consist of two components - a sum and
an integral, the sum actually involves another integral, which
stems from (15)–(16). Therefore, it is convenient to rewrite it
in the following form:

J =

l−1
∑

i=0

Ni(T ) + r1N
l
Σ(T )

+

T
∫

0

[

r1c1N
l
Σ(T − τ)Nl−1(τ) + r

m
∑

k=0

uk(τ)

]

dτ .

(26)

A number of formulations of necessary conditions for
the optimisation problem for dynamical systems governed by
integro-differential equations can be found in literature, e.g.
[13, 26, 27]. However, they usually either are too general to
be efficiently applied in such particular problem or have too
strong constraints for example smoothness of the control func-
tion. Nevertheless, following the line of reasoning presented
by [26] it is possible to derive the necessary conditions for
optimal control:

uopt(t) = arg min
u

[

r

m
∑

k=0

uk(t) + pT (t)h(u, x̃)

+ al−1,l

T
∫

t

pl−1(τ)k1(t − τ)Nl−1(τ)dτ



 ,

(27)

ṗT (t)=−



qT (t) + pT (t)hx̃(u, x̃)) +

T
∫

t

pT (τ)f̃x̃(t − τ)dτ



,

(28)

q(t) =
[

0 . . . 0 r1c1N
l
Σ(T − t)

]T

,

pi(T ) = 1, i = 0, 1, ..., l − 1, (29)

p(t) – adjoint vector.
Taking into account constraint (25) and bilinear form of

(26), it can be proved that, in order to satisfy (27), the optimal
control must be of bang-bang type. Then, to find optimal num-
ber of switches and switching times, a gradient method can
be developed, similarly as presented in [21]. The possibility
of singular arcs could not be excluded.
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4. Finite dimensional models

For comparison with finite dimensional problems let consider
the simple case [14] when only two levels of drug resistance
are distinguished, i.e. overall the model has three compart-
ments consisting of drug sensitive, partially resistant and re-
sistant cells. We denote the average numbers of cells in these
compartments by S, P and R, respectively, and denote the in-
verse of the average transit times through these compartments
by a, b and c. In the model only transitions between sensitive
and partially resistant cells and between partially resistant and
fully resistant cells are allowed. If a sensitive cell undergoes
cell division, the mother cell dies and one of the daughters
will remain sensitive. The other daughter with probability q,
0 < q < 1, changes into a partially resistant cell. However,
for cancer cells it is possible that a resistant cell may mutate
back into a sensitive cell by loosing extra gene copies. There-
fore, if a partially resistant cell divides, again the mother dies
and one of the daughters remains partially resistant, but the
second daughter with probability s, 0 < s < 1, undergoes
gene amplification and becomes resistant or with probabili-
ty r, 0 ≤ r < 1 − s, undergoes gene deamplification and
becomes sensitive. The case r = 0 when this is excluded
is called stable gene amplification while unstable gene am-
plification refers to the phenomenon r > 0. Finally, when
a resistant cell undergoes cell division, one of the daughters
may change back to partially resistant. This probability is the
same as for partially resistant cells. We now consider a cyto-
static killing agent. Similarly as before let u denote the drug
dose, 0 ≤ u ≤ 1, with u = 0 corresponding to no drug
being used and u = 1 corresponding to a full dose. It is as-
sumed that the drug kills a fixed proportion u of the outflow
of the sensitive cells at time t, aS(t), and therefore only the
remaining fraction (1 − u) aS(t) of cells undergoes cell di-
vision. Of these new cells then (2 − q) (1 − u)aS(t) remain
sensitive, while a fraction q(1 − u)aS(t) mutates to partial-
ly resistant cells. The effectiveness of the drug on partially
resistant cells is weaker, but not void yet, so we add a coef-
ficient β, 0 < β < 1 to represent it. Thus only a portion of
the out-flowing cells from the partially sensitive compartment
proportional to βu is killed by the drug and surviving portion
(1− βu)bP undergoes cell division with one of the daughter
cells possibly mutating. Thus, overall the controlled dynamics
can be described by the following equations:

Ṡ = −aS + (1 − u)(2 − q)aS + (1 − βu)rbP, (30)

Ṗ = −bP +(1−βu)(2−r−s)bP +(1−u)qaS+rcR, (31)

Ṙ = −cR + (2 − r)cR + (1 − βu)sbP. (32)

Here the first terms on the right hand sides account for
the deaths of the mother cells, the second terms describe the
return flows into the compartments and the remaining terms
give the cross-over flows in the presence of a drug. Note that
the effects of the drug show up at all return and cross-over
flows except for resistant compartment. We expand the model
above to include phase specificity in the sensitive and partial-
ly resistant compartments. The most commonly used killing

agents are G2/M phase specific. Therefore within the sen-
sitive and partially sensitive compartments we combine the
second growth phase G2 and mitosis M into a second sub-
compartment and group the remaining phases (G0, G1 and
S) into a first sub-compartment. We denote the average num-
bers of cancer cells in these compartments by S1, S2, P1 and
P2, respectively, and denote the corresponding inverse transit
times of cells through these compartments by a1, a2, b1 and
b2. Cells are killed in the second sub-compartments, i.e. all
cells leave, but only the surviving ones reenter the cell cycle.
The dynamics of the resistant compartment is not changed.
A model which includes a G2/M phase specific killing drug,
partial and complete resistance of cancer cells to this drug
while allowing for reverse of unstable gene amplification can
therefore be described by

Ṡ1 = −a1S1 + (1 − u)(2 − q)a2S2 + (1 − βu)rb2P2,

Ṡ2 = −a2S2 + a1S1,
(33)

Ṗ1 = −b1P1 + (1 − βu)(2 − r − s)b2P2

+ (1 − u)qa2S2 + rcR,

Ṗ2 = −b2P2 + b1P1,

(34)

Ṙ = −cR + (2 − r)cR + (1 − βu)sb2P2. (35)

Both models are single-input bilinear systems. If, similar-
ly as it is done in previous section more compartments are
added to further differentiate the levels of drug resistance, or
if blocking and/or recruiting agents (without additional killing
effects) are modeled as well, then multi-input bilinear systems
of the form (5) arise the only difference being the final di-
mension of the state variable N . The performance index which
enables to formulate the optimization problem has the form
similar to (19) with respective changes regarding the num-
ber of the state variables. An obvious state space constraint
for these models is that the number of cells remains positive.
A simple sufficient condition for this to hold is that all the

matrices A+
i
∑

i=m

uiBi, u ∈ U , have negative diagonal entries,

but non-negative off-diagonal entries (i.e. are so-called Met-
zler matrices.) In cell-cycle specific compartmental models for
cancer chemotherapy which do not consider drug resistance
this condition is always satisfied since there are only outflows
from the i-th compartment. The importance of this condition
however, is more related to the fact that it also implies neg-
ative invariance of the positive octant under the adjoint flow
which describes the evolution of the multipliers in the Max-
imum Principle. For the models described above, the system
matrices no longer are Metzler matrices. However, it is not
difficult to see that states remain positive for all the models
introduced above. On the other hand, in the analysis of opti-
mal controls it would be of importance to also have a good
invariance properties of the adjoint flow and these need to
be investigated. In [3] necessary conditions for optimality for
a general dynamics which satisfies the above mentioned con-
dition have been analyzed. Since the dynamics and objective
are linear in the control variables, the prime candidates for
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optimality are concatenations of bang-bang and singular con-
trols. The optimality of possible singular controls needs to
be investigated on a case-by-case basis and it is intended to
perform such an analysis, possibly investigating whether there
exist common features in these models described above which
would allow to give a broader criterion. Preliminary compu-
tations show that the optimality of singular controls depends
on the relative portion of resistant cells, but further analysis is
needed. Aside from singular controls, bang-bang controls are
the natural candidates and typically there will be many tra-
jectories corresponding to bang-bang controls which satisfy
the first order necessary conditions for optimality, but are not
optimal. In [3] sharp necessary and sufficient conditions for
optimality of bang-bang controls for a general n-compartment
model are developed and may be applied for considered mod-
els.

5. Angiogenesis and antiangiogenic therapy

Angiogenesis is a complex process which leads to the for-
mation of new vessels and it is stimulated and controlled by
molecular factors called activators (stimulators) and inhibitors
(blockers) of angiogenesis. During progression of tumor these
factors are released by tumor itself to develop its own vascu-
lar network which enables its growth and in the next stage
determines possibility of cancer metastasis. Since this net-
work is necessary for tumor development in late sixties of
the last century a new anticancer therapy was proposed target
of which was not directly the cancer cells but the new born
vasculature. This therapy is known as antiangiogenic therapy
and the idea is to reduce the tumor volume reducing its vas-
culature. It has been first time hypothesized by Folkman [28]
more than thirty years ago. The main Folkman’s suggestions
are as follows:

a) primary solid tumors go through a prolonged state of avas-
cular growth (almost quiescent) in which maximum attain-
able size is 1–2 mm in diameter, and the necessary oxygen
and nutrient supplies by passive diffusion,

b) these microscopic tumors can switch on angiogenesis by
recruiting surrounding mature host blood vessels to start
sprouting new blood vessel capillaries which grow and
infiltrate the tumor mass thus setting the potential for
metastatic spread,

c) the angiogenic switch is triggered by elaboration by tumor
cells of a growth factor called tumor angiogenesis factor
(TAF),

d) blocking tumor angiogenesis factor or simply destroying
newly formed immature blood vessels may be used to af-
fect tumor growth.

The most important obstacle against successful chemother-
apy is drug resistance Therapy directed against tumor vascula-
ture does not exploit tumor cell sensitivity, relying instead on
tumor suppression consequent to inhibition of associated vas-
culature. For more than ten years Folkman’s ideas were not
followed by experimental or clinical investigations but now
tumor angiogenesis belongs to the most inspiring areas of

cancer research in oncology. Kerbel [15] presents 10 signifi-
cant reasons for the explosive growth in tumor angiogenesis
research and development of antiangiogenic drugs:

1) The discovery of basic fibroblast growth factor as the first
pro-angiogenic molecule [29].

2) The discovery of vascular endothelial growth factor and
its receptor tyrosine kinases on activated endothelial
cells [30].

3) The discovery of angiopoietins and their tyrosine kinase
receptors [31].

4) The discovery of endogenous inhibitors of angiogene-
sis [32].

5) The discovery of additional molecular markers in newly
formed blood vessels [33].

6) The development of quantitative assays for angiogene-
sis [34].

7) Recognition of the prognostic significance of tumor angio-
genesis [35].

8) Lack of acquired resistance to direct acting antiangiogenic
drugs [29].

9) The discovery of the impact of angiogenesis on liquid
hematologic malignancies [31].

10) The discovery of the accidental antiangiogenic effects of
various conventional or new anticancer drugs and other
agents, see e.g. [36].

The complexity of the process of vascularization as well
as the way in which inhibitors, stimulators and antiangiogenic
drugs act results in the complex models (see e.g. [34, 30]) ap-
plicable for simulation of the process but less useful in syn-
thesis or even analysis of therapy protocols. The exception is
a class of models proposed by Hahnfeldt et al. [16] who sug-
gested that the tumor growth with incorporated vasculariza-
tion mechanism can be described by Gompertz type or logistic
type equation with variable carrying capacity which defines
the dynamics of the vascular network. Roughly speaking the
main idea of this class of models is to incorporate the spatial
aspects of the diffusion of factors that stimulate and inhib-
it angiogenesis into a non-spatial two-compartmental model
for cancer cells and vascular endothelial cells. This type of
model or more precisely its modification proposed in [37]
has been used in our study [38]. In [37] it has been proved
that using sufficiently high doses of antiangiogenic drugs we
are able to annihilate completely the vascular network of the
tumour and indirectly eradicate the tumor itself. It can be
reached, not only using a constant dose of the drug, but also
by periodic therapy more reasonable from clinical point of
view. We present the resume of these results. Since the re-
sults have an asymptotic character it means that the process
of eradication is theoretically infinite and the same the pa-
tient once treated by the antiangiogenic therapy should re-
main under such control to the end of his life. To overcome
this difficulty we propose to optimize the therapy in finite
horizon. The optimization problem for yet another modifica-
tion of Hahnfeldt model was solved in [39] by Ergun and
coworkers. Their model has a drawback that there exists on-
ly one cross-coupling between the two compartments which
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results, for example, in trivial stability conditions. The rig-
orous treatment of this model has been recently presented
in [40].

The idealized scheme of cell cycle kinetics represented by
previously considered compartmental models is confounded in
solid tumors by the existence of a geometric gradient of avail-
ability of oxygen and nutrients. This causes a stratification in
viability of cells: usually cycling cells are near the surface
or near blood vessels, further layers are occupied by dormant
cells, while the deepest regions form a necrotic core. This may
lead to self-limiting growth phenomena , which may be de-
scribed by nonlinear models including Pearl-Verhulst (logistic)
or Gompertz-type equations. In the Gompertz-type equation
we introduce a varying coefficient a(t):

Ṅ = a(t)N, N(0) = N0,

ȧ = −βa, a(0) = α ⇒
(36)

N = N0e
α/β(1−e−βt) (37)

The growth is bounded by:

N∞ = N0e
α/β , (38)

called in population dynamics the carrying capacity. The same
solution is obtained when we use non-linear Gompertz equa-
tion in the form:

Ṅ/N = −β lnN/N∞ ≈ 1/PDT, (39)

where by PDT we understand potential doubling time of the
considered population.

Hahnfeldt [16] proposed to treat the carrying capacity
which constraints the tumor growth as a varying tumor vol-
ume sustainable by the vessels and roughly proportional to
the vessel volume:

N∞ = K, Ṅ/N = −β lnN/K. (40)

Although equation (40) looks similarly to equation (39)
but now the carrying capacity is not constant but varies with
changes of the volume of the vessels.

Similar behavior may be obtained if the Gompertz type
growth is substituted by a logistic one (called also Pearl-
Verhulst growth). Then we have:

Ṅ/N = β(1 − N/K). (41)

The dynamics of the growth of volume K represented
by its PDT (denoted here by PDTk) depends on the stimula-
tors of angiogenesis (SF), inhibitory factors secreted by tumor
cells (IF) and natural mortality of the endothelial cells (MF):

PDTk = f(MF, SF, IF ). (42)

In [16] it has been assumed that the inverse of PDT is the
sum of these three factors i.e.

1/PDTk = MF + SF + IF. (43)

The spontaneous loss of functional vasculature represent-
ed by MF (e.g. through natural mortality of the endothelial
cells) is supposed to be negative constant, the stimulatory ca-
pacity of the tumor upon inducible vasculature represented by

SF (e.g. through angiogenic factors like vascular endothelial
factor) is found to grow at rate KbN c slower than the endoge-
nous inhibition of previously generated vasculature represent-
ed by IF (e.g. through endothelial cell death or disaggrega-
tion). It results from the assertion that tumor driven inhibitors
from all sites act more systematically whereas tumor-derived
stimulators act more locally to the individual secreting tumor
site. Parameters b and c satisfy the following formula:

b + c = 2/3. (44)

The reason is that analyzing a diffusion-consumption
equation for the concentration of stimulator or inhibitor in-
side and outside the tumor, Hahnfeld et al concluded that
inhibitor will impact on target endothelial cells in the tumor
in a way that grows ultimately as the area of the active surface
between the tumor and the vascular network which in turn is
propotional to the square of the tumor diameter. It leads to
the conclusion that IF is proportional to the tumor volume in
power 2/3 since volume is proportional to the cube of the di-
ameter. The expression for K suggested in [16] has therefore
the following form:

K̇/K = γN/K − (λN2/3 + µ). (45)

γ, λ, µ being constant parameters representing the effect
of stimulation, inhibition and natural mortality, respectively.
The modification of this model proposed in [37] which also
satisfies Hahnfeldt’s suggestions given by (48) assumes that
the effect of SF and MF on the inverse of PDTK is constant
while the IF is proportional to the active surface of the area
of tumor being in contact with the vascular network and the
same to the square of the tumor radius:

Ṅ/N = −β lnN/K. (46)

K̇/K = γ − (λN2/3 + µ). (47)

Combinations of tumor growth models (46), (41) with
vascular network models (45), (47) result in four nonlinear
models of tumor angiogenesis. The interesting finding is that
all these systems have the same nontrivial equilibrium point
(N∗, K∗):

Ṅ/N = K̇/K = 0 ⇒ N∗ = K∗ = ((γ − µ)/λ)3/2. (48)

The model is strongly nonlinear but by logarithmic change
of variable and some scaling transformation we are able to
simplify them and find their asymptoptic properties using
standard Lyapunov type analysis of stability [41] (local and
global) – see e.g. [37], [38] for analysis of three of these
models.

Using the following transformation:

x = lnN/N∗, y = lnK/K∗, x∗ = y∗ = 0,

τ = βt, ϑ = (γ − µ)/β, x′ = dx/dτ, y′ = dy/dτ,
(49)

we are led for example:
for model (46), (47) to the following quasi-linear system:

x′ = y − x, y′ = ϑ(1 − e2/3x), (50)
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or:
z = y − x,

x′ = z,

z′ = −z − ϑ(e2/3x − 1)

(51)

and for model (41), (45) to slightly more complicated system:

z = 1 − ex−y,

x′ = z,

z′ = (z − 1)(z(1 + γ/β) + ϑ(e2/3x − 1)).

(52)

For other combinations of tumor and vascular network
growth equations the resulting transformed models have sim-
ilar form.

Application of antiangiogenic therapy can be incorporated
to the model by a factor increasing multiplicatively the mortal
loss rate of the vessels. For example in the case of the model
(47) it leads to the following equation:

K̇/K = γ − (λN2/3 + µ + ηu(t)), (53)

where u(t) denotes the dose of the agent scaled to its effect
on vascular network and η is a constant parameter. For the
constant dose U , the equilibrium points take the form:

N∗ = K∗ = ((γ − µ − ηU)/λ)3/2, (54)

which according to the conditions of stability given in [37]
leads to the conclusion that:

ηU ≈ γ − µ ⇒ K∗ → 0. (55)

The form of condition (55) results from the suggestion that
even if the dose is not exactly equal to the value found from
the equilibrium condition the convergence to 0 takes place. In
other words the vascular network and in turn the tumor can
be eradicated. This conclusion is crucial for the philosophy of
the entire analysis. It is enough to ensure that population of
endothelial cells responsible for the angiogenesis behaves in
the required way because the size of tumor population in some
sense tracks the same transients. In [37] it has been proved
that the same effect could be reached for periodic therapy with
mean value satisfying condition (55) or greater. The similar
analysis for other models lead to the same conclusions. The
exception is the original Hahnfeldt model for which (55) is
only necessary but not sufficient condition for tumor eradi-
cation under periodic protocol. Yet another simplified model
was proposed by Ergun et al [39]. In this case the growth of
the vascular network is independent of the tumor size.

K̇/K = γK−1/3 − λK1/3. (56)

Or in the case when therapy is included:

K̇/K = γK−1/3 − ηu − λK1/3. (57)

Since this equation is independent of the model of tumor
growth the stability analysis in this case is much simpler than
before. Nevertheless to have a complete model of the tumor
growth in the vascular stage we should add one of the two
proposed previously models of population growth (Gompertz
or logistic type) and thus we are led to two additional mod-
els. Although during simulation all the models lead to similar

transients for tumor growth and vascular network evolution if
uncontrolled, their behaviour in the presence of control mod-
eling different therapeutic protocols may differ significantly.
Moreover, clinical interpretation of the modelling results is al-
so sensitive to the choice of the model. Constant or periodic
therapies which ensure tumor eradication discussed previously
have an important drawback. They should be applied in long
therapy horizon. Shortage in the antiangiogenic drugs, their
costs, and side effects although lower than in chemotherapy
but not completely recognized cause that the treatment proto-
cols and cumulated dose of the drugs should be bounded. The
reasonable solution is to formulate optimal control problem
for the system given by the proposed model and the control
objective which adequately represents the primary goal of the
therapy. In [39] and [40] the optimal control problem for the
Ergun’s model and a free terminal time is solved under the
constraint on a bound on the total amount of inhibitors. The
authors found that optimal strategy consists of bang-bang and
singular intervals – in [39] the problem is only stated and
partly solved while in [40] a full synthesis of solutions is pre-
sented. In [38] we have proposed to optimize the protocol in
the fixed finite time of therapy with the primary goal which
is to find the control maximizing TCP (treatment cure prob-
ability) for the model (46), (47) that leads to the following
equivalent form of an optimal control problem:

J = N(Tk),

Tk
∫

0

u(t)dt ≤ Ξ

0 ≤ u(t) ≤ Um,

(58)

with known constraining constant parameters:Um, Ξ. Due to
isoperimetric form of the problem it could be transformed into
the problem with the integral part of the performance index
instead of the integral constraint on the control. Of course
in this case the weighting factor r is unknown and should
be treated as a value of an associated Lagrange multiplier.
Thus the two formulations are equivalent only if the weight
is chosen in such a way that it corresponds to the value of
the Langrage multiplier which solves the primary optimiza-
tion problem. Moreover we may use the transformed variables
x and y (or x and z) to formulate the modified performance
criterion in the form:

I = gx(Tf) + hy(Tf ) + r

Tf
∫

0

u(τ)dτ ,

0 ≤ u ≤ 1, Tf = Tkβ,

(59)

where state variables are defined by the equations depending
on the model which is chosen from the six models mentioned.
For the d’Onofrio-Gandolfi model with Gompertz type model
for the cancer growth we have:

x′ = y − x, y′ = ϑ(1 − e2/3x) + νu, ν = −η/β. (60)

The weight coefficients h, g, r may change in broad ranges
depending on the type of therapy used and the strength of the
integral constraint. The additional term related to the volume
of vascular network may be regarded as yet another constraint
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imposed on the possible dynamics of the system. On the oth-
er hand by the choice of the weighting coefficients we obtain
a new possibility of analysis of the mutual dependence be-
tween the tumor growth and the volume of the vascular net-
work. Thus it is reasonable to provide an extensive analysis
of their effect on the solution of the optimal control problem.
Necessary conditions of optimality can be found using Pon-
tryagin maximum principle [24] for Hamiltonian and adjoint
variables p, q defined as:

H = ru + νqu + p(y − x) + qϑ(1 − e2/3x), (61)

p′ = p + 2/3qϑe2/3x,

p(Tf) = g, q′ = −p, q(Tf ) = h.
(62)

It leads to the following switching function and bang-bang
control law:

q = −r/ν, u =

{

1

0
⇐ min H. (63)

Rewriting the adjoint equation in the form of scalar second
order ODE we have:

q′′ − q′ + 2/3qϑe2/3x = 0,

q(Tf ) = h, q′(Tf) = −g.
(64)

The important finding is that singular arcs are not feasi-
ble since there are no finite intervals of constant solutions to
the adjoint equation. This leads to the conclusion that inter-
mediate doses of the drug are not optimal and that the op-
timal protocol contains only switches between maximal dose
and no drug intervals. It allows to find recurrently the solu-
tion of the TPBVP composed of the state and co-state equa-
tions with bang-bang control found from the switching con-
dition by using for example shooting algorithm (in [42] the
authors proved that the obtained optimal bang-bang control
has at most two switchings). On the other hand Ledzewicz
and Schattler solved [43] the optimal control problem for the
standard Hahnfeldt model following the line of reasoning used
before for the Ergun’s model in [40] and once more proved
that in the optimal strategy some parts are singular. It should
be mentioned that the analysis in this case is much more elab-
orate

We are able to prove that reasonable reformulation of op-
timization problem (see [44]) for five from the six models
leads to pure bang-bang optimal strategies. The only excep-
tion is the Hahnfeldt original model with the Gompertz type
growth of the tumor where optimal solution typically contains
a singular control as a middle part of the control strategy [43].

For example in the case of the Hahnfeldt model with lo-
gistic type growth of the tumor we may define:

z = lnKNθ,

θ = γ/β,

x = lnN,

ε = λ/β.

(65)

It leads to the following state equations:

x′ = 1 − e(θ+1)x−z

z′ = ϑ − εe2/3x + νu.
(66)

For simplicity we may assume h = 0 in the performance
index. Thus the Hamiltonian has the following form:

H = ru + νqu + p(1 − e(θ+1)x−z) + q(ϑ − εe2/3x)

And adjoin variables p and q are given by the following
equations:

p′ = p(θ + 1)e(θ+1)x−z + (2/3)qεe2/3x p(Tf ) = g,

q′ = −pe(θ+1)x−z q(Tf ) = 0.
(67)

Thus the necessary conditions of optimality have the form:
(formally identical to (63)):

q = −r/ν > 0,

u =

{

1

0
⇐ min H.

(68)

Once more the singular arcs are not feasible since there
are no finite intervals of constant solutions to the adjoin equa-
tion. For the d’Onofrio-Gandolfi model with the logistic type
tumor growth the analysis is similar.

For the Ergun model the problem is even simpler. If we
choose g = 0 than because equation defining y is independent
of x we are led to the first order optimization problem which
has no singular solutions.

The problem is defined by the state equation:

ẏ = γe−1/3y − λe1/3y − ηu. (69)

The Hamiltonian and the adjoint variable are given by:

H = p(γe−1/3y − λe1/3y) + (r − ηp)u

ṗ =
1

3
p(γe−1/3y + λe1/3y), p(Tk) = h

(70)

It leads to the following form of the bang–bang candidate
for optimality:

p = r/η > 0,

u = { 1

0
⇐ min H

(71)

and singular controls cannot be optimal for the same rea-
sons as in the two previously analyzed problems. Of course it
should be noted that such formulation of the optimal control
problem is different than the one presented in [39, 40] and the
results presented in this section do not contradict the results
in [40].

6. Conclusions and final remarks

In this study we have shown how using quite simple models
we can analyze and design therapy protocols for chemother-
apy benefiting from phase dependence and overcoming drug
resistance and for antiangiogenic therapy. This latter type of
therapy is still in experimental and clinical trials. The results
are promising however still the knowledge of the processes be-
hind the evolution of cancer vascular network, the equilibrium
between stimulatory and inhibitory factors, different form of
antiangiogenic therapy and its side effects is far from being
complete. We hope that our results may help in the progress in
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this field. Our results must be treated as introduction of more
rigorous mathematical treatment of models of antiangiogenic
therapy from one side and translation of its results into more
specific recommendation for therapy protocols or at least plan-
ning of clinical experiments. The results could be extended
onto the problem of combined anticancer therapy for example
antiangiogenic and radiation as proposed in [39, 45] although
the complexity of the model discussed in [39] leads to diffi-
culties in its rigorous treatment. We hope that this approach
may be also applied for analysis and design of combined an-
tiangiogenic and chemotherapy. Such combination seems to
be even more reasonable since it may be free from the ma-
jor disadvantages of the standard chemotherapy discussed in
the paper. On the other hand it leads to much more com-
plicated models as it has been discussed above. There exist
a number of possible variants of the proposed approach the
solution of which is almost on the same level of mathemat-
ical complexity. We may solve the optimal control problem
with the performance index (58) and state variables before
log transformation. We may also decide to solve suboptimal
control problems for specified types of therapy protocols for
example periodic ones. In this case we are led to the prob-
lem of parametric optimization instead of functional one with
two parameters (frequency and pulses duration) to be chosen.
Moreover we may incorporate some models of pharmacoki-
netics by introducing linear or nonlinear additional first order
compartments. In this case the analysis will be however much
more complicated one (but not the only) reason being the
higher order of system dynamics.

All possible applications of mathematical models of
chemotherapy and antiangiogenic therapy are contingent on
our ability to estimate their parameters There has been
a progress in that direction, particularly concerning precise
estimation of drug action in culture and estimation of cell cy-
cle parameters of evolving resistant cell clones [10]. New pos-
sibilities in cell cycle parameters estimation both in vitro and
in vivo are now established by DNA microarray technology.
By processing the data on expression of thousands of genes in
different time samples one can identify the dynamics behavior
of the analyzed cell populations. There have been a number of
bioinformatical and biomathematical tools developed to cope
with such analysis. Among them many belong to techniques
frequently used by control engineers. The very good exam-
ples are algorithms based on singular value decomposition or
support vector machines (e.g. [46]). More generally DNA mi-
croarrays experiments are performed to help study issues in
biology and clinical practice, regarding cellular mechanisms,
the functions of genes and proteins, the structure of gene net-
works and pathways, relating the risk of being affected by dis-
eases to gene expression profiles, etc. Gene expression pro-
filing has been successfully used in many medical research
programs concerning monitoring cellular process, measuring
the response of cells or tissues to therapeutic agents, clas-
sification or detection of disease symptoms and many other
problems. Two tasks related to the classification of expression
profile data are class prediction and pattern discovery. Class
prediction uses information about expression profiles and the

known classification of the data sets to construct classifiers
applicable to future data. In our research projects we con-
structed a number of such classifiers based on SVM technique
which allow not only to predict classes of tissues basing on
their expression profiles but to select the best set of genes
for such prediction (e.g. [47]). On the other hand SVD based
techniques used for unsupervised classification enabled us to
discover patterns in the profiles i.e. to confirm that the infor-
mation implied in the design of experiments is also encoded
in the gene expression profiles collected and to explore the
data from the angle of existence of unknown relations and
mechanisms.
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