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Abstract. Background: a humidity sensor is used to sense and measure the relative humidity of air. A new composite system has been fabricated 
using environmental pollutants such as carbon black and low-cost zinc oxide, and it acts as a humidity sensor. Residual life of the sensor is 
calculated and an expert system is modelled. For properties and nature confirmation, characterization is performed, and a sensing material is 
fabricated. Methodology: characterization is performed on the fabricated material. Complex impedance spectroscopy (CIS), Fourier transform 
infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are all used to confirm the surface roughness, 
its composite nature as well as the morphology of the composite. The residual lifetime of the fabricated humidity sensor is calculated by means 
of accelerated life testing. An intelligent model is designed using artificial intelligence techniques, including the artificial neural network (ANN), 
fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS). Results: maximum conductivity obtained is 6.4£10−3 S/cm 
when zinc oxide is doped with 80% of carbon black. Conclusion: the solid composite obtained possesses good humidity-sensing capability in 
the range of 30–95%. ANFIS exhibits the maximum prediction accuracy, with an error rate of just 1.1%.
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trochemical capacitors electrodes. This oxide material has been 
widely applied in optoelectronic and electronic devices, such as 
light-emitting devices, gas sensors and solar cells, so composite 
materials based on carbon and zinc oxide could become effi-
cient electrode materials [4–7] for electrochemical capacitors.

Several techniques have been designated in previous studies 
for the production of zinc oxide. These include, for example: 
hydrothermal technique, laser ablation, sol-gel, chemical vapor 
deposition, thermal decomposition, combustion and electro-
chemical depositions [4–7]. The electrodeposition method is 
known as the efficient technique for the synthesis of nanostruc-
tures of ZnO due to its easiness, low-temperature procedure, 
high deposition amount, cheap method and appropriateness for 
large area substrate [6]. This method uses a very low potential 
or current to produce ZnO on any conductive substrate. In this 
deposition procedure, the thin layer measurements, structures 
and electrochemical characteristics could be adapted by a va-
riety of operating parameters: current intensity, voltage applied, 
time of deposition and the electrodeposition bath [8]. Generally, 
in this deposition process, zinc chloride solutions or zinc nitrate 
solutions are used as a precursor [4–7]. In medical applications, 
it is utilized in skin ointments which are used to cure skin aller-
gies. The sol-gel method, also used to form ZnO, is carried out 
using zinc acetate dehydrate and sodium hydroxide. Ethanol is 
used as a solvent for the process, along with distilled water to 
act as a medium [3]. Overall, the zinc content is 55.38% while 
the oxygen content remains at 44.62%. More recently, materials 
scientists and engineers have suggested and devised various 
methods of using this waste product for the synthesis of some 
useful composites.

1.	 Introduction

The first silicon-based integrated circuit was introduced in 1964 
by Harwick Johnson. Since then, IC technology has been ad-
vancing at a very rapid rate. Nowadays, emerging branches, e.g. 
solid-state electronics, become responsible for the invention 
of devices such as the transistor. Nanotechnology has brought 
about a variety of new composite materials characterized by 
better conductivity and properties such as improved stability 
in relation to temperature, high melting and boiling points, less 
activation energy etc., as compared to the conventional material 
used. Solid state electrolytes are observed to have high elec-
trical conductivity, which makes them an excellent material 
for designing electrical and electronic products such as relays, 
switches etc. Doping or adding impurities is considered one of 
the methods to enhance conductivity or other features of the 
material [1]. A variety of studies have been conducted as part 
of material science to extract new materials through doping 
inadequate amounts in order to get the best composition [2].

Carbon black is one of the most prominent environmental 
pollutants and an easily available insulating material produced 
due to combustion of solid material. It exhibits amorphous 
properties, and due to this, doping with carbon affects conduc-
tivity of the composite material in a visible manner [3]. Zinc 
oxide (ZnO) is one of promising materials to be used in elec-
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In this paper, a sensor has been fabricated using both zinc 
oxide and carbon, and it exhibits good humidity- sensing capa-
bility. Three soft computing techniques have been considered for 
intelligent modelling. The experimental technique, i.e. acceler-
ated life testing method, is used to compute the residual lifetime. 
A variety of artificial intelligence techniques, such as ANN, FIS 
and ANFIS, have been incorporated through MATLAB Simulink, 
which constitutes an intelligent model that predicts residual life of 
the fabricated sensor. The accuracy of these methods is computed 
with reference to the experimental technique.

2.	 Fabricating the humidity sensor

2.1. Sample preparation. For the preparation of a sample, zinc 
oxide has been prepared by means of the Sol-Gel method at the 
laboratory at a temperature of 343 K using NaOH and Zn(NO3)2. 
6H2O in its purest form along with deionized water. For carbon 
black, fumes have been collected in a closed chamber to accu-
mulate on the top lid through combustion. For the composite 
electrolyte, ten samples have been prepared [9]. Firstly, carbon 
black and zinc oxide were kept in a hot-air oven at a tempera-
ture of 423 K for activation purpose. This process takes nearly 
two hours, and after that both zinc oxide and carbon were mixed 
and grinded continuously for two hours, using a mortar and 
a pestle [10]. Palletization is performed with the use of a hy-
draulic palletizer with a pressure of 2.5 to 3.5 torr with the die 
having the cross-sectional area of 0.2 cm2 for pallets and the 
thickness considered standing at approximately 3.5 mm. An 
optical photograph of the sensor is presented in Fig. 1.

using complex impedance spectroscopy [3]. Origin 7.1 software 
is used to convert the obtained data into graphical images. Fur-
ther bulk resistance (Rb), has been calculated from the graph 
by determining the point where the semicircle corresponding 
to impedance intersects the x-axis.

In our laboratory, we used pressure-contacted stainless-steel 
electrodes and connected them to a CH instruments electro-
chemical workstation (model CHI604D) with a frequency range 
of 0.00001 Hz to 100 kHz. On the basis of this resistance value, 
maximum conductivity was determined amongst the ten sam-
ples. The values are listed in Table 1 below.

Table 1 
Variation of conductivity at different carbon ratios

No. ZnO-carbon ratio 
(w/w = 2gm)

Conductivity value  
(S/cm)

11. 20–80 0.0064

12. 30–70 0.000125

13. 40–60 0.000241

14. 50–50 0.000111

15. 60–40 0.00025

16. 70–30 0.000388

17. 80–20 0.0007

18. 90–10 0.000128

19. Pure carbon 0.000109

10. Pure ZnO 0.000005833

Out of the ten samples, maximum conductivity is observed 
for the 20–80 ratio, i.e. 20% of zinc and 80% of carbon black, 
giving conductivity of 6.4£10−3 S/cm. It can be deduced from 
the table that with different ratios, different conductivity values 
are observed, and they show a non-linear relationship. The 
Cole-Cole plot for the 20–80 ratio has been shown in Fig. 2 
below.

Fig. 1. Optical photograph of fabricated sensor

Fig. 2. Cole-Cole plot for maximum conducting composite

A variety of characterization tests confirm that the fabricated 
sensor acts as a humidity sensor.

3.	 Characterization techniques

To confirm the composite nature, surface morphology and con-
ducting nature, a variety of tests are conducted on the fabricated 
sensor.

3.1. Complex impedance spectroscopy. The conducting be-
havior of a carbon black and zinc oxide composite is examined 
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3.2. Fourier transform infrared spectroscopy. From obser-
vation of IR graphs, it can be deduced that:
●	 all the spikes and peaks from ZnO and carbon are also 

present in the ZnO-carbon composite;
●	 the curve for the composite covers all the slopes of the 

waveform;
●	 all the peaks of the composite can be attributed either to 

ZnO or to carbon.
The ZnO waveform shows two extra peaks. This is because 

the presence of even the tiniest of impurities in it as a sample 
can result in contamination already while performing the test.

Apart from the peaks of the parent materials, i.e. ZnO and 
carbon, the composite doesn’t have any other peaks which 
would confirm that it is purely a composite of ZnO and carbon 
and that it exhibits the properties of both these materials [11]. 
Fig. 3 shows the FTIR result for ZnO, carbon and their com-
posite.

in order to determine surface morphology, orientation as well 
as the surface roughness of the composite and parent material, 
SEM is performed [13]. Also, it confirms the presence of both 
the materials at micro-level in the composite [14]. For a SEM 
micrograph of carbon, the minimum size of the particle is 1 µm 
and the maximum size is 25 µm. SEM micrographs for ZnO, 
carbon and their composite are all shown in Fig. 5–7.

Fig. 5. SEM micrograph of carbon

Fig. 3. FTIR characteristics graph for: (a) pure ZnO, (b) pure carbon, 
and (c) carbon-ZnO composite
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3.3. X-ray diffraction. The X-ray diffraction test is performed 
to confirm the crystalline nature of the ZnO-carbon composite 
material. From the XRD graph, it is revealed that carbon is 
showing no extra spikes in its resultant graph, which confirms 
its amorphous nature [11]. Meanwhile, the zinc oxide spikes are 
very sharp as compared to carbon and all the peaks which are 
available in carbon as well as ZnO are present in the graph of 
the zinc oxide and carbon composite. This confirms that there 
are no impurities present in the composite and its composi-
tion is purely carbon and zinc oxide [12]. Also, it confirms the 
homogenous nature of the composite. The XRD waveform is 
presented in Fig. 4. The entirety of the zinc oxide and carbon 
composite diffraction peaks in Fig. 4b matched the ZnO ones 
very well (JCPDS/ICDD 36‒1451).

3.4. Scanning electron microscopy (SEM). This test is con-
ducted mainly to acquire surface images of the material. Hence 

Fig. 4. XRD pattern of (a) pure carbon (b) ZnO-carbon (c) pure ZnO
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4.	 Humidity measurement

The overall range for this humidity sensor is between 30% RH 
and 95%RH, after which it will stop sensing.

This range is extracted and interpreted in terms of voltage, 
which is beneficial for further studies, in order to calculate its 
life [14]. Fig. 8 shows the result obtained from the experiment 
in the form of a graph.

lead to loss of necessary information. The Arrhenius method 
has been used to see the effect of temperature on the sensor 
and hence mean time between failures (MTBF) has been cal-
culated [16].

Also, intelligent modelling has been used to design a smart 
system which can forecast the life using artificial intelligence 
techniques such as ANN, FIS and ANFIS [17].

5.1. Experimental technique. The accelerated life testing tech-
nique is used for calculating the sensor’s residual lifetime [18]. 
A digital hot plate, sand and sensor samples are taken. Figure 9 
illustrates the experimental setup for accelerated life testing, 
where 35 samples have been taken and covered in sand, so that 
uniform heating can be applied to all of them. All the samples 
have been kept under observation for 200 hr to check the effect 

Fig. 6. SEM micrograph of zinc oxide Fig. 7. SEM micrograph of ZnO-carbon composite

Fig. 9. Experimental setup for calculating residual lifetime

Fig. 8. Humidity versus voltage graph
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Overall sensitivity of the sensor is 99.7%, which appears to 
stand for better efficiency.

5.	 Residual life estimation of fabricated sensor

Residual life estimation is an important aspect when successful 
operation is considered [15]. Determining the remaining useful 
life (RUL) helps estimate how long the sensor will work over 
time in order to avoid sudden failure of the sensor, as it may 
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of temperature [19]. It is observed that after a certain time some 
of the samples are unable to withstand high temperature for 
a longer period [20].

The FIT (per 109 hours) has been calculated using an Ar-
rhenius equation of the acceleration factor.

	 FIT(λ) = F/D.T.AF� (1)

where: 
	 F	 is the number of failures,
	 D	is the number of sensors tested and T = test hours
	 AF	= acceleration factor = exp [Ea/k(1/Tuse−1/Ttest)]
	 Ea	= activation energy (ev)
	 K	= Boltzmann constant
	 Tuse	= use temperature, Ttest = test temperature.
After calculating the failure rate [21], the MTBF corresponding 
to FIT was calculated as follows:

	 MTBF(h) = (1/λ) ¤ 109 h .� (2)

The life calculated using the accelerated life testing method is 
su mmarized in Table 2.

Table 2 
MTBF calculation using experimental technique 

No. Humidity 
(%RH)

Voltage 
(V)

Temperature 
(K)

Experimental 
method

11. 30 2.4 273 225.3
12. 35 4.6 278 132.1
13. 40 7.2 283 79.01
14. 45 9.4 288 48.07
15. 50 12.6 293 29.74
16. 55 14.7 298 18.7
17. 60 16.1 303 11.94
18. 65 17.8 308 7.74
19. 70 19.2 313 5.08
10. 75 19.4 318 3.38
11. 80 19.6 323 2.28
12. 85 19.7 328 1.55
13. 90 19.6 333 1.07
14. 95 19.7 338 0.75

6.	 Intelligent prediction of residual life  
using AI techniques

The artificial intelligence techniques are used to model an ex-
pert system that predicts the residual life of the humidity sensor 
[22]. The various techniques used for the expert system include 
artificial neural networks (ANN), fuzzy inference system (FIS) 
and adaptive neuro-fuzzy inference system (ANFIS) [23].

6.1. Artificial neural networks-based intelligent system. Ar-
tificial neural networks (ANN) can be considered non-linear 
operators that transform a set of suitably interpreted vari-
ables at their input into another set of numerical data at their 
output[24]. ANN use a mapping technique through which the 
network output is continuously updated, based on the minimum 
value of mean square error (MSE). This process is known as 
training [25].

The topology of the network used here is 3-10-1, i.e. 3 in-
puts, 1 output and 10 neurons in the hidden layer. These three 
inputs indicate humidity, voltage and temperature while the 
output marks life estimation [26]. The artificial neural network 
thus created is shown below in Fig. 10. Here, a total of fourteen 
samples are used for training and 10 have been used for testing 
[27]. The number of epochs taken are 1000 and best validation 
performance of 0.35 is observed at iteration 6.

Fig. 11. Fuzzy fodel for intelligent system

Fig. 10. ANN formed 3‒10‒1
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6.2. Fuzzy logic-based intelligent system. The fuzzy infer-
ence system has an advantage over ANN in that it deals with 
linguistic variables and it is comparatively user-understand-
able [28]. Implementation of fuzzy is done using MATLAB 
Simulink [29]. The resultant membership function acquired is 
presented in Fig. 11. The corresponding membership function is 
defined for each input. Here, five membership functions (very 
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low, low, medium, high and very high) are used [30]. Based on 
these membership functions, 25 rules have been designed using 
the FIS rules generator [31].

6.3. ANFIS-based intelligent system. ANFIS is also one 
of the techniques used prominently for intelligent modelling 
[32]. The advantage of ANFIS lies in that it combines the 
properties of both the fuzzy inference system and artificial 
neural networks [33]. The residual lifetime data are uploaded 
into MATLAB Simulink, and then the system is trained and 
tested [34].

Another advantage of ANFIS is that there emerges no need 
to formulate the fuzzy rules as the adaptive system constructs 
the rules itself, through the learning [35]. With the help of the 
rule viewer, residual lifetime can be predicted [36]. The ANFIS 
network formed is presented in Fig. 12.

7.	 Results and discussion

A new composite material has been fabricated using carbon 
black and zinc oxide. The characterization tests confirm its 
composite nature and sensing behavior. The life of the fabri-
cated sensor is analyzed using accelerated life testing. An expert 
system is modelled using artificial intelligence techniques, and 
it predicts the residual life of the sensor. The accuracy of this 
system is measured by keeping the experimental value as the 
reference one, which proves ANFIS as the most accurate arti-
ficial intelligence technique. Comparative analysis of all the 
techniques is presented in Fig. 13.

8.	 Conclusion

A humidity sensor based on zinc oxide and carbon has been 
fabricated and its characterization has been prepared using 
various tests. Complex impedance spectroscopy shows that 
electronic conductivity of the sensor is 6.4 X10‒3 S/cm, at 
the 20% of ZnO and 80% of carbon ratio. Scanning electron 
microscopy has confirmed the morphology of the composite. 
XRD and FTIR have confirmed its nature. The humidity 

Fig. 12. ANFIS intelligent system

Fig. 13. Comparative analysis of all techniques
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sensor thus fabricated shows good performance and the humid-
ity-sensing range of 30% RH to 95% RH. The residual lifetime 
of the sensor is calculated using the accelerated life testing 
technology and an expert system is modelled using a variety 
of artificial intelligence methods. Amongst all the intelligent 
modelling techniques, ANFIS proves the most accurate one, 
with an error rate of 1.1%, whereas for ANN the rate stands at 
9.33% and for FIS it is 14.07%.
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