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Stochastic controllability of linear systems with delay
in control
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Abstract. In the paper finite-dimensional stationary dynamical control systems described by linear stochastic ordinary dif-
ferential state equations with single point delay in the control are considered. Using notations, theorems and methods taken
directly from deterministic controllability problems, necessary and sufficient conditions for different kinds of stochastic relative
controllability are formulated and proved. It will be proved that under suitable assumptions relative controllability of a de-
terministic linear associated dynamical system is equivalent to stochastic relative exact controllability and stochastic relative
approximate controllability of the original linear stochastic dynamical system. Some remarks and comments on the existing
results for stochastic controllability of linear dynamical systems with delays are also presented. Finally, minimum energy control
problem for stochastic dynamical system is formulated and solved.
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1. Introduction

Controllability is one of the fundamental concept in math-
ematical control theory and plays an important role both
in deterministic and stochastic control theory [1-4]. Con-
trollability is a qualitative property of dynamical control
systems and is of particular importance in control the-
ory. Systematic study of controllability was started at the
beginning of sixties, when the theory of controllability
based on the description in the form of state space for
both time-invariant and time-varying linear control sys-
tems was worked out. Roughly speaking, controllability
generally means, that it is possible to steer dynamical
control system from an arbitrary initial state to an arbi-
trary final state using the set of admissible controls. In
the literature there are many different definitions of con-
trollability, both for linear [1–5] and nonlinear dynamical
systems [6-9], which strongly depend on class of dynamical
control systems and the set of admissible controls [10,11].
Therefore, for deterministic dynamical systems linear and
nonlinear there exist many different necessary and suffi-
cient conditions for global and local controllability [6,10–
12].

In recent years various controllability problems for dif-
ferent types of linear dynamical systems have been consid-
ered in many publications and monographs. The extensive
list of these publications can be found for example in the
monograph [10] or in the survey papers [6,11,12]. How-
ever, it should be stressed, that the most literature in
this direction has been mainly concerned with determin-
istic controllability problems for finite-dimensional linear
dynamical systems with unconstrained controls and with-
out delays.

For stochastic control systems both linear and nonlin-
ear the situation is less satisfactory. In recent years the
extensions of the deterministic controllability concepts to
stochastic control systems have been recently discussed
only in a rather few number of publications. In the pa-
pers [4,5,13–16] different kinds of stochastic controllability
were discussed for linear finite dimensional stationary and
nonstationary control systems. The papers [3,4,17,18] are
devoted to a systematic study of approximate and exact
stochastic controllability for linear infinite dimensional
control systems defined in Hilbert spaces. Stochastic con-
trollability for finite dimensional nonlinear stochastic sys-
tems has been discussed in the papers [19–23]. Using the-
ory of nonlinear bounded operators and linear semigroups
different types of stochastic controllability for nonlinear
infinite dimensional control systems defined in Hilbert
spaces have been considered in [8,9]. In the papers [5]
and [24] Lyapunov techniques were used to formulate and
prove sufficient conditions for stochastic controllability of
nonlinear finite dimensional stochastic systems with point
delays in the state variable. Moreover, it should be pointed
out, that the functional analysis approach to stochastic
controllability problems is also extensively discussed both
for linear and nonlinear stochastic control systems in the
papers [2–5,7–9,13–26].

In the present paper we shall study stochastic con-
trollability problems for linear dynamical systems, which
are natural generalizations of controllability concepts well
known in the theory of infinite dimensional control sys-
tems [10,12]. More precisely, we shall consider stochastic
relative exact and approximate controllability problems
for finite-dimensional linear stationary dynamical systems
with single constant point delay in the control described

∗e-mail: jerzy.klamka @polsl.pl

23



J. Klamka

by stochastic ordinary differential state equations. More
precisely, using techniques similar to those presented in
the papers [3,7,25] we shall formulate and prove neces-
sary and sufficient conditions for stochastic relative exact
controllability in a prescribed time interval for linear sta-
tionary stochastic dynamical systems with one constant
point delay in the control.

Roughly speaking, it will be proved that under suitable
assumptions relative controllability of a deterministic lin-
ear associated dynamical system is equivalent to stochas-
tic relative exact controllability and stochastic relative
approximate controllability of the original linear stochas-
tic dynamical system. This is a generalization to control
delayed case some previous results concerning stochastic
controllability of linear dynamical systems without delays
in the control [3,7,25]. It is well known, [10] that control-
lability concept for linear dynamical systems is strongly
connected with so called minimum energy control prob-
lem. Therefore, finally, using quite general method pre-
sented in [10] and under the assumption that stochastic
dynamical system is stochastically relatively exactly con-
trollable minimum energy control problem is formulated
and solved.

The paper is organized as follows: Section 2 con-
tains mathematical model of linear, stationary stochas-
tic dynamical system with single constant point delay in
the control. Moreover, in this section basic definitions of
stochastic relative exact and approximate controllability
and some preliminary results are also included. In Section
3 using results and methods taken directly from deter-
ministic controllability problems, necessary and sufficient
conditions for exact and approximate stochastic relative
controllability are formulated and proved. Section 4 is de-
voted to a study of minimum energy control problem. In
this section we use some optimization methods to solve so
called the minimum energy control problem and to show
the analytic formula for minimum energy control. Finally,
Section 5 contains concluding remarks and states some
open controllability problems for more general stochastic
dynamical systems.

2. System description
Throughout this paper, unless otherwise specified, we
use the following standard notations. Let (Ω, F, P ) be
a complete probability space with probability measure
P on Ω and a filtration {Ft |t ∈ [0, T ]} generated by n-
dimensional Wiener process {w(s) : 0 ≤ s ≤ t} defined on
the probability space (Ω, F, P ).

Let L2(Ω, FT , Rn) denotes the Hilbert space of all
FT -measurable square integrable random variables with
values in Rn. Moreover, let LF

2 ([0, T ], Rn) denotes the
Hilbert space of all square integrable and Ft-measurable
processes with values in Rn.

In the theory of linear, finite-dimensional, time-
invariant stochastic dynamical control systems we use
mathematical model given by the following stochastic or-

dinary differential state equation with single point delay
in the control

dx(t) = (Ax(t) + B0u(t) + B1u(t − h))dt + σdw(t)
for t ∈ [0, T ], T > h

(1)

with initial conditions:

x(0) = x0 ∈ L2(Ω, FT , Rn) and u(t) = 0 for t ∈ [−h, 0)
(2)

where the state x(t) ∈ Rn = X and the control u(t) ∈
Rm = U , A is n×n dimensional constant matrix, B0 and
B1 are is n×m dimensional constant matrices, σ is n×n
dimensional constant matrix, and h > 0 is a constant de-
lay.

In the sequel for simplicity of considerations we gen-
erally assume that the set of admissible controls Uad =
LF

2 ([0, T ], Rm).
It is well known (see e.g. [3,7,25] or [21]) that for

a given initial conditions (2) and any admissible con-
trol u ∈ Uad, for t ∈ [0, T ] there exist unique solution
x(t; x0, u) ∈ L2(Ω, Ft, R

n) of the linear stochastic differ-
ential state equation (1) which can be represented in the
following integral form

x(t; x0, u) = exp(At)x0

+

t∫
0

exp(A(t − s))(B0u(s) + B1u(s − h))ds

+

t∫
0

exp(A(t − s))σdw(s).

Thus, taking into account zero initial control for t ∈
[−h, 0], the solution for t ∈ [0, h] has the following form
[10]

x(t; x0, u) = exp(At)x0 +

t∫
0

exp(A(t − s))B0u(s)ds

+

t∫
0

exp(A(t − s))σdw(s)

Moreover, for t > h we have

x(t; x0, u) = exp(At)x0 +

t∫
0

exp(A(t − s))B0u(s)ds

+

t−h∫
0

exp(A(t − s − h))B1u(s))ds

+

t∫
0

exp(A(t − s))σdw(s)
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or equivalently

x(t; x0, u) = exp(At)x0 +

t−h∫
0

(exp(A(t − s))B0

+ exp(A(t − s − h))B1)u(s)ds

+

t∫
t−h

exp(A(t − s))B0u(s)ds

+

t∫
0

exp(A(t − s))σdw(s)

Now, for a given T > h, taking into account the form
of the integral solution x(t; x0, u) let us introduce the fol-
lowing operators and sets [1].

The linear bounded control operator

LT ∈ L(LF
2 ([0, T ], Rm), L2(Ω, FT , Rn))

defined by

LT u =

T−h∫
0

(exp(A(T − s))B0

+ exp(A(T − s − h))B1)u(s)ds

+

T∫
T−h

exp(A(T − s))B0u(s)ds

and its adjoint linear bounded operator

L∗
T ∈ L2(Ω, FT , Rn) → LF

2 ([0, T ], Rm)

L∗
T z = (B∗

0 exp(A∗(T−t))+B∗
1 exp(A∗(T−t−h)))E{z |Ft}

for t ∈ [0, T − h]

L∗
T z = B∗

0 exp(A∗(T − t))E{z |Ft} for t ∈ (T − h, T ]

and the set of all states reachable from initial state
x(0) = x0 ∈ L2(Ω, FT , Rn) in time T > 0, using ad-
missible controls

RT (Uad) = {x(T ; x0, u) ∈ L2(Ω, FT , Rn) : u ∈ Uad}

= exp(At)x0 + ImLT +

T∫
0

exp(A(T − s))σdw(s)

Moreover, we introduce the concept of the
linear controllability operator [6,7,10,25] CT ∈
L(L2(Ω, FT , Rn), L2(Ω, FT , Rn)) which is strongly associ-
ated with the control operator LT and is defined by the
following equality
CT = LT L∗

T

=

T−h∫
0

(exp(A(T − t))B0B
∗
0 exp(A∗(T − t))

+ exp(A(T − t − h)B1B
∗
1 exp(A∗(T − t − h)))E{ ·|Ft}dt

+

T∫
T−h

exp(A(T − t))B0B
∗
0 exp(A∗(T − t))E{ ·|Ft}dt

Finally, let us recall the form of n × n-dimensional
deterministic controllability matrix [10]

GT =

T−h∫
0

(exp(A(T − t))B0B
∗
0 exp(A∗(T − t))

+ exp(A(T − t − h)B1B
∗
1 exp(A∗(T − t − h)))dt

+

T∫
T−h

exp(A(T − t))B0B
∗
0 exp(A∗(T − t))dt

In the proofs of the main results we shall use also con-
trollability operators CT (s) and controllability matrices
GT (s) depending on time s ∈ [0, T − h], and defining as
follows,

CT (s) = LT (s)L∗
T (s)

=

T−h∫
s

(exp(A(T − t))B0B
∗
0 exp(A∗(T − t))

+ exp(A(T − t − h)B1B
∗
1 exp(A∗(T − t − h)))E{ ·|Ft}dt

+

T∫
T−h

exp(A(T − t))B0B
∗
0 exp(A∗(T − t))E{ ·|Ft}dt

GT (s) =

T−h∫
s

(exp(A(T − t))B0B
∗
0 exp(A∗(T − t))

+ exp(A(T − t − h)B1B
∗
1 exp(A∗(T − t − h)))dt

+

T∫
T−h

exp(A(T − t))B0B
∗
0 exp(A∗(T − t))dt

In the theory of dynamical systems with delays in con-
trol or in the state variables, it is necessary to distin-
guish between two fundamental concepts of controllabil-
ity, namely: relative controllability and absolute control-
lability (see e.g. [6,10], or [12] for more details). In this
paper we shall concentrate on the weaker concept relative
controllability. On the other hand, since for the stochas-
tic dynamical system (1) the state space L2(Ω, Ft, R

n) is
in fact infinite-dimensional space, we distinguish exact or
strong controllability and approximate or weak controlla-
bility. Using the notations given above for the stochastic
dynamical system (1) we define the following stochastic
relative exact and approximate controllability concepts.

Definition 1. The stochastic dynamical system (1) is
said to be stochastically relatively exactly controllable on
[0,T] if RT (Uad) = L2(Ω, FT , Rn) that is, if all the points
in L2(Ω, FT , Rn) can be exactly reached from arbitrary
initial condition x0 ∈ L2(Ω, FT , Rn) at time T .

Definition 2. The stochastic dynamical system (1) is
said to be stochastically relatively approximately control-
lable on [0, T ] if RT (Uad) = L2(Ω, FT , Rn) that is, if all
the points in L2(Ω, FT , Rn) can be approximately reached
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from arbitrary initial condition x0 ∈ L2(Ω, FT , Rn) at
time T .

Remark 1. From the definitions 1 and 2 directly fol-
lows, that stochastic relative exact controllability is gen-
erally a stronger concept than stochastic relative approxi-
mate controllability. However, there are many cases when
these two concepts coincide.

Remark 2. Since the stochastic dynamical system
(1) is linear, then without loss of generality in the above
two definitions it is enough to take zero initial condition
x0 = 0 ∈ L2(Ω, FT , Rn).

Remark 3. It should be pointed out, that in the case
of delayed controls the above controllability concepts es-
sentially depend on the length of the time interval [0, T ].

Remark 4. Since for T ≤ h stochastic dynamical sys-
tem (1) is in fact a system without delay therefore, in the
sequel we generally assumed that the final time T > h.

Remark 5. Since the dynamical system (3) is station-
ary, therefore in fact controllability matrix GT (s) has the
same rank at least for all s ∈ [0, T − h], [10].

Remark 6. From the form of the controllability op-
erator CT immediately follows, that this operator is self-
adjoint.

In the sequel we study the relationship between the
controllability concepts for the stochastic dynamical sys-
tem (1) and controllability of the associated deterministic
dynamical system of the following form

y′(t) = Ay(t) + B0v(t) + B1v(t − h) t ∈ [0, T ] (3)

where the admissible controls v ∈ L2([0, T ], Rm).
Therefore, let us recall the following lemma concerning

relative controllability of deterministic system (3).

Lemma 1. [10]. The following conditions are equiva-
lent:
(i) deterministic system (3) is relatively controllable on
[0, T ],
(ii) controllability matrix GT is nonsingular,
(iii) rank[B0, B1, AB0, AB1, A

2B0, A
2B1, ..., A

n−1B0,
An−1B1] = n,

Now, let us formulate auxiliary well known lemma
taken directly from the theory of stochastic processes,
which will be used in the sequel in the proofs of the main
results.

Lemma 2. [7,21,25]. For every z ∈ L2(Ω, FT , Rn),
there exists a process q ∈ LF

2 ([0, T ], Rn×n) such that

CT z = GT Ez +

T∫
0

GT (s)q(s)dw(s)

Taking into account the above notations, definitions
and lemmas in the next section we shall formulate and
prove conditions for stochastic relative exact and stochas-
tic relative approximate controllability for stochastic dy-
namical system (1).

3. Stochastic relative controllability
In this section, using lemmas given in Section 2 we shall
formulate and prove the main result of the paper, which
says that stochastic relative exact and in consequence also
approximate controllability of stochastic system (1) is in
fact equivalent to relative controllability of associated lin-
ear deterministic system (3).

Theorem 1. The following conditions are equivalent:
(i) Deterministic system (3) is relatively controllable on
[0, T ],
(ii) Stochastic system (1) is stochastically relatively ex-
actly controllable on [0, T ]
(iii) Stochastic system (1) is stochastically relatively ap-
proximately controllable on [0, T ].

Proof. (i) ⇒ (ii) Let us assume that the deterministic
system (3) is relatively controllable on [0, T ]. Then, it is
well known (see e.g. [5,6,10]) that the relative determinis-
tic controllability matrix GT (s) is invertible and strictly
positive definite at least for all s ∈ [0, T − h] [10]. Hence,
for some γ > 0 we have

〈GT (s)x, x〉 > γ ‖x‖2

for all s ∈ [0, T − h] and for all x ∈ Rn. In order to
prove stochastic relative exact controllability on [0, T ] for
the stochastic system (1) we use the relationship between
controllability operator CT and controllability matrix GT

given in Lemma 2, to express E 〈CT z, z〉 in terms of
〈GT Ez,Ez〉. First of all we obtain

E 〈CT z, z〉

= E

〈
GT Ez +

T∫
0

GT (s)q(s)dw(s), Ez +

T∫
0

q(s)dw(s)

〉

= 〈GT Ez,Ez〉 + E

T∫
0

〈GT (s)q(s), q(s)〉 ds > γ

×

‖Ez‖2 + E

T∫
0

‖q(s)‖2
ds

 = γE ‖z‖2

Hence, in the operator sense we have the following in-
equality CT > γI, which means that the operator CT is
strictly positive definite and thus, that the inverse linear
operator C−1

T is bounded. Therefore, stochastic relative
exact controllability on [0, T ] of the stochastic dynamical
system (1) directly follows from the results given in [10].
Moreover, in the next section using fact that the opera-
tor C−1

T is bounded we shall construct the control u0(t),
t ∈ [0, T ] which steers stochastic dynamical system (1)
from given initial state x0 to the desired final state xT at
time T .
(ii) ⇒ (iii) This implication is obvious (see e.g. [10] and
[3,4,8]).
(iii) ⇒ (i) Assume that the stochastic dynamical system
(1) is stochastically relatively approximately controllable
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on [0, T ], and hence its controllability operator is posi-
tive definite, i.e. CT > 0 [10]. Then, using the resolvent
operator R(λ,CT ) and following directly the functional
analysis method given in [7,21,25] and for stochastic dy-
namical systems without delays we obtain that determin-
istic system (3) is approximately relatively controllable on
[0.T]. However, taking into account that the state space
for deterministic dynamical system (3) is finite dimen-
sional, i.e. exact and approximate controllability coincide
[10], we conclude that deterministic dynamical system (3)
is relatively controllable on [0, T ].

Remark 7. Let us observe, that for a special case
when the final time T 6 h, stochastic relative exact or
approximate controllability problems in [0, T ] for stochas-
tic dynamical system with delay in the control (1) are
reduced to the standard stochastic exact or stochastic ap-
proximate controllability problems for the stochastic dy-
namical system without delays in the control [10].

Corollary 1. [7,25]. Suppose that T ≤ h. Then the
stochastic dynamical control system (1) is stochastically
relatively exactly controllable in [0,T] if and only if

rank[B0, AB0, A
2B0, ..., A

n−1B0] = n,

Corollary 2. [25]. Stochastic dynamical system
without delay (B1 = 0) is stochastically exactly control-
lable in any time interval if and only if associated deter-
ministic dynamical system without delay is controllable.

In the next section we shall formulate and solve mini-
mum energy control problem for stochastic relative exact
controllable stochastic dynamical system (1).

4. Minimum energy control
Minimum energy control problem is strongly connected
with controllability concept (see e.g. [1,2] and [10] for
more details). First of all, let us observe, that for exactly
controllable on [0, T ] linear control system there exists
generally many different admissible controls u(t), defined
for t ∈ [0, T ] and transferring given initial state x0 to the
desired final state xT at time T . Therefore, we may ask
which of these possible admissible controls are optimal one
according to given a priori criterion. In the sequel we shall
consider minimum energy control problem for stochastic
dynamical system (1) with the optimality criterion rep-
resenting the energy of control. In this case optimality
criterion has the following simple form

J(u) = E

T∫
0

‖u(t)‖2
dt

Theorem 2. Assume that the stochastic dynamical
system (1) is relatively exactly controllable on [0,T]. Then,
for arbitrary xT ∈ L2(Ω, FT , Rn) and arbitrary σ, the con-
trol
u0(t) = B∗

0 exp(A∗(T − t))E

×

C−1
T

xT − exp(AT )x0 −
T−h∫
0

exp(A(T − s))σdw(s)

 |Ft



for t ∈ [0, h]

u
0
(t) =

(
B

∗
0 exp(A

∗
(T − t)) + B

∗
1 exp(A

∗
(T − h − t))

)
× E

C
−1
T

xT − exp(AT )x0 −
T∫

T−h

exp(A(T − h − s))σdw(s)

 |Ft



for t ∈ (h, T ] transfers the system (1) from initial state
x0 to the final state xT at time T > h.

Moreover, among all admissible controls ua(t) trans-
ferring initial state x0 to the final state xT at time T > h,
the control u0(t) minimizes the integral performance in-
dex

J(u) = E

T∫
0

‖u(t)‖2
dt

Proof. First of all let us observe, that since the
stochastic dynamical system (1) is stochastically rel-
atively exactly controllable on [0, T ], then the con-
trollability operator CT is invertible and its inverse
C−1

T is a linear and bounded operator, i.e. C−1
T ∈

L(L2(Ω, FT , Rn), L2(Ω, FT , Rn)). Substituting the control
u0(t) into the solution formula of the differential state
equation, one can easily obtain

x(t; x(0), u
0
(t)) = exp(At)x0

t∫
0

exp(A(t − s))B0B
∗
0 exp(A

∗
(t − s))

×E

C
−1
T

xT − exp(AT )x(0) −
T−h∫
0

exp(A(T − s))σdw(s)

 |Fs ds

+

t∫
0

exp(A(t − s))σdw(s)

for t ∈ [0, h]

x(t; x(0), u
0
(t)) = exp(At)x(0)

+

t−h∫
0

(
exp(A(t − s))B0B

∗
0 exp(A

∗
(T − s)

+ exp(A(T − h − s))B1B
∗
1 exp(A

∗
(T − h − s))

)
×E

C
−1
T

xT − exp(AT )x(0) −
t∫

t−h

exp(A(T − s)σdw(s)


 |Fsds

+

t∫
t−h

exp(A(t − s))B0B
∗
0 exp(A

∗
(T − s))

×E

C
−1
T

xT − exp(AT )x(0) −
T−h∫
0

exp(A(T − s)σdw(s)

 |Fs ds

+

t∫
0

exp(A(t − s))σdw(s)

for t ∈ (h, T ]
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Hence, for t = T we have

x(T ; x(0), u
0
(t)) = exp(AT )x0

+

T−h∫
0

(
exp(A(T − s))B0B

∗
0 exp(A

∗
(T − s)

+ exp(A(T − h − s))B1B
∗
1 exp(A

∗
(T − h − s))

)
×E

C
−1
T

xT − exp(AT )x0 −
T∫

T−h

exp(A(T − s))σdw(s)


 |Fsds

+

T∫
T−h

exp(A(T − s))B0B
∗
0 exp(A

∗
(T − s))

×E

C
−1
T

xT − exp(AT )x0 −
T−h∫
0

exp(A(T − s))σdw(s)

 |Fs ds

+

T∫
0

exp(A(T − s))σdw(s)

Thus, taking into account the form of the operator CT

we have

x(T ; x(0), u0(t)) = exp(AT )x0 + CT C−1
T

×

xT − exp(AT )x(0) −
T∫

0

exp(A(T − s))σdw(s)


+

T∫
0

exp(A(T − s))σdw(s)

= exp(AT )x0 + xT − exp(AT )x(0)

−
T∫

0

exp(A(T − s))σdw(s)+

T∫
0

exp(A(T − s))σdw(s) = xT

Therefore, for t = T we see that the control u0(t)
transfers dynamical system (1) from given initial state
x0 ∈ L2(Ω, FT , Rn) to the desired final state xT ∈
L2(Ω, FT , Rn) at time T > h.

In the second part of the proof using the method
presented in [10] we shall show that the control u0(t),
t ∈ [0, T ] is optimal according to performance index J .
In order to do that, let us suppose that u′(t), t ∈ [0, T ]
is any other admissible control which also steers the ini-
tial state x0 to the final state xT at time T . Hence using
controllability operator defined in section 2 we have

LT (u0(·)) = LT (u′(·))

Subtracting from both sides and using the properties
of scalar product in the space Rn and the form of control-
lability operator LT we obtain the following equality

E

T∫
0

〈
(u′(t) − u0(t)), u0(t)

〉
dt = 0

Moreover, using once again properties of the scalar
product in Rn we have

E

T∫
0

‖u‘(t)‖2
dt

= E

T∫
0

∥∥u‘(t) − u0(t)
∥∥2

dt + E

T∫
0

∥∥u0(t)
∥∥2

dt

Since E
T∫
0

∥∥u′(t) − u0(t)
∥∥2

dt > 0, we conclude that

for any admissible control u′(t), t ∈ [0, T ] the following
inequality holds

E

T∫
0

∥∥u0(t)
∥∥2

dt 6 E

T∫
0

‖u‘(t)‖2
dt

Hence, the control u0(t), t ∈ [0, T ] is optimal control
according to the performance index J , and thus it is min-
imum energy control.

5. Concluding remarks
In the paper sufficient conditions for stochastic relative ex-
act controllability for linear stationary finite-dimensional
stochastic control systems with single constant point de-
lay in the control have been formulated and proved. These
conditions extend to the case of one constant point delay
in control, known stochastic exact controllability condi-
tions for dynamical control systems without delays re-
cently published in the papers [7,8] and [25]. Finally, it
should be pointed out, that using the standard techniques
presented in the monograph [10] it is possible to extend
the results presented in this paper for more general non-
stationary linear stochastic control systems with many
time variable delays in the control. Moreover, the ex-
tension for stochastic absolute exact controllability and
stochastic absolute approximate controllability in a given
time interval is also possible.
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