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Abstract. In the paper the squared voltage-current functionals are minimized, which represent the global power losses in the network. In tha
way it is possible to find the voltage-current distributions on the net without the use of immitance operators and basing only on the Kirchhoff
laws. Farther the individual branch parameters are defined in the syntheses process. Many optimal power analysis examples are also showr
illustrate the thesis included in the paper.
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1. Introduction

In the first part of the present article [1] the existence of certain
equivocation was proved when analyzing power distribution in
the one loop circuit. Such circuit is used in a power trans-
mission process carried out e.g. by a single ideal overhead
line. It was proved that there exists an infinity of possible cur-
rent signals which assures constant voltage signal on a source
and transmits the prescribed active power to the load. Using
only some optimization criteria we get an unequivocal solu-
tion. This fact is of both theoretical and practical significance.

It means that the transmission of power can meet various op- The problem is obviously equivocal without the minimum
timization criteria and satisfy various demands of sources aRdngition. For the functional (a):

receivers. In the first part of this article some such criteria were

Fig. 1. The distribution of optimal inner currents in the box

considered, but its number is much bigger [1,2]. It then seems J@) = 24| + [i| + [1 — 4| — min
that the optimization approach lays the right direction to dewhere: is the free variable. In the intervals we get (Fig. 2)
velop power quality and compensation theory [3-8]. Fli)=-3i—1 for i< -2

The present study attempts to solve a complex problem of
signals distribution in a transmission power net according to )
some optimization criteria. In comparison with one loop cir- f@)=i+3  for 0<i<l
cuit, where the optimal signals are only one dimensional time fli)=3i+1 for i>1
depending ones, in the complex branched net the signals dgiq the minimum point we reach for= 0.
pend both on time and space dimension [2]. So far, the circuit
theory has not dealt with such problems. 10

To make the problem clearer some examples will be pre- 9 \ \
sented at the beginning. ]

Example 1.Let us find the constant currents distribution in the 7 \ \ /{)
box with prescribed constant values of currents in the inputs as 6 /
to minimize the following functionals: (O8] 2

a) the sum of the module of inner branch currents (so called 4
‘taxi-norm’) 3
b) the sum of squared inner branch currents (the Euklides 2

1
0

f@@)=—i+3 for —2<i<0

norm)
This task, in fact, consists of some norm minimization of 5 4 3 92 1 0 1 2 3 4 5

the inner currents distribution. It is worth noting that there are i

no branch immittances used. Fig. 2. The functionals (a) and (b)
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For the functional (b) This time the functional of the inner branch power is mini-
) mized, which is given by the formula
fG) =2+ +i*+ (1 —14)? — min
F(@) = v2(i — 51)% + (v1 — v2)2%% + v2(i + j2)? — min
wherei is the free variable.
The minimum condition for the above task is

the minimum point is foi = —1/3. Thus the spatial distribu-
tions of inner currents are

2., .2 L2 2.
2(v] +v5 — v1vV2)i = Vij1 — V3 ja.

1
o>

® This gives the minimum point
_ V31— v3j2
v} + 03 — Vg
The solution almost always exists because of the Schwarz
inequality
v? 4+ 3 — |vivg| > 0.
The only exception occurs when bad conditioned task
meets weekly the Schwarz inequality

V3 4 02 — |vivg| = 0.

Example 3. Let us assume constant voltages, (2) and cur-
rents (1, j2) on the input and output of the box. We need to
find the distribution of the inner currents which minimize the
sum of the squared inner branch powers.

The equivalent circuit is shown in Fig. 5.

Fig. 3. The optimal spatial distributions of inner currents minimizing
the functionals (a) and (b)

Example 2. Let us assume constant voltages, (2) and cur-
rents (1, jo) on the input and output of the box. We needto @
find the distribution of the inner currents which minimize the
sum of the squared inner branch powers. Is there always a so-
lution to this task?

The equivalent circuit is shown in Fig. 4.

Fig. 5. The equivalent circuit of the box

This time the functional of the inner branch powers is min-
imized in the direction of free variable

Fw) = g3 (u+v1)? + (1 + j2)*u® + j3 (u+ v2)* — min.

Thus the minimum condition is

2047 + 75 + jrja)u = —jivr — j3va.

Which gives the minimum point
_ Jiv+j3vs

It 43+ Gija

This solution also almost always exists if the Schwarz in-

equality is met

Ji 443 — ljrjal > 0.
In the general situation the problem of finding the optimal

inner signals concerns a multi terminal network which is de-
Fig. 4. The equivalent circuit of the box picted in Fig. 6.
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v J and after decomposition @7 C matrix on four submatrices

B B ] .
T T 11 D12 | | ]

. min
"] {le B22] L} -

Multi-port network we get

jTBllj + jTBlgi + iTBglj + iTBQQi — min. (4)

Fig. 6. The multi terminal network with prescribed input output sig-  Applying variation method to the (4) we get the following
nals minimum condition

T . .T . .T . .T .
Let us consider the situation when the set of curjeand 37 B120i + 6i" By j + 200" Bagi + 01" Bzdi >0 (5)
voltagew signals on ports is given. It is possible to find thefor any 5.
inner branch signal distribution according to the following the-  The condition (5) is met when
orem.
.T . TN -
For the assumed inner structure of the network: 89" [2Basi + (Bo1 + Biy)j] =0

a) there exists an unequivocal voltage distribution on the innd@r any ds.
branches for which the sum of squared the instantaneous Thus, becaus@,; = Bf,, thei current meets the linear
voltage values is minimal equation

b) there exists an unequivocal current distribution on the inner 2B22i +2B21j =0 (6)

branches for which the sum of the squared instantaneoygy since the matrixBs, is positively definite we get the
current values is minimal. unique solution

In other words we can say: for the assumed inner structure of i =—By, Bo1j. (7)
the network there exist unique vectors o_f t_he branch currents Analogically we can choose voltage distributiarby min-
and branch voltages whose norms are minimal. imizing
Proof. In order to determine the free voltages of the net we
must use the topology theorems. We need to:
1) choose the tree starting from the port branches or using (1)
2) the sets subtraction gives:
TREE (of multi terminal network), PORT BRANCHES@so-

UTU — min (8)

v Byv + v Bisu + vl Byyv + u” Basu — min (9)

morphic to v) = FREE-BRANCHESisomorphic tou) = the quested vectar meeting minimum condition (9) is calcu-
TREE-BRANCHES, OUTER TREE-BRANCHES INNER lated from
TREE-BRANCHES 2Bosu + 2Boyv =0 (10)

Thus using cut-set matri? we can calculate the inner

. T . N
branch voltage&’ depending on port voltagesand free volt- where By, By, are submatrices aP™ P and By, is posi

tively definite matrix. Thus we get the unique solution

agesu.
. this completes the proof.
In order to calculate free currents we use links: Example 4. Let us consider the three-port network depicted in

1) the prescribed branches (ports isomorphicjjoare the Fig. 7.
links. It is needed to add the rest of links as to make the
complement be the tree,

2) then: GIVEN LINKS= INNER FREE CURRENTS =
LINKS\ OUTER LINKS

Thus using loop matrixC' we can calculate the inner
branch currentd depending on port currengsand free cur-
rents:.

Icm (2)

The first minimization task is to choose the vectty min-
imize norm

ITT — min. (3) Fig. 7. The graph of three-port network
Thus under (2) it results that . . ,
The set of ports {1, 2, 3} is isomorphic to prescribed vec-
] , torswv, j; the set of the inner tree branches {5} is isomorphic
T T T ¥i »J
Ko L} — min to u, as it is shown in Fig. 8.
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41 -1 1 -1 1
5 1
6 -1 -1 -1 -1
C= 7 1
8 1 -1 1
9 1
10 -1 -1

So theB submatrices are

Fig. 8. The tree of the three-port network

1 2 3, 5 7 9

. ) : , 11 -1 0/ 1 0 -1

The cut-set matrixP we find using the scheme shown in 2l-1 3 1/l—2 1 3

1 2 3 5 51 5 ol 3 0 2 Bj1 By
411 700 1 2/ 03 1
> 1 9|-1 3 1|2 1 4
p_ 8 1 1
7 1 Then the vector of inner currents is set by linear equations.

ot 1 3027 [is ~1 2 0] [a
03 1| |ir|=| 0-1-2]| 14
10 -1 1 -l 21 4] |4 1-3—1] |is

Thus the block ofB matrices have the following definition
10

Consequently the optimal current distribution meeting

. 2 3| s 024(¢a)2—>minc0ndition is found.
12 0 0/-1] 5 g

PTP= 2| 0 3 -1| 2|= {B; BZ] 2. Introduction to the timevarying spatial
g _(1) —; j —i optimization

) ) In the previous Section the optimal spatial distribution of the
Then the solution of set of equations, here reduced to thgner signals (on condition that port signals are given) was ana-

single equation, is: lyzed. Now we will consider timevarying spatial distributions.
uy Besides the spatial coordinate (the branch number) the discrete
us = 0.25[1 — 21] | us | = 0.25(us — 2us + us). time coord_lnate will be mtroduced. _
us We define the following symbolsy, o, i, —two dimen-

sional discreet voltage and current signals, where:discrete
10 i _ di
Thus the optimal voltage distribution meetiig (i )2 — time sample numbeky — discrete space number (the branch
—t number).
mincondition is found.

I = [(io,i1,..)a) = [cola{col, [in.a]}]

o
I, i1,
- I:a = . 20 ]
Liv_1]q
Fig. 9. The links (dotted lines) of the three port network L

where:a € INNER BRANCHES: € {0,1,.., N — 1},
The choice of three port network links (from Fig. 7) isj = [cola{col,, [in,o]}], & € OUTER LINKS
shown in Fig. 9. The loop matrix has form ne{0,1,...N —1},
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i = [cola{coly [in.a]}], @ € INNER LINKS

n e {0,1,....N — 1}, U'U = Z Z (upar)?

and n  a€INNER BRANCHES

U = [cola{col, [tn.q]}],a € INNER BRANCHES )

nef{0,1,..,N—1}, = >, > (una) (17)
a€INNER BRANCHES\ 7

v = [colg{col, [tn.a]}],a € OUTER TREE-BRANCHES
ne{0,1,..,N—1},

> UG

u = [cola{col, [tn.a]}], o € INNER TREE-BRANCHES o€INNER BRANCHES
nef{0,1,..,N—1}. where .
The instant values of the branch signals for n sample will I = coln [ina], Ua = coly [un,a] (18)
be also helpful: stands for current and voltage normsxebranch. Thus we can
I, = coly, [in.o] @ € INNER BRANCHES formulate the theorem 1 in a different way.
Jn = cOly [in,o] @ € OUTER LINKS THEOREM 1. For the assumed inner structure of the net-
in = coly [in.a] @ € INNER LINKS work there exist the unique voltage signal distribution assur-
U, = cola [un.] @ € INNER BRANCHES ing that the sum of squared rms voltage values of the inner

branches is minimal, and there exist the unique current signal

v, = 0ly [t o] @ € OUTER TREE-BRANCHES S .
’ distribution assuring that the sum of squared rms current values
Un = colq [un,o] o € INNER TREE-BRANCHES of the inner branches is minimal.

Using the foregoing definitions, the connections (1) and (2) The norms

take the general form: IL.|)? = ITT, (19)
U.|?=U'U, 20
U:[P]H ) Lol (20)
u can be called the spatial rms values.
Thus the Theorem 2 states that the following coefficients
—1c|? S, = /171, \/UTU, — min 21
I [C]M (13) 4 aUn — (21)
(apparent instant power of the net) or
where[P], [C] stands for the multiplied loop and cut-set ma- JITT ST :
trices where the scalars 0,1 are substituted byMhe N zeros S=vIT Uy — min (22)
and eye matrices. (apparent time-spatial power of the net) should be minimized.
Widening the problem (3), (8) on time coordinate we ge}3 . S
the time depending solutions (see (7),(11)) . The power functionals minimization
] . ] The minimization of the squared norm of instant power distri-
i=—[Ba] [Balj (14)  pution in the net is the much more important issue. Itis because
the functional value represents the total instant power value of
u = —[By] ' [Ba]j (15)  the net, which is a practical information, and it is the basis

o ~ to some important generalizations. Using the vector notation
where([Bs], [Ba1] stands for the multipliedB;,, B2y matri-  from Section 2 we make the following new notation:

ces.
. . iag([I) diag|I,, 2
For a samplex € {0,1,..., N — 1}, in a specific moment pdiag( )dfg[ ] (23)
of time, the foregoing equations change to the form is the multiplicated pseudo-diagonal matrix, whére— col-
. _ . umn matrix ofa — value spatial-time distribution, and
i =~ [Boa] "} [Boi) 4 (14) e spaa
pdiag(I) diag(diagl,) (23)
—1 . @
u=—[B] " [Ba]jn (15) s the multiplicated diagonal matrix.

which is the same as (7) and (11). |owi1r—12;es?rii?:roe_- diagonal and diagonal matrices have the fol-

We can define the norms of the time-spatial signal distribu-

tion
ITI _ Z Z (ina)2 I ‘\

n  a€INNER BRANCHES I \'
. 2 * >
2 : <§ :(Z"a) > (16) ". "0
a€INNER BRANCHES\ n e, *s,

LA I N

a€INNER BRANCHES * - o -
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In this Section we minimize the following functionals:

— sum of the squared instantaneous branch powers inside the

multi-port-network:

U7 (diagI)*U = I (diagU)?I — min (25)

—sum of the squared apparent branch powers inside the multi-

port-network:

U7 (pdiagU)(pdiagI)" I = I (pdiagI)(pdiagU)”

x U — min

(26)

Condition (25) has the following matrix structure:

N I
N I
>

[|—| |—||—|]

therefore it is equivalent to minimize instantaneous functiona\lﬂ'/here B
11,

Ul (diagl,)*U,, = I!diag(U,)*I,, — min (27)

However condition (26) has a structure:
I — I
Iy
I U, — :[Ia

I |1

and it means the minimization of

U,
[|—| — |—|]

UTcollU,I%1,) = I"colI, UTU,)
= U diag||L,|[]*U
= I" diag||U, [>T
=> UIULI!I, (28)

«
=> IIIU.U,

«
= > [ILIPIUIP.

First we'll describe minimization of the functional (25) or
(27). Minimizing this functional with fixed current vector we
found the following problem (the discrete time index is omit-

ted)

VAR UTQU — min (29)

where

Q = (diagl)? (30)

U:P[Z] (31)

Differentiating vector (31) and taking into consideration
that subvectow does not change, it yields:

0
wor[2]. o
The differential of functional (29) has form:
(UT +aUTQ(U +dU) =UTQU + UTQdU (33)

+dUTQU + dUT QdU.

Taking into consideration the expressions (31) and (32) we
get the minimum condition:

[UTUT]PT QP + [OTduT]PTQP [(Z} —0
or
By 4] o 3 )

(34)
Bi,, B, A stand for matrices (blocks) resulted
from division of matrix P” QP into four parts:

B B
PTQP = [ Bll fﬂ ) (35)
From (34) follows that
BL =B (36)

applying (35) and (36) in (34) yields the minimum condition:

B A ||du

for anydu.
Taking into consideration that components in (37) are mu-
tually transposed, the minimum condition takes form:

A du” (Au + Bv) =0
du

o u) {BH B“H 0 ] + [du” B; du” A] m —0 (37)

(38)

Expression (38) is met if and only if the sought vector u
meets the linear equation:

Au+Bv=0 (39)

thus
u=—-A"'Bv (40)

As it was shown in [2] the elements of block matridg@s A
can be calculated by the following equation

B, B [
B | - egre,

= Z sgn(y)(L,)”

ve{a}n{B}
TREE - BRANCHES

The symbols{«a}, {3} stand for cut-sets corresponding to the
appropriate tree branches § The set{a} N {3} stands for
logical product of two branch sets [2]. It follows that elements

(41)

is treated as symmetrical positively definite weight matrix, andf matrix A and B are defined by the following formulas

112
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It means that the poink, , U, is the only minimum point

Anp = Z sgny)(Z,)? (42)  of functional f(U, I') and also the only limit point of sequence
aefadnis} (53) of functional. Thus minimum poi?, I, could be pos-
sibly received as a limit of sequence:
— 2
Bag = Z Sgrv)(Ly) (43) Io; Uy, 1 Uy, I . Uy, Ly . (54)
TNERoUTER -
TREE - BRANCHES definite as follows:
Similarly the problem
. ) _ U, = oY1), I,=o'(U))
VAR I (diagU)“I — min (44) U s
I Uy = 9" (), I.= % (Us)
has solution e (55)
_ &V _ &l
Ai+Bj=0 (45) U,= 9" (I,-1), I,=2 (Uy,)
thus U’ﬂ+1 = QU(In)a In+1 = QI(Un+1)
i=—A"'Bj (46) It results from (55) that voltage and current sequences can
where be determined separately with help of composite functions
Unt1 = @U[@I(Un)] = oo él(Un) (56)
Pl — (o7 (diag))*Clas
B A ”
(47) I, = &' [8Y(1,)] = ¢ o &Y (I, 57
= > sgy)(U,)? =@l ) S
ve(a1n (8} In Fig. 10 iterative functiongd" (I) and (U were il-
then lustrated in block diagrams.

Aag= Y SI)(U,)? (48) T@T

vE€{a}n{B}
INNER LINKS

I u=-A4 ]BU U:ﬁ[(I 1=-A ]B] U:QIcQU(I)
2
Bus= 3 sgniy)(U,) (49) =| = . =
ve{a}n{B) L, U,
INNER s TER —[ 1o —[ 1o

Branch Branch
conductances resistances

Further functional (25) will be marked by the symbol:
— T (di 217 — 7T (i 2
fUI) =U"(diagl)°U = I" (diagU)"I (50) Fig. 10. Interpretation of iterative functiond’ (I') and & (U) illus-
Expression (29), (40), (31), (44), (46) define functions: trated in block diagrams
I—-u=—[Ap(I)] 'Bp(I)v —

The first block symbolizes voltage analysis of the circuit
(51)  fed by voltage sources with the branch conductance equal to

_ V| _ U
Uu=p {u] =& () the squared branch currents. The element®3 are

and
Aag = > sgn(y)(I,)’ (58)
U—1= —[AC(U)}ilBC(U)j — INNER TRe C SeAcHES
j (52)
1-c|i]-#w) Buy= > sg()(I,)? (59)
NNERIOUTER
Thus for anyI, functional f (U, I) of U variable has the TREE - BRANCHES
unique minimum: min f(U, Iy) in pointU = U; as well The second block performs current analysis of circuit fed
U=U,

by the current sources from ports j with branch ‘resistances’

for anyUy, functional f (Uy, I) of I variable has the only min- equal to the squared branch voltage. The elemdniB are

imum: Irrjiln f(Up,I)inpointI =1I,.

Thus trlle following sequence of inequality is met: Aup = Z Sgr(V)(Uv)z (60)
I”:“ﬂ f(Uo, I) > U'Ei,?lf(U’Il) > 1”:"12 f(UL,I) RN
> min f(U, I)... Bag= Y sgy)(Uy)? (61)
_ _ 53 yE{a}n {8}
> Urnllr]-] f(U7 I+) = Im|ln j»’(U_F7 I) ( ) INNERIOUTER
o - Example 5. The two port network with prescribed DC currents
- Un;'& In:“}l fUI). and voltages on ports is shown in Fig. 11.
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U, -U U- U,
I e I «— b
o> {7 —>e
L-1 I-b
Uy U Us

Fig. 11. The two port network with prescribed port signals

20 T T

Starting value:

I=-10 N e 4
15t Values on ports : 1

L L U Uy
10-3 15 10

iy =1
5t B
-10 ‘
40 -20 0 20 40

I

Fig. 12. Functiond?, # and the iteration process while minimizing

the power functional

In the foregoing figure the current i and voltage u signals
are marked. The power functional being minimized is

fu,d) = i3 (ug —u)? +u?(iy — 1) +i% (u—ug)* +us (i —ig)*
(62)
The functions®Y (i) and &’ (1) minimizing the functional
(62) with fixedu, ¢ signals have form:

i2uy + i%u,

dY(i)=1/2
=12

= u®PY(4) (63)
iyu? +iyU3

S(U)=1/2-L 22
) /u2+uu2+u§

=: %) (64)

The process of appropriate iterations (55) or (56) and (57)
is shown in Fig. 12.
Example 6. Figure 13 shows graph of two-port network with
1, 2 ports with chosen set of links 1, 2, 3, 6 and tree branches
1,2,5.

Fig. 13. The chosen set of links 1, 2, 3, 6 (a) and tree branches 1, 2, 5
(b)

The loop and cut-set matrices with external and internal
links and tree branches marked, as well as current and voltage
coordinates have form:

Ji J2 | i3 e v U2 us
OUTER LINKS INNER LINKS OUTER INNER
TREE-BRANCHES TREE-BRANCHES

C= 1 2| 3 6 = 1 2 5
3 1 3 +H1 1

4 -1 -1 4 1
5 -1 1 5 1
6 1 6 1 -1

7 -1 1 711

It yields cut matrices of links and tree branches (compare
Egs. 60,61,58,59):

Bull. Pol. Ac.: Tech. 54(1) 2006
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3 6 5
A3 [BETY [ {5 5 Q = [diagU — Up)Zonst (73)

6 {-5} | {4,5,6}

has solution in form of a set of linear equations:

1 2 1 2
B:3 [(7) 5 Ai = ~Bj +a’ (74)
6 {4} where
On the basis of cut matrices it is noted the set of linear )
equations determining the iterative functions (38) and (37): Aag = Y SOM)(U; —Usy) (75)
u% + u% +'LL% _Ug 'L.3 _ U% ’Ylfll{lg?}[:l\gfs)
U= 2 PR Ry e e 2 9
—us uy +us +ug || te uy Bap = Z sgn(v)(Uy — Uy ~) (76)
g1 | [ is e ok
- =1 =— LINKS
J2 %6 0 )
j Aap = Z sgn(v)(Uy — Uo,) " Ioy (77)
I=C M = o/(U) " NRER ke
Warning: both in (65) as in remaining expressions the time
| > BB+ 12 [us |=[B ] 2] :1 =u=[us index was omitted.
1

5. Minimization of complex variable
functionals

C e . . If Uy, I, stand for spatial distribution of voltages and currents
4. Minimization of the power differential in the net, then the functional :

functional

Introducing inner standard vectors for UO voltage and 10 cur-
rents we minimize differential power functional:

P [Z} = oU(I) = oY o &/ (U).

> Ui I Uy = Utdiagl,|*U = I"diagUa|*T  (78)

is a sum of squared apparent powers of net elements.
(U — Up)T[diag(T — I)]*(U — Uy) = (I — I)" However ifU,, o, I, . stand for spatial frequency distribu-
x [diagU — Uy)]2(I — I,) — min. (65)  tion ofa complex variablen(— discreet frequency coordinate,

« — number of branch'), then the functional:
Minimization of a partial-voltage functional )
S U aInaly osUna = Y Uy diag|L, o|*U,
n «

(U -Uo)"Q(U —Up) — min, (66) "o 79)
u var .
= I'diag|U, . |*I,

where ; o 1Un.ol

. 9 is an average (along frequencies) sum of squared apparent

Q = [diagT — Io)|const (67) powers of circuit.
Thus the necessary and sufficient minimum condition is Minimization of functional (79) is equivalent to minimiz-
formulated as: ing functional:
— 0
Au=—-Bv+ta, (68) U diag|I, o|?U, = I” diag|Uy.o|*I, — min  (80)

(68) whereA, B matrices and: vector are defined as: .
for everyn separately. Thereby the problems of functionals

Anp = Z sgn(y)(I, — Ip)? (69) r_n|n|m|zat_|0n (78) gnd _(7_9) agree. BL_JlIdmg_ method pf |t¢ra-
yefainis) tive function for minimizing this functional is shown in Fig.
NNER TREE-BRANCHES 14 with the help of block diagrams.
Bap = Z sgny)(4y — 10,7)2 (70)
ve{a}n{p} ’—@—‘
INNERNOUTER v ]
TREE - BRANCHES
ady = > sgn) Iy — Ios)? (71) I |u=-A'"Bv|v-out]| i=-A"'Bj lu_a.a01)
ye{a}n{B} > > >
INNER TREE-BRANCHES I? Ug
— e . . . ! !
Similarly minimization of partial -current functional: —[ 1o —1 1o
T . Branch ~ Branch ~
(I - IO) Q<I - IO) z?:lrmm’ (72) conductances resistances
where Fig. 14. Block diagram for determining iterative function
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The elementsAd, B marked on the foregoing block dia- Minimization of functional (26) which is the sum of

gram are defined as:

squared apparent powers of branches inside the multi port net-
work proceeds as follows:

Anp = Z sgn(v)| L, > (81) ~ From comparing structures (25) qnd (28) follows thgt funp-
ve{a}n{s} tional (28) can be minimized according to analogous iterative
INNER TREE - BRANCHES algonthm
Bag= Y sgr(y)|L|? (82) I — VAR U diag||I||)U — min
ye{a}n{s) U o
INNERNOUTER
TREE - BRANCHES
— 2
for the first block, and: Aap= Y sgry)||L|
vE{a}n{B}
INNER LINKS
Aap= Y sgry)|U, (83)
y Bag = sgr()|| |2
7|ﬁrflgR}L|r\{n?s} we{;{ﬁ} i
INNERNOUTER
S sat[u, (34)
Ba@ = sgny ~
ve{a}n{B} u=—-A"'Bv
INNERNOUTER
LINKS

When Laplace’s transform of signals is used, then the min-

imization functional becomes:

Z%Ua(fs)la(s)[a(fs)Ua(s)ds — min
*q

(85)

U=P {:’J = &U(I)

VAR I diag||U||*]T — min

where circulation is taken on contour consisting of imaginary App = Z sgn(y)||U, |2

axis and semicircle in left (or right) complex plain with the ray v€{a}nin}

approaching infinity- —o. It is easily shown that minimizing

of functional (85) is reduced to minimizing: Bag = Z sgr(7)||Uv\|2
yE{a}n {8}

[U(_S)]TquIa(S)Ia(_S)]U(S) =[I(~s)]"

x diagU, (s)Uqa(—$)]I(s) — min

(86)

INNERNOUTER
LINKS

i=-A'Bj—-I=C m =d'odV(I) (93

for every s separately. Thus the set of equations meeting thigleed, it has analogous structure as functional (50), that is:

optimization task take form:

I = Tu, T 4
A(s)u(s) = —B(s)v(s) (87) fw. D ;Uo‘ Ualo 1o (94)
where It means that for any fixed, functional f(U, I,) of U
variable reaches the unique minimum, and for &hyfunc-
_ _ tional f(Uy, I) of I variable also reaches the unique mini-
Aagp(s) = we{;m SgrY) 1y () 15(=s) (88) mum. Thus the sequence of inequality (53) is valid, then it
INNER TREE - BRANCHES follows that functional (94) has the unique minimum point at-
tainable with the help of iterative function (93).
Bag(s)= Y sgy)I(s)I,(=s)  (89) Norms in the formulas (93) are defined as follows:
yE{a}n{g}
TREE -BRANGHES N_1
and lUaI? = Z (Unm,a)? (95)
m=0
A(s)i(s) = —B(s)j(s) (90) in discrete time domain and
where T
10l = [Uate)a (96)
Aap(s) =Y SOMYU,(s)Uy(—s)  (91) 5
"RNER (ks in continuous time domain.
Procedure (93) is valid in frequency domain, too. Ifiby
Bagp(s) = Z sgr(v)Us (s)U;(~5) (92) " \ve mark discrete index of frequency, then applying the Parce-
WREROU TR vall theorem we can write

116
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or
N-1
UL =D [Un.al 07)  (loal? + (w2l + [Joz = v1l*) Is = [[v1[[*51 — [Jo][*52
m=0 which yields
However in continuous frequencies domain:
1 5 = H”1||2j1 - H1’2H2j2
1Ualf* = ﬁj]{Ua(—S)Ua(S)dS (98) o111 + [[04]1* + [Jo, — v, |
q

(see example 2)

Example 7. Figure 15 shows graph of two — port network of ~ Example 8. Figure 16 shows the two-port network of T
II type, with a chosen set of links and tree branches. type, in the graph the set of links and tree branches is chosen.

> > ® <
3 4

(b)

Fig. 15. The chosen set of links and tree branches (a) of two — port

(b)

Fig. 16. The chosen set of links and tree branches (a) of two-port

network oftT type (b) network of T type (b)

Matrices of: links (loops) and tree branches (cut-sets) with

marked indices have form: Loop and cut-set matrices with marked indices are follow-

ing:
J1 Jo i3 U1 Vg T i3 vy vy

OUTERLINKS INNER LINKS OUTER | INNER OUTER LINKS INNER LINKS OUTER INNER
TREE-BRANCHES | TREE-BRANCHES TREE-BRANCHES | TREE-BRANCHES

c= 1 2 3 pP= 1 2 c= 1 2 P= 1 2 5
3 1 3 -1 1 Vo — U1 3 1 jl 3 -1 1

4| -1 1 411 vy 4 1 jo 4 -1 1

5 -1 -1 5 1] v 5| -1 -1|jo—71 5 1

The set of internal tree branches is empty. There is no volt-  Thjs time the set of internal links is empty. There are no
age optimizing equations. Distribution of voltage signals igyrent optimizing equations. The only independent coordi-
assumed — there are no independent voltages. Only curregfe — voltage signal5 — is given instantly from single equa-

distribution is given by a single equation: tions:
3 1 2 5 1 2
A 3[BA5Y] B 3[{A B A 5[B458 ] B S[ES [ 4 ]
where
] v
(IDIP + [T + 1Us112) T = 1012105 ]P] [j;] (Ml + a2 + 116]2) Us = [|12s] 2] L] ] [Uj
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iy - necessary and sufficient minimum condition for the functional
[[71[[*v1 + [|52][Fv2 (103) is (at the fixed):

= . 2 . 2 . . 2

5

6. Minimization of conditional power or under (31,32,34)
functionals

Often besides the global minimum condi'gion the additiqnaIQ [OTduT} [BBH B;iﬂ [”] + [OTduT] {32] — =

constrains are necessary, e.g. the active power of inner u B,

branches constrain. (104)
Let us consider again the multi- port- network shown ivhere:

Fig. 6. The functional made as sum of the squared apparent B

powers of inner branches will be minimized (see (26) or 28) [Bﬂ x = PT (pdiagl ) W (105)

with the prescribed active power value of any individual inner
branch). At the same time the active power balance conditi@nd where (104) has to be met for any changewfThus:
of the whole circuit is met:

A du”(Au + Bv +0.5B;x) = 0 (106)
IJU, + Z I'U, =0 Condition (106) is met by the following set of equations:
a€INNER BRANCHES a€0OUTER (PORT) BRANCHES
which follows that the sum of active power of inner branches Au+ Bv+0.5B1z =0 (107)
has assumed value: which yields
IU, =p u=—-A"'Bv—-05A"'Bz (108)

a€INNER BRANCHES

Power condition (100) can be recorded in form:
where:p — assumed value.

Itis then possible to set independent values of active power ) - v
to the branches belonging to a certain branchset W (pdiagl)" P {u] =p
Thus the minimum task has the form of a conditional opti-

mization problem: or under (105):
T d 2 i v
U dljlgHIIaH ]U — min (99) (BIBT] {u] —p
Wa(pdiagl)"U = p (100)  thus
or Blv+ Blfu=p (109)
Substituting (91) to (92) yields a set of linear equations for
I" diag[||U,|[*] I — min (101)  the Lagrange factor vector:
i 0.5BfA™'Bixz = (B — BTA™'B)v - 110
o Analogous proceedings with dual problem (101), (102) give:
where: U, I so far stand for multiplicated vector of volt-
age and current signals inside the multi- port-netwgrk—= U—Q-= diag[||U ||2] €SB A

coslz[pa} stands for assumed active power vector for chosen in-
ac

ner branchesiW, — the choice matrix of branches . B, .

Obviously the optimization problems (99), (100) and [Bl] x = C" (pdiad) )W (111)
(101), (102), are equivalent. Let us set currents distributjon
then let us seek voltage distributithmeeting problem (99), i——A"'Bj—05A"'Bx (112)

(100), that is:

UTQU + U” (pdiagl) Wl = — min (103)
o 0.5BfA™'Bix = (B —BfA™'B)j—p  (113)
where:

x = col [z,] —stands for the vector of indeterminate Lagrange _With independent set of chosen branch@s matrix
€N BT A~ B, is positively definite, thus the set of Egs. (110) or

! 5 (113) has a unique solutian. Thereby, for the fixed prob-

Q= d'(?g[”I“” ] lem (99), (100) have one minimum point , similarly for the
Problem (103) will be solved by means of a differentiafixed U problem (101) and (102) also have the unique mini-

method. As it results from the considerations in Section 3 thmum point. Thus the following sequence of inequality (164) is

factors,
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met, which means that minimum point of problems (99,100), W (pdiagD)TU = [ps} QO ={3,4}
(or 101,102) can be received by means of an iterative process D4 ’
(85) (or56,57). . . where:ps, p, — fixed active powers in branches 3, 4.
The individual iterative functions for this process can be Tne individual matrices taking part in optimization process
calculated as followsl — have form:
C= 1 2 P= 1 2| 5
Aozﬁ = Z Sgr(7)||I7||27 3 1 1 31 1
INNE"I{?ET&EE}TéF?A}NCHES 4 11 5 4 -1 -1
5|/-1 1| j4—5n 5 1
Bag= Y. sg(y)|L|?
vye{a}n{p}
INNERNOUTER
TREE — BRANCHES W= 3 4 5
B ) 3|1
5| = Prpdeanwa (2= o) s 1

this yields following matrices:
05B{A™'Biz = (B; — B{A"'B) A=[3, B=[-1,1]
XVv—p—T—1uU

1 0 07 1 4 [I;

o —1 —1
——A'Bv-054"'Biz  (114) [gﬂ: 0o 10 I, o 1= -1 B,
! 1 -1 1 Ijo o I, -1 By

—U = [P] [ﬂ - o'(I) -

Thus Egs. (110) take form:
A= 3 sgri)|[U, 12, as. (110)

et 1[ 1T [ I o
ﬁrgER}Ln\{u?s} 6 l:_;g“:l [13,14] _ii:| = <|: 03 _Ig:|
Bag= Y sgiy)||U,]]? B 1[_1 )| - | P
Wizl “Llst ) e e
LINKS
or
{gﬂ_CT(pdiagU)WQT (Q=QU)) IG|[°P —I3 L |[2s] _ [—4I5 =213 [[vi] _ [6ps
1 —IZI;; ||I4||2 T4 —21—3 _41-;{ V2 6pa

therefore we get following set of linear equations for the La-
grange factors:

(115) |:||j12 —(j1,j2)][$3} _ [4(3'17”1)2(3'1,1’2)61)3]

0.5B{A™'Biz = (B - Bl A™'B)
Xj—p—T—1
=—-A"'Bj - 05A7'Bx

_ (J1.32) |l72ll* )L 2a —2(j2, v1) — 4(J2, v2) — Opa
— [C] B] =olo @U(I) Determinant of this set of equations meet the Schwartz in-
equality:
Example 9. The graph of two-port network of T type will be 7111?1721 1* = (41,42)* >0
ngzlgﬁtriﬂrfgggﬁ%ciﬁ aitseghsaér:c'::tierlzle; by the lack of |nd%—0’ the problem can have no solution when inequality becomes
P g- 2 equality. The unique independent voltage is defined by the for-
mula:
1 V1 1 T3
5 =—=|—1,1 — I3, —1I
v 3[ ][vJ 6[‘3 1l {M]

1 1 1 .+1 .
= -V — Uy — =T -
31 32 63.71 64.72

Example 10.Graph of two — port network of typH with cho-
sen set of links is drawn again in Fig. 18. This time, because

of the lack of independent voltages, the following optimization
problem will be solved:

Fig. 17. Graph of two-port network of T type with the chosen tree
I"T — min

The conditional functional of voltage variable will be min-
imized: ' . s
UTU — min Wo(pdiagU)" I = [m] 0= {4,5},
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3 1 1 1 Ty
L= _g[_l’ 1 {;2} a 6[U4’ ~Us) [iﬂs}
1. 1. 1 1
=3J17 302 gTan + 5502
1 5 Example 11.1t is given to illustrate iterative process of mini-

mization (114,115), and to find the choice set of bran¢hes
The graph of two-port network with port {1,2} is shown
Fig. 18. The graph of two-port network of tyfewith chosen set of N Fig. 19, whereTREE BRANCHESL, 2; 6} and LINKS
links {1,2;6} are marked with thick line

N PN
’ N ’ \ ’

where p, and p; stand for independent active powers in \ )
branches 4 and 5.

With the help of graph we can determine:

P= v v C= 5 Jo| Iz
1 2 1 2|3
3| -1 1 Vg — U1 3 1
4| -1 o 4| -1 1 1 2
5 -1| vy 5 -1| -1
e (a)
3 4 5
4 1
5 1
Hence follow further matrices:
A= [3]a B = [_17 1]
B -1 U3 —U4 1 2
[32} = - U, |p|= ~Us| B,
o 11 Us U, -Us| B, (b)

Set of Egs. (96) has form: Fig. 19. Tree branches and links (a) of two port network (b)
1] Uur x4 UuT o Determining the iterative functiod — @U(I) proceeds
G Jr | [Us, U] = Y T as follows:

6 _U5 Ts5 0 —U5 .
Uf 1 11 jl P= V1 (%) U6
“ oz |3 G 1 2|6
U333 | -1 1| —v1+Ug
thus Uy 4 1| 1| —ve+Us
[o|[> —vf vz ][ 24 _ —4v! 20! |[ 4 | 6pa Us5| 1 v
—vi{vy [|va]? || zs | [ 207 —4v] || 42 6ps Us 6 1]Us
or Wa=
||’U|1|2 —(vjve) || 74| _ | —4(J1,v1) — 2(j2,v1) — 6p4 3 4 56
—(v1,v2) ||vol? |l®s| | —2(41,v2) — 4(j2,v2) — 6ps 311 p3 [ The vector
’ 4 1 ps | of prescribed powers
Also this time the Schwartz inequality in determinant: 6 1 pe | ofindependent branches
Q

[o1]?|[va]* = (v1,v2)* > 0 _ _ _ . .
. . _ Warning: with the fixed vectot the active powemps in
is met, thus the set of equations fo, 25 can be badly condi- pranch 5 is fixed too. This branch should be removed from
tioned when the difference betwegum [|[|v2|| and scalar prod- |NNER BRANCHset by creating set of choige . The further

uct (v, v2) approaches zero. indispensable matrices are: the cut-set matrix:
The unique independent current co- ordinate can be re-

6 1 2
ceived now from expression (112): A: 6[{34,6} B: 6
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thus C= g2 | 1s
A= I 1 2|6
, , I3 1| 1] —ji—Is
B = [-|I5]7], —[ L[] I, 4 1| 114
where: §5 2 -1 -1 —i I—j1 —j2—1Is
[I1? = I + [| L * + || L6 |? ° ‘
WQ:
and 3 45 6
3|1 ps3 | The vector
B, _ —1I3 5 1 ps | of assumed powers
[B } = P?(pdiag) W = -1 B> 6 1 pg | of independent branches
! I, I, I; |B;
which yields set of linear Egs. (110): 6 1 2
A: 6 [ {346} B: 6[{5 [{3,5}
T y T
1 I3 T3 —I3 0 thus
— IZ [I3>I47I6] X4 = 0 —IZ
2117 | 1
s "o 0 0 A=[UP,
Ig 1 2 21| [o bs B = [[|Us|*, ||[Us]]? + [|Us||°]
- | L B [ [1Z3]%, [ Za][?] v | TP
I - D6 where:
or ) U* = |Us]]* +[|Us|* +[|Us||?
1 Ig.ls IgI4 IgIG T3 and
m III:), 1-2{14 IZI@ T4
IgIg I,6TI4 IgIG_ Te
B .
(HIsH2 _ 1) 17 | L) g v1 {Bz} = C* (pdiagU)W;, =| ~Us —Us B2
12 3| s Vo ps 1 U, -U;, U; |B:
= ”ff’llz,lzIZ (”llf*‘f - 1) I’ — | pa which yields the set of linear Egs. (113):
L% yT |[1a]® yT
LG LR Ps L [Ur v 0-US
. - . . Ul | [~ - = 0-Url
We can see that equation matrix is the Gram matrix (matrix 2[U 2 | [=Us, ~Us, Us] i5 0 o
of scalar products). Thus it is positively definite , and the set . 6 6
of linear equations has a solution. In the worst case the set of *U?,T 1 ) ) 5 31
equations can be bad conditioned, when a determinant of the— *Usgf P2 Us]1% [|Us]]° + [|Us] 7] L-J
Gram matrix will approach zero. | —Us
To determine the unique independent voltage signal the [ p;
equation (108) is designed for: — | ps
| Pe
1 9 2 | V1 1 or
o = g I =P | 2| = g R A AR
ﬁ UgUg U5TU5 _UgUﬁ Is
il B AT AT | —oro, —vus  UfUs | |
X |xg | = 2 v+ TiE Vo
T6 WUsl|> 77T HUs||>+|Us T &1
. gl | (gl ) o [aevg} ps
— 7[.17313 + x4y + IGIG] > > >
2 —
2‘[‘ = H\UUS|‘2| U5T (||U3H|J||2|U5|| _ 1) U5T — | ps
and 2 2 2
U: U. U:
H\U5|‘2| UGT I sllll}rl\Ql 51l UGT D6
v
U=-P U; _ @U(I) This time the equation matrix also turns out to be the Gram
ug matrix . But the size of a linear equation set can be reduced

by one. From observation of matri follows that with fixed
Determining of iterative functiod/ — & (U) proceeds ac- vectorU active power, in branch 4 is also fixed ( the current
cording to diagram: in this branchly = j, is forced) . Thus from the balance of
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Suitable matrices of choid®/, take form:

3 4 5 6 3 4 5 6 3 4
5 1 31 31
6 1| 5 1 6
.| By N
Then block matrice B, | are respectively:
2
_U5 —U5
7U5 B2 *U3 *U5 *Ug
-Us Us | By -Us | -Us -U; | Ug
which yields following set of linear equations
1 U5TU5 *U5TU6 Ts5 | *U5T *U5T
U2 | -ULUs UiUs| 6|
L _U5T 2 2 2
— Us||7, ||U: Us
|U|2{ UGT] [Us]12 110> + || U5 | 7]
<[5~ [5]
J2 Pe
or
1 U3TU3 —UgU5 xr3 | 0 —Ug
AUP [-UsUs  UjUs| |25]  \|[-US -UJ
1 Uy 2 2 2
e I A N AR
g
J2 ps
or
U3TU3 —U3TU6 —UdT

1
20 {—U(?Ug

BRI
U?

<[]

Similarly while determining previous functiord (I),
from the observation of matriP it results that with the a
sumed distribution of currents power p5 in branch 5 is als

Uy
Ug

D3
Pe

UlUs

I

{t

} [|U5||2,|U3||2+||U5|2})

s. power functionals are minimized.

then the set of linear Eqgs. (110)takes form:

2‘[‘2 IZIg III4 x4 o 0 —IZ
1 I.?T 2 2
= || I |2, —||T

rHE IR

<[l ]

1 IgIg I3TI6 xr3 | —Ig 0

o2 | ITTs ITTs| 6| 0 0
1 [I3 2 2

T [IT] (11311, — |11 2]

<Ll -]

1 III4 IIIG Ta | 0 —Ig
2|I|2 IgI4 IgIG Te B 0 0
U e
- |12, —||1T
rHE IR
<[] [2)
V2 Pe

7. Conclusion

or

}or

As a matter of fact the problems which were considered in this
article lie between the synthesis and the analysis of branched
circuits. Just in the preface the thesis was proved that there ex-
ists an unequivocal voltage distribution on the inner branches
whose sum of squared instantaneous voltage values is mini-
mal. At the same time, there exists an unequivocal current dis-
tribution on the inner branches whose sum of squared instan-
taneous current values is minimal. By means of minimization
of the positively defined functionals it is possible to find the
voltage-current distributions on the net without the use of the
immitance operators and basing only on the Kirchhoff laws.
Consequently it is possible to find the individual branch pa-
rameters in the syntheses process.

This issue is next developed in Sections 3,4,5 where the
These are the squared
}Soltage-current functionals, which represent the global power

prescribed. Thus out of three remaining powers two can Bgsses in the network. The generalization of that issue is pre-

chosen independently i.€2 = {3, 4} or {3, 6} or {4, 6}. It

yields then the following matrice®/q,:

3 4 5 6 3 4 5 6 3 4
3[1 3[1 4 1
4 1 6 1| 6
and block matrice®3;, By:
—1I —1I

-1, | By —1,
I, 1L, B I; | Is 1, | Is
122

sented in Section 6, where the synthesis of control of power net
was done in such a way as to minimize the global power func-
tional with some branch active power constrains. The practical
application of that method is to synthesize the globally pas-
sive compensators of two port networks structure connected
between the source and the receiver [6-8,2]. In Figs. 20,21
the two-port compensators of T ahdshape are shown. They
have only one free signal (voltage and current respectively).
These signals can be determined uniquely when using some
minimum criteria.

Bull. Pol. Ac.: Tech. 54(1) 2006



N

www.czasopisma.pan.pl P N www.journals.pan.pl

~—

Electric circuit analysis by means of optimization criteria Part Il — complex circuits

E—— )

Fig. 20. Four terminal network with ‘global minimal voltage’

Fig. 21. Four terminal network with ‘global minimal current’

Both four terminal networks shown in Figs. 20,21 are glob-

ally passive, i.e.
(u, ) = (u”,%)

The power conditions of the four terminal network shown

in Fig. 20 can be recorded as:

u—x,1) =P
(x( B iO; o (116)
or
(z,9) =P — P (117)

('raio):P0+P2

whereP, is the prescribed Power flux transmitted by the four

terminal network. In order to find unequivocalthe ‘global
minimal voltage condition’ must be put.

(z,2) + (u —z,u —z) + (x —u’ 2 —u®) — min (118)
or
0.5(z, ) — 1/3(u +u°, z) — min (119)

The suitable functional for tasks (117)-(119) has form:

Fru(@) = 0.5(z,2)—1/3(u+u’, )= \(z,i)—p(x,i®) — min
(120)

Bull. Pol. Ac.: Tech. 54(1) 2006

For the four terminal network from Fig. 21 the analogous
power condition can be put

(x,))=Py— P,

121
(I’,io) = PO + Pg ( )
and the ‘global minimal current condition’
(z,2) 4+ (i —2,i — ) + (x —i® 2 —4i%) — min  (122)
or
0.5(z,z) — 1/3(i +14°,z) — min (123)

The suitable functional for tasks (121)-(123) has form:

(@) = 05(z,2)—1/3(i+i°, 2)=A(z, u)—p(z, u®) — min
(124)
The minimization tasks (120) and (124) are solved by the
following equations:

r=1/3(u+u’) + Ni + pu’ (125)

and

(u,u) (u®,u) T[N 2Py — P — (u,i)
[0 00“}[2 10}(128)
(u7u)(uvu) H §P0+P2_§(u77’)
We can see the similarity between the results (125-128)
and those from the examples 9 and 10 in Section 6.
Itis important to notice that the above described four termi-
nal networks are globally passive. Thanks to that it is possible
to supply its branches from the constant energy accumulators
or capacitors by means of switching system resulting from the
synthesis of procedures (125-128) [2,6,8].
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