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Electric circuit analysis by means of optimization criteria
Part II – complex circuits
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Abstract. In the paper the squared voltage-current functionals are minimized, which represent the global power losses in the network. In that
way it is possible to find the voltage-current distributions on the net without the use of immitance operators and basing only on the Kirchhoff
laws. Farther the individual branch parameters are defined in the syntheses process. Many optimal power analysis examples are also shown to
illustrate the thesis included in the paper.
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1. Introduction

In the first part of the present article [1] the existence of certain
equivocation was proved when analyzing power distribution in
the one loop circuit. Such circuit is used in a power trans-
mission process carried out e.g. by a single ideal overhead
line. It was proved that there exists an infinity of possible cur-
rent signals which assures constant voltage signal on a source
and transmits the prescribed active power to the load. Using
only some optimization criteria we get an unequivocal solu-
tion. This fact is of both theoretical and practical significance.
It means that the transmission of power can meet various op-
timization criteria and satisfy various demands of sources and
receivers. In the first part of this article some such criteria were
considered, but its number is much bigger [1,2]. It then seems
that the optimization approach lays the right direction to de-
velop power quality and compensation theory [3–8].

The present study attempts to solve a complex problem of
signals distribution in a transmission power net according to
some optimization criteria. In comparison with one loop cir-
cuit, where the optimal signals are only one dimensional time
depending ones, in the complex branched net the signals de-
pend both on time and space dimension [2]. So far, the circuit
theory has not dealt with such problems.

To make the problem clearer some examples will be pre-
sented at the beginning.
Example 1.Let us find the constant currents distribution in the
box with prescribed constant values of currents in the inputs as
to minimize the following functionals:

a) the sum of the module of inner branch currents (so called
‘taxi-norm’)

b) the sum of squared inner branch currents (the Euklides
norm)

This task, in fact, consists of some norm minimization of
the inner currents distribution. It is worth noting that there are
no branch immittances used.

Fig. 1. The distribution of optimal inner currents in the box

The problem is obviously equivocal without the minimum
condition. For the functional (a):

f(i) = |2 + i|+ |i|+ |1− i| → min

wherei is the free variable. In the intervals we get (Fig. 2)

f(i) = −3i− 1 for i < −2
f(i) = −i + 3 for − 2 < i < 0
f(i) = i + 3 for 0 < i < 1
f(i) = 3i + 1 for i > 1

and the minimum point we reach fori = 0.

Fig. 2. The functionals (a) and (b)
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For the functional (b)

f(i) = (2 + i)2 + i2 + (1− i)2 → min

the minimum point is fori = −1/3. Thus the spatial distribu-
tions of inner currents are

Fig. 3. The optimal spatial distributions of inner currents minimizing
the functionals (a) and (b)

Example 2. Let us assume constant voltages (v1, v2) and cur-
rents (j1, j2) on the input and output of the box. We need to
find the distribution of the inner currents which minimize the
sum of the squared inner branch powers. Is there always a so-
lution to this task?

The equivalent circuit is shown in Fig. 4.

Fig. 4. The equivalent circuit of the box

This time the functional of the inner branch power is mini-
mized, which is given by the formula

f(i) = v2
1(i− j1)2 + (v1 − v2)2i2 + v2

2(i + j2)2 → min

wherei is the free variable.
The minimum condition for the above task is

2(v2
1 + v2

2 − v1v2)i = v2
1j1 − v2

2j2.

This gives the minimum point

i =
v2
1j1 − v2

2j2
v2
1 + v2

2 − v1v2
.

The solution almost always exists because of the Schwarz
inequality

v2
1 + v2

2 − |v1v2| ≥ 0.

The only exception occurs when bad conditioned task
meets weekly the Schwarz inequality

v2
1 + v2

2 − |v1v2| = 0.

Example 3. Let us assume constant voltages (v1, v2) and cur-
rents (j1, j2) on the input and output of the box. We need to
find the distribution of the inner currents which minimize the
sum of the squared inner branch powers.

The equivalent circuit is shown in Fig. 5.

Fig. 5. The equivalent circuit of the box

This time the functional of the inner branch powers is min-
imized in the direction of freeu variable

f(u) = j2
1(u + v1)2 + (j1 + j2)2u2 + j2

2(u + v2)2 → min.

Thus the minimum condition is

2(j2
1 + j2

2 + j1j2)u = −j2
1v1 − j2

2v2.

Which gives the minimum point

u = − j2
1v1 + j2

2v2

j2
1 + j2

2 + j1j2
.

This solution also almost always exists if the Schwarz in-
equality is met

j2
1 + j2

2 − |j1j2| ≥ 0.

In the general situation the problem of finding the optimal
inner signals concerns a multi terminal network which is de-
picted in Fig. 6.
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Fig. 6. The multi terminal network with prescribed input output sig-
nals

Let us consider the situation when the set of currentj and
voltagev signals on ports is given. It is possible to find the
inner branch signal distribution according to the following the-
orem.

For the assumed inner structure of the network:

a) there exists an unequivocal voltage distribution on the inner
branches for which the sum of squared the instantaneous
voltage values is minimal

b) there exists an unequivocal current distribution on the inner
branches for which the sum of the squared instantaneous
current values is minimal.

In other words we can say: for the assumed inner structure of
the network there exist unique vectors of the branch currents
and branch voltages whose norms are minimal.
Proof. In order to determine the free voltages of the net we
must use the topology theorems. We need to:

1) choose the tree starting from the port branchesv
2) the sets subtraction gives:

TREE(of multi terminal network)\ PORT BRANCHES(iso-
morphic to v) = FREE-BRANCHES(isomorphic tou) =
TREE-BRANCHES\ OUTER TREE-BRANCHES= INNER
TREE-BRANCHES.

Thus using cut-set matrixP we can calculate the inner
branch voltagesU depending on port voltagesv and free volt-
agesu.

U = P

[
v
u

]
(1)

In order to calculate free currents we use links:

1) the prescribed branches (ports isomorphic toj) are the
links. It is needed to add the rest of links as to make the
complement be the tree,

2) then: GIVEN LINKS = INNER FREE CURRENTSi =
LINKS\ OUTER LINKS.

Thus using loop matrixC we can calculate the inner
branch currentsI depending on port currentsj and free cur-
rentsi.

I = C

[
j
i

]
(2)

The first minimization task is to choose the vectori to min-
imize norm

IT I → min. (3)

Thus under (2) it results that

[jT iT ]CT C

[
j
i

]
→ min

and after decomposition ofCT C matrix on four submatrices

[
jT iT

] [
B11 B12

B21 B22

][
j
i

]
→ min

we get

jT B11j + jT B12i + iT B21j + iT B22i → min. (4)

Applying variation method to the (4) we get the following
minimum condition

jT B12δi + δiT B21j + 2δiT B22i + δiT B22δi > 0 (5)

for anyδi.
The condition (5) is met when

δiT
[
2B22i + (B21 + BT

12)j
]

= 0

for anyδi.
Thus, becauseB21 = BT

12, thei current meets the linear
equation

2B22i + 2B21j = 0 (6)

and since the matrixB22 is positively definite we get the
unique solution

i = −B−1
22 B21j. (7)

Analogically we can choose voltage distributionu by min-
imizing

UT U → min (8)

or using (1)

vT B11v + vT B12u + uT B21v + uT B22u → min (9)

the quested vectoru meeting minimum condition (9) is calcu-
lated from

2B22u + 2B21v = 0 (10)

whereB22, B21 are submatrices ofP T P and B22 is posi-
tively definite matrix. Thus we get the unique solutionu

u = −B−1
22 B21v (11)

this completes the proof.
Example 4.Let us consider the three-port network depicted in
Fig. 7.

Fig. 7. The graph of three-port network

The set of ports {1, 2, 3} is isomorphic to prescribed vec-
torsv, j; the set of the inner tree branches {5} is isomorphic
to u, as it is shown in Fig. 8.
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Fig. 8. The tree of the three-port network

The cut-set matrixP we find using the scheme shown in
Fig. 8.

P =

1 2 3 5
4 1
5 1
6 1 1
7 1
8 −1 1
9 1

10 −1 1 −1

Thus the block ofB matrices have the following definition

P T P =

1 2 3 5
1 2 0 0 –1
2 0 3 –1 2
3 0 –1 2 –1
5 –1 2 –1 4

=
[
B11 B12

B21 B22

]

Then the solution of set of equations, here reduced to the
single equation, is:

u5 = 0.25[1− 2 1]




u1

u2

u3


 = 0.25(u1 − 2u2 + u3).

Thus the optimal voltage distribution meeting
10∑

α=4
(uα)2 →

mincondition is found.

Fig. 9. The links (dotted lines) of the three port network

The choice of three port network links (from Fig. 7) is
shown in Fig. 9. The loop matrix has form

C =

1 2 3 5 7 9
4 –1 1 –1 1
5 1
6 –1 –1 –1 –1
7 1
8 1 –1 1
9 1

10 –1 –1

So theB submatrices are

CT C =

1 2 3 5 7 9
1 1 –1 0 1 0 –1
2 –1 3 1 –2 1 3
3 0 1 2 0 2 1
5 1 –2 0 3 0 –2
7 0 1 2 0 3 1
9 –1 3 1 –2 1 4

=
[

B11 B12

B21 B22

]

Then the vector of inner currents is set by linear equations.



3 0 −2
0 3 1

−2 1 4







i5
i7
i9


 =



−1 2 0

0 −1 −2
1 −3 −1







i1
i2
i3




Consequently the optimal current distribution meeting
10∑

α=4
(iα)2 → mincondition is found.

2. Introduction to the timevarying spatial
optimization

In the previous Section the optimal spatial distribution of the
inner signals (on condition that port signals are given) was ana-
lyzed. Now we will consider timevarying spatial distributions.
Besides the spatial coordinate (the branch number) the discrete
time coordinate will be introduced.

We define the following symbols:vn,α, in,α – two dimen-
sional discreet voltage and current signals, where:n – discrete
time sample number,α – discrete space number (the branch
number).

I = [(i0, i1, ...)α]T = [colα{coln [in,α]}]

=




I1
...

Iα
...




=







i0
...

iN−1




1
...


i0
...

iN−1




α
...




where:α ∈ INNER BRANCHES, n ∈ {0, 1, .., N − 1},
j = [colα{coln [in,α]}] , α ∈ OUTER LINKS,
n ∈ {0, 1, ..., N − 1},
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i = [colα{coln [in,α]}] , α ∈ INNER LINKS,
n ∈ {0, 1, ..., N − 1},
and
U = [colα{coln [un,α]}] , α ∈ INNER BRANCHES,
n ∈ {0, 1, ..., N − 1},
v = [colα{coln [un,α]}] , α ∈ OUTER TREE-BRANCHES,
n ∈ {0, 1, ..., N − 1},
u = [colα{coln [un,α]}] , α ∈ INNER TREE-BRANCHES,
n ∈ {0, 1, ..., N − 1}.

The instant values of the branch signals for n sample will
be also helpful:
In = colα [in,α]α ∈ INNER BRANCHES,
jn = colα [in,α] α ∈ OUTER LINKS,
in = colα [in,α]α ∈ INNER LINKS,
Un = colα [un,α]α ∈ INNER BRANCHES,
vn = colα [un,α] α ∈ OUTER TREE-BRANCHES,
un = colα [un,α]α ∈ INNER TREE-BRANCHES.

Using the foregoing definitions, the connections (1) and (2)
take the general form:

U = [P ]
[

v
u

]
(12)

I = [C]
[

j
i

]
(13)

where[P ], [C] stands for the multiplied loop and cut-set ma-
trices where the scalars 0,1 are substituted by theN ×N zeros
and eye matrices.

Widening the problem (3), (8) on time coordinate we get
the time depending solutions (see (7),(11))

i = − [B22]
−1 [B21] j (14)

u = − [B22]
−1 [B21] j (15)

where[B22], [B21] stands for the multipliedB22, B21 matri-
ces.

For a samplen ∈ {0, 1, ..., N − 1}, in a specific moment
of time, the foregoing equations change to the form

i = − [B22]
−1 [B21] jn (14)

u = − [B22]
−1 [B21] jn (15)

which is the same as (7) and (11).
We can define the norms of the time-spatial signal distribu-

tion

IT I =
∑

n

∑

α∈INNER BRANCHES

(inα)2

=
∑

α∈INNER BRANCHES

(∑
n

(inα)2
)

=
∑

α∈INNER BRANCHES

||Iα||2

(16)

UT U =
∑

n

∑

α∈INNER BRANCHES

(unα)2

=
∑

α∈INNER BRANCHES

(∑
n

(unα)2
)

=
∑

α∈INNER BRANCHES

||Uα||2

(17)

where
Iα = coln [in,α] ,Uα = coln [un,α] (18)

stands for current and voltage norms ofα-branch. Thus we can
formulate the theorem 1 in a different way.

THEOREM 1. For the assumed inner structure of the net-
work there exist the unique voltage signal distribution assur-
ing that the sum of squared rms voltage values of the inner
branches is minimal, and there exist the unique current signal
distribution assuring that the sum of squared rms current values
of the inner branches is minimal.

The norms
||Iα||2 = IT

n In (19)

||Uα||2 = UT
n Un (20)

can be called the spatial rms values.
Thus the Theorem 2 states that the following coefficients

Sn =
√

IT
n In

√
UT

n Un → min (21)

(apparent instant power of the net) or

S =
√

IT I
√

UT U → min (22)

(apparent time-spatial power of the net) should be minimized.

3. The power functionals minimization
The minimization of the squared norm of instant power distri-
bution in the net is the much more important issue. It is because
the functional value represents the total instant power value of
the net, which is a practical information, and it is the basis
to some important generalizations. Using the vector notation
from Section 2 we make the following new notation:

pdiag(I) diag
α

[Iα] (23)

is the multiplicated pseudo-diagonal matrix, whereIα – col-
umn matrix ofα – value spatial-time distribution, and

pdiag(I) diag
α

(diagIα) (23)

is the multiplicated diagonal matrix.
The pseudo- diagonal and diagonal matrices have the fol-

lowing structure:
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In this Section we minimize the following functionals:
– sum of the squared instantaneous branch powers inside the
multi-port-network:

UT (diagI)2U = IT (diagU)2I → min (25)

– sum of the squared apparent branch powers inside the multi-
port-network:

UT (pdiagU)(pdiagI)T I = IT (pdiagI)(pdiagU)T

×U → min
(26)

Condition (25) has the following matrix structure:

therefore it is equivalent to minimize instantaneous functional:

UT
n (diagIn)2Un = IT

n diag(Un)2In → min (27)

However condition (26) has a structure:

and it means the minimization of

UT col[UαIT
α Iα] = IT col[IαUT

α Uα]

= UT diag
α

[||Iα||]2U

= IT diag
α

[||Uα||]2I

=
∑
α

UT
α UαIT

α Iα

=
∑
α

IT
α IαUT

α Uα

=
∑
α

||Iα||2||Uα||2.

(28)

First we’ll describe minimization of the functional (25) or
(27). Minimizing this functional with fixed current vector we
found the following problem (the discrete time index is omit-
ted)

VAR
U

UT QU → min (29)

where
Q = (diagI)2 (30)

is treated as symmetrical positively definite weight matrix, and

U = P

[
v
u

]
. (31)

Differentiating vector (31) and taking into consideration
that subvectorv does not change, it yields:

dU = P

[
0
du

]
. (32)

The differential of functional (29) has form:

(UT + dUT )Q(U + dU) = UT QU + UT QdU

+ dUT QU + dUT QdU .
(33)

Taking into consideration the expressions (31) and (32) we
get the minimum condition:

[vT uT ]P T QP + [0T duT ]P T QP

[
v
u

]
= 0

or

[vT uT ]
[

B11 B12

B A

][
0

du

]
+ [0T duT ]

[
B11 B12

B A

][
v
u

]
= 0

(34)
where B11, B12,B, A stand for matrices (blocks) resulted
from division of matrixP T QP into four parts:

P T QP =
[

B11 B12

B A

]
. (35)

From (34) follows that

BT
12 = B (36)

applying (35) and (36) in (34) yields the minimum condition:

[vT uT ]
[

B11 B12

B A

][
0

du

]
+[duT B; duT A]

[
v
u

]
= 0 (37)

for anydu.
Taking into consideration that components in (37) are mu-

tually transposed, the minimum condition takes form:

∧
δu

duT (Au + Bv) = 0 (38)

Expression (38) is met if and only if the sought vector u
meets the linear equation:

Au + Bv = 0 (39)

thus
u = −A−1Bv (40)

As it was shown in [2] the elements of block matricesB, A
can be calculated by the following equation

[
B11 B12

B A

]

αβ

= [P T (diagI)2P ]αβ

=
∑

γ∈{α}∩{β}
TREE – BRANCHES

sgn(γ)(Iγ)2
(41)

The symbols{α}, {β} stand for cut-sets corresponding to the
appropriate tree branchesα, β The set{α} ∩ {β} stands for
logical product of two branch sets [2]. It follows that elements
of matrixA andB are defined by the following formulas
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Aαβ =
∑

γ∈{α}∩{β}
TREE – BRANCHES

sgn(γ)(Iγ)2 (42)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

TREE – BRANCHES

sgn(γ)(Iγ)2 (43)

Similarly the problem

VAR
I

IT (diagU)2I → min (44)

has solution

Ai + Bj = 0 (45)

thus
i = −A−1Bj (46)

where [
B11 B12

B A

]

αβ

= [CT (diagU)2C]αβ

=
∑

γ∈{α}∩{β}
LINKS

sgn(γ)(Uγ)2
(47)

then

Aαβ =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)(Uγ)2 (48)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)(Uγ)2. (49)

Further functional (25) will be marked by the symbol:

f(U , I) = UT (diagI)2U = IT (diagU)2I (50)

Expression (29), (40), (31), (44), (46) define functions:

I → u = −[AP (I)]−1BP (I)v →

U = P

[
v
u

]
= ΦU (I)

(51)

and

U → i = −[AC(U)]−1BC(U)j →

I = C

[
j
i

]
= ΦI(U)

(52)

Thus for anyI0 functionalf(U , I0) of U variable has the
unique minimum: min

U=U1
f(U , I0) in point U = U1 as well

for anyU0 functionalf(U0, I) of I variable has the only min-
imum: min

I=I1
f(U0, I) in pointI = I1.

Thus the following sequence of inequality is met:

min
I=I1

f(U0, I) > min
U=U1

f(U , I1) > min
I=I2

f(U1, I)

> min
U=U2

f(U , I2)...

> min
U=U+

f(U , I+) = min
I=I+

f(U+, I)

= min
U=U+

min
I=I+

f(U , I).

(53)

It means that the pointI+, U+ is the only minimum point
of functionalf(U , I) and also the only limit point of sequence
(53) of functional. Thus minimum pointU+, I+ could be pos-
sibly received as a limit of sequence:

I0; U1, I1; U2, I2; ...Un, In; ... (54)

definite as follows:

U1 = ΦU (I0), I1 = ΦI(U1)

U2 = ΦU (I1), I2 = ΦI(U2)
· · ·

Un = ΦU (In−1), In = ΦI(Un)

Un+1 = ΦU (In), In+1 = ΦI(Un+1)

(55)

It results from (55) that voltage and current sequences can
be determined separately with help of composite functions

Un+1 = ΦU [ΦI(Un)] = ΦU ◦ΦI(Un) (56)

In+1 = ΦI [ΦU (In)] = ΦI ◦ΦU (In) (57)

In Fig. 10 iterative functionsΦU (I) andΦI(U) were il-
lustrated in block diagrams.

Fig. 10. Interpretation of iterative functionsΦU (I) andΦI(U) illus-
trated in block diagrams

The first block symbolizes voltage analysis of the circuit
fed by voltage sourcesv with the branch conductance equal to
the squared branch currents. The elementsA, B are

Aαβ =
∑

γ∈{α}∩{β}
INNER TREE – BRANCHES

sgn(γ)(Iγ)2 (58)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

TREE – BRANCHES

sgn(γ)(Iγ)2 (59)

The second block performs current analysis of circuit fed
by the current sources from ports j with branch ‘resistances’
equal to the squared branch voltage. The elementsA,B are

Aαβ =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)(Uγ)2 (60)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)(Uγ)2 (61)

Example 5.The two port network with prescribed DC currents
and voltages on ports is shown in Fig. 11.
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Fig. 11. The two port network with prescribed port signals

Fig. 12. FunctionΦU , ΦI and the iteration process while minimizing
the power functional

In the foregoing figure the current i and voltage u signals
are marked. The power functional being minimized is

f(u, i) = i21(u1−u)2+u2(i1−i)2+i2(u−u2)2+u2
2(i−i2)2

(62)
The functionsΦU (i) andΦI(u) minimizing the functional

(62) with fixedu, i signals have form:

ΦU (i) = 1/2
i21u1 + i2u2

i21 + i1i + i2
=: uopt(i) (63)

ΦI(U) = 1/2
i1u

2 + i2u2
2

u2 + uu2 + u2
2

=: iopt(u) (64)

The process of appropriate iterations (55) or (56) and (57)
is shown in Fig. 12.
Example 6. Figure 13 shows graph of two-port network with
1, 2 ports with chosen set of links 1, 2, 3, 6 and tree branches
1, 2, 5.

Fig. 13. The chosen set of links 1, 2, 3, 6 (a) and tree branches 1, 2, 5
(b)

The loop and cut-set matrices with external and internal
links and tree branches marked, as well as current and voltage
coordinates have form:

j1 j2 i3 i6
OUTER LINKS INNER LINKS

C = 1 2 3 6
3 1
4 –1 –1
5 –1 1
6 1
7 –1 1

v1 v2 u5

OUTER INNER

TREE-BRANCHES TREE-BRANCHES

P = 1 2 5
3 –1 1
4 1
5 1
6 1 –1
7 1

It yields cut matrices of links and tree branches (compare
Eqs. 60,61,58,59):
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3 6
A:3 {3,5,7} {–5}

6 {–5} {4,5,6}

5
5 {3,5,6}

1 2
B:3 {–7}

6 {4}

1 2
5 {–3} {–6}

On the basis of cut matrices it is noted the set of linear
equations determining the iterative functions (38) and (37):

U ⇒ u2
3 + u2

5 + u2
7 −u2

5

−u2
5 u2

4 + u2
5 + u2

6

i3
i6

=
u2

7

u2
4

j1
j2

⇒ i =
i3
i6

I = C

[
j
i

]
= ΦI(U)

I ⇒ I2
3 + I2

5 + I2
6 u5 = I2

3 I2
6

v1

v1
⇒ u = u5

P

[
v
u

]
= ΦU (I) = ΦU ◦ΦI(U).

4. Minimization of the power differential
functional

Introducing inner standard vectors for U0 voltage and I0 cur-
rents we minimize differential power functional:

(U −U0)T [diag(I − I0)]2(U −U0) = (I − I0)T

× [diag(U −U0)]2(I − I0) → min.
(65)

Minimization of a partial-voltage functional

(U −U0)T Q(U −U0) →
u var

min, (66)

where

Q = [diag(I − I0)]2const. (67)

Thus the necessary and sufficient minimum condition is
formulated as:

Au = −Bv + a0, (68)

(68) whereA,B matrices anda vector are defined as:

Aαβ =
∑

γ∈{α}∩{β}
INNER TREE–BRANCHES

sgn(γ)(Iγ − I0,γ)2 (69)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

TREE – BRANCHES

sgn(γ)(Iγ − I0,γ)2 (70)

a0
αβ =

∑
γ∈{α}∩{β}

INNER TREE–BRANCHES

sgn(γ)(Iγ − I0,γ)2 (71)

Similarly minimization of partial -current functional:

(I − I0)T Q(I − I0) →
i var

min, (72)

where

Q = [diag(U −U0)]2const. (73)

has solution in form of a set of linear equations:

Ai = −Bj + a0 (74)

where

Aαβ =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)(Uγ − U0,γ)2 (75)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)(Uγ − U0,γ)2 (76)

a0
αβ =

∑
γ∈{α}∩{β}

INNER LINKS

sgn(γ)(Uγ − U0,γ)2I0,γ (77)

Warning: both in (65) as in remaining expressions the time
index was omitted.

5. Minimization of complex variable
functionals

If Uα, Iα stand for spatial distribution of voltages and currents
in the net, then the functional :∑

α

U∗
αIαI∗αUα = U∗diag|Iα|2U = I∗diag|Uα|2I (78)

is a sum of squared apparent powers of net elements.
However ifUn,α, In,α stand for spatial frequency distribu-

tion of a complex variable (n – discreet frequency coordinate,
α – number of branch ), then the functional:

∑
n

∑
α

U∗
n,αIn,αI∗n,αUn,α =

∑
n

U∗
n diag

α
|In,α|2Un

=
∑

n

I∗n diag
α
|Un,α|2In

(79)

is an average (along frequencies) sum of squared apparent
powers of circuit.

Minimization of functional (79) is equivalent to minimiz-
ing functional:

U∗
n diag

α
|In,α|2Un = I∗n diag

α
|Un,α|2In → min (80)

for everyn separately. Thereby the problems of functionals
minimization (78) and (79) agree. Building method of itera-
tive function for minimizing this functional is shown in Fig.
14 with the help of block diagrams.

Fig. 14. Block diagram for determining iterative function
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The elementsA, B marked on the foregoing block dia-
gram are defined as:

Aαβ =
∑

γ∈{α}∩{β}
INNER TREE – BRANCHES

sgn(γ)|Iγ |2 (81)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

TREE – BRANCHES

sgn(γ)|Iγ |2 (82)

for the first block, and:

Aαβ =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)|Uγ |2 (83)

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)|Uγ |2 (84)

When Laplace’s transform of signals is used, then the min-
imization functional becomes:

∑
α

∮

I
Uα(−s)Iα(s)Iα(−s)Uα(s)ds → min (85)

where circulation is taken on contour consisting of imaginary
axis and semicircle in left ( or right ) complex plain with the ray
approaching infinityr →∝. It is easily shown that minimizing
of functional (85) is reduced to minimizing:

[U(−s)]T diag
α

[Iα(s)Iα(−s)]U(s) = [I(−s)]T

× diag
α

[Uα(s)Uα(−s)]I(s) → min
(86)

for every s separately. Thus the set of equations meeting this
optimization task take form:

A(s)u(s) = −B(s)v(s) (87)

where

Aαβ(s) =
∑

γ∈{α}∩{β}
INNER TREE – BRANCHES

sgn(γ)Iγ(s)Iγ(−s) (88)

Bαβ(s) =
∑

γ∈{α}∩{β}
INNER∩OUTER

TREE – BRANCHES

sgn(γ)Iγ(s)Iγ(−s) (89)

and

A(s)i(s) = −B(s)j(s) (90)

where

Aαβ(s) =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)Uγ(s)Uγ(−s) (91)

Bαβ(s) =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)Uγ(s)Uγ(−s) (92)

Minimization of functional (26) which is the sum of
squared apparent powers of branches inside the multi port net-
work proceeds as follows:

From comparing structures (25) and (28) follows that func-
tional (28) can be minimized according to analogous iterative
algorithm:

I → VAR
U

UT diag
α

[||I||2]U → min

Aαβ =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)||Iγ ||2

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)||Iγ ||2

u = −A−1Bv

U = P

[
v
u

]
= ΦU (I)

VAR
I

IT diag
α

[||U ||2]I → min

Aαβ =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)||Uγ ||2

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)||Uγ ||2

i = −A−1Bj → I = C

[
j
i

]
= ΦI ◦ΦU (I) (93)

Indeed, it has analogous structure as functional (50), that is:

f(U , I) =
∑
α

UT
α UαIT

α Iα (94)

It means that for any fixedI0 functionalf(U , I0) of U
variable reaches the unique minimum, and for anyU0 func-
tional f(U0, I) of I variable also reaches the unique mini-
mum. Thus the sequence of inequality (53) is valid, then it
follows that functional (94) has the unique minimum point at-
tainable with the help of iterative function (93).

Norms in the formulas (93) are defined as follows:

||Uα||2 =
N−1∑
m=0

(Um,α)2 (95)

in discrete time domain and

||Uα||2 =

T∫

0

[Uα(t)]2dt (96)

in continuous time domain.
Procedure (93) is valid in frequency domain, too. If byn

we mark discrete index of frequency, then applying the Parce-
vall theorem we can write
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||Uα||2 =
N−1∑
m=0

|Um,α|2 (97)

However in continuous frequencies domain:

||Uα||2 =
1

2πj

∮

I
Uα(−s)Uα(s)ds (98)

Example 7. Figure 15 shows graph of two – port network of
Π type, with a chosen set of links and tree branches.

Fig. 15. The chosen set of links and tree branches (a) of two – port
network ofΠ type (b)

Matrices of: links (loops) and tree branches (cut-sets) with
marked indices have form:

j1 j2 i3
OUTER LINKS INNER LINKS

C = 1 2 3
3 1
4 –1 1
5 –1 –1

v1 v2

OUTER INNER

TREE-BRANCHES TREE-BRANCHES

P = 1 2
3 –1 1 v2 − v1

4 1 v1

5 1 v2

The set of internal tree branches is empty. There is no volt-
age optimizing equations. Distribution of voltage signals is
assumed – there are no independent voltages. Only current
distribution is given by a single equation:

3
A: 3 {3,4,5}

1 2
B: 3 {–4} {5}

(||U4||2 + ||U5||2 + ||U3||2
)
I3 =

[||U4||2||U5||2
] [

j1

j2

]

or
(||v1||2 + ||v2||2 + ||v2 − v1||2

)
I3 = ||v1||2j1 − ||v2||2j2

which yields

I3 =
||v1||2j1 − ||v2||2j2

||v1||2 + ||v1||2 + ||v2 − v1||2

(see example 2)
Example 8. Figure 16 shows the two-port network of T

type, in the graph the set of links and tree branches is chosen.

Fig. 16. The chosen set of links and tree branches (a) of two-port
network of T type (b)

Loop and cut-set matrices with marked indices are follow-
ing:

j1 j2 i3
OUTER LINKS INNER LINKS

C = 1 2
3 1 j1
4 1 j2
5 –1 –1 j2 − j1

v1 v2

OUTER INNER

TREE-BRANCHES TREE-BRANCHES

P = 1 2 5
3 –1 1
4 –1 1
5 1

This time the set of internal links is empty. There are no
current optimizing equations. The only independent coordi-
nate – voltage signalu5 – is given instantly from single equa-
tions:

5
A: 5 {3,4,5}

1 2
B: 5 {–3} {–4}

where

(||I3||2 + ||I4||2 + ||I5||2
)
U5 =

[||I3||2||I4||2
] [

v1

v2

]
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U5 =
||j1||2v1 + ||j2||2v2

||j1||2 + ||j1||2 + ||j2 + j1||2

6. Minimization of conditional power
functionals

Often besides the global minimum condition the additional
constrains are necessary, e.g. the active power of inner
branches constrain.

Let us consider again the multi- port- network shown in
Fig. 6. The functional made as sum of the squared apparent
powers of inner branches will be minimized (see (26) or 28)
with the prescribed active power value of any individual inner
branch). At the same time the active power balance condition
of the whole circuit is met:

∑

α∈INNER BRANCHES

IT
α Uα +

∑

α∈OUTER (PORT) BRANCHES

IT
α Uα = 0

which follows that the sum of active power of inner branches
has assumed value:

∑

α∈INNER BRANCHES

IT
α Uα = p

where:p – assumed value.
It is then possible to set independent values of active power

to the branches belonging to a certain branch setΩ.
Thus the minimum task has the form of a conditional opti-

mization problem:

UT diag
α

[||Iα||2
]
U → min (99)

WΩ(pdiagI)T U = p (100)

or

IT diag
α

[||Uα||2
]
I → min (101)

WΩ(pdiagU)T I = p (102)

where: U , I so far stand for multiplicated vector of volt-
age and current signals inside the multi- port-network,p =
col
α∈Ω

[pα] stands for assumed active power vector for chosen in-

ner branches,WΩ – the choice matrix of branches .
Obviously the optimization problems (99), (100) and

(101), (102), are equivalent. Let us set currents distributionI ,
then let us seek voltage distributionU meeting problem (99),
(100), that is:

UT QU + UT (pdiagI)W T
Ω x → min (103)

where:
x = col

α∈Ω
[xα] – stands for the vector of indeterminate Lagrange

factors,
Q = diag

α

[||Iα||2
]

Problem (103) will be solved by means of a differential
method. As it results from the considerations in Section 3 the

necessary and sufficient minimum condition for the functional
(103) is (at the fixedx):

2dUT QU + dUT (pdiagI)W b
Ωx = 0

or under (31,32,34)

2
[
0T duT

] [
B11 B12

B A

] [
v
u

]
+

[
0T duT

] [
B2

B1

]
= x = 0

(104)
where:

[
B2

B1

]
x = P T (pdiagI)W T

Ω (105)

and where (104) has to be met for any change of du. Thus:

∧
δu

duT (Au + Bv + 0.5B1x) = 0 (106)

Condition (106) is met by the following set of equations:

Au + Bv + 0.5B1x = 0 (107)

which yields

u = −A−1Bv − 0.5A−1B1x (108)

Power condition (100) can be recorded in form:

WΩ(pdiagI)T P

[
v
u

]
= p

or under (105):

[
BT

2 BT
1

] [
v
u

]
= p

thus
BT

2 v + BT
1 u = p (109)

Substituting (91) to (92) yields a set of linear equations for
the Lagrange factor vector:

0.5BT
1 A−1B1x = (BT

2 −BT
1 A−1B)v − p (110)

Analogous proceedings with dual problem (101), (102) give:

U → Q = diag
α

[||Uα||2
] C→B, A

[
B2

B1

]
x = CT (pdiagU)W T

Ω (111)

i = −A−1Bj − 0.5A−1B1x (112)

0.5BT
1 A−1B1x = (BT

2 −BT
1 A−1B)j − p (113)

With independent set of chosen branchesΩ matrix
BT

1 A−1B1 is positively definite, thus the set of Eqs. (110) or
(113) has a unique solutionx. Thereby, for the fixedI prob-
lem (99), (100) have one minimum point , similarly for the
fixed U problem (101) and (102) also have the unique mini-
mum point. Thus the following sequence of inequality (164) is
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met, which means that minimum point of problems (99,100),
(or 101,102) can be received by means of an iterative process
(55) (or 56,57).

The individual iterative functions for this process can be
calculated as follows:I →

Aαβ =
∑

γ∈{α}∩{β}
INNER TREE – BRANCHES

sgn(γ)||Iγ ||2,

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

TREE – BRANCHES

sgn(γ)||Iγ ||2

[
B2

B1

]
= P T (pdiagI)W T

Ω (Ω = Ω(I))

0.5BT
1 A−1B1x =

(
BT

2 −BT
1 A−1B

)

× v − p → x → u

= −A−1Bv − 0.5A−1B1x

→ U = [P ]
[

v
u

]
= ΦU (I) →

(114)

Aαβ =
∑

γ∈{α}∩{β}
INNER LINKS

sgn(γ)||Uγ ||2,

Bαβ =
∑

γ∈{α}∩{β}
INNER∩OUTER

LINKS

sgn(γ)||Uγ ||2

[
B2

B1

]
= CT (pdiagU)W T

Ω (Ω = Ω(U))

0.5BT
1 A−1B1x =

(
BT

2 −BT
1 A−1B

)

× j − p → x → i

= −A−1Bj − 0.5A−1B1x

→ [C]
[

j
i

]
= ΦI ◦ΦU (I)

(115)

Example 9. The graph of two-port network of T type will be
considered again, which is characterized by the lack of inde-
pendent current co-ordinates see Fig. 17.

Fig. 17. Graph of two-port network of T type with the chosen tree

The conditional functional of voltage variable will be min-
imized:

UT U → min

WΩ(pdiagI)TU =
[

p3

p4

]
Ω = {3, 4}

where:p3, p4 – fixed active powers in branches 3, 4.
The individual matrices taking part in optimization process

have form:

C= 1 2
3 1 j1
4 1 j2
5 –1 1 j2 − j1

P = 1 2 5
3 –1 1
4 –1 –1
5 1

W = 3 4 5
3 1
4 1

this yields following matrices:

A = [3], B = [−1, 1]

[
B2

B1

]
=

–1 0 0
0 –1 0
1 –1 1

I3

I4

I5

1 0
0 1
0 0

=
−I3

−I4 B2

I3 −I4 B1

Thus Eqs. (110) take form:

1
6

[
IT
3

−IT
3

]
[I3, I4]

[
x3

x4

]
=

([
IT
3 0
0 −IT

4

]

−
[

IT
3

−IT
4

]
1
3
[−1, 1]

) [
v1

v2

]
−

[
p3

p4

]

or[ ||I3||2 −IT
3 I4

−IT
4 I3 ||I4||2

][
x3

x4

]
=

[−4IT
3 −2IT

3

−2IT
4 −4IT

4

][
v1

v2

]
−

[
6p3

6p4

]

therefore we get following set of linear equations for the La-
grange factors:
[

||j|1|2 −(j1, j2)
−(j1, j2) ||j2||2

][
x3

x4

]
=

[−4(j1, v1)− 2(j1,v2)− 6p3

−2(j2, v1)− 4(j2,v2)− 6p4

]

Determinant of this set of equations meet the Schwartz in-
equality:

||j1||2||j2||2 − (j1, j2)2 ≥ 0

So, the problem can have no solution when inequality becomes
equality. The unique independent voltage is defined by the for-
mula:

u5 = −1
3
[−1, 1]

[
v1

v2

]
− 1

6
[I3, −I4]

[
x3

x4

]

=
1
3
v1 − 1

3
v2 − 1

6
x3j1 +

1
6
x4j2

Example 10.Graph of two – port network of typeΠ with cho-
sen set of links is drawn again in Fig. 18. This time, because
of the lack of independent voltages, the following optimization
problem will be solved:

IT I → min

WΩ(pdiagU)T I =
[

p4

p5

]
Ω = {4, 5},
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Fig. 18. The graph of two-port network of typeΠ with chosen set of
links

where p4 and p5 stand for independent active powers in
branches 4 and 5.

With the help of graph we can determine:

P = v1 v2

1 2
3 –1 1 v2 − v1

4 –1 v1

5 –1 v2

C= j1 j2 I3

1 2 3
3 1
4 –1 1
5 –1 –1

W =
3 4 5

4 1
5 1

Hence follow further matrices:

A = [3], B = [−1, 1]

[
B2

B1

]
=

–1
–1

1 1–1

U3

U4

U5

1
1

=
−U4

−U5 B2

U4 −U5 B1

Set of Eqs. (96) has form:

1
6

[
UT

4

−UT
5

]
[U3,U4]

[
x4

x5

]
=

([
UT

4 0
0 −UT

5

]

−
[

UT
4

−UT
5

]
1
3
[−1, 1]

)[
j1

j2

]
−

[
p4

p5

]

thus
[ ||v1||2 −vT

1 v2

−vT
1 v2 ||v2||2

][
x4

x5

]
=

[−4vT
1 −2vT

1

−2vT
2 −4vT

2

][
j1

j2

]
−

[
6p4

6p5

]

or
[

||v|1|2 −(v,
1v2)

−(v1, v2) ||v2||2
][

x4

x5

]
=

[−4(j1, v1)− 2(j2,v1)− 6p4

−2(j1, v2)− 4(j2,v2)− 6p5

]

Also this time the Schwartz inequality in determinant:

||v1||2||v2||2 − (v1, v2)2 ≥ 0

is met , thus the set of equations forx4, x5 can be badly condi-
tioned when the difference between||v1||||v2|| and scalar prod-
uct (v1,v2) approaches zero.

The unique independent current co- ordinate can be re-
ceived now from expression (112):

I5 = −1
3
[−1, 1]

[
j1

j2

]
− 1

6
[U4, −U5]

[
x4

x5

]

=
1
3
j1 − 1

3
j2 − 1

6
x4v1 +

1
6
x5v2

Example 11. It is given to illustrate iterative process of mini-
mization (114,115), and to find the choice set of branchesΩ.

The graph of two-port network with port {1,2} is shown
in Fig. 19, whereTREE BRANCHES{1, 2; 6} and LINKS
{1,2;6} are marked with thick line

Fig. 19. Tree branches and links (a) of two port network (b)

Determining the iterative functionI → ΦU (I) proceeds
as follows:

P = v1 v2 U6

1 2 6
U3 3 –1 1 −v1 + U6

U4 4 –1 1 −v2 + U6

U5 5 1 v1

U6 6 1 U6

WΩ=
3 4 5 6

3 1 p3 ←The vector

4 1 p4 of prescribed powers

6 1 p6 of independent branches

Ω

Warning: with the fixed vectorI the active powerp5 in
branch 5 is fixed too. This branch should be removed from
INNER BRANCHset by creating set of choiceΩ . The further
indispensable matrices are: the cut-set matrix:

6
A: 6 {3,4,6}

1 2
B: 6 {–3} {–4}
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thus
A = [|I|2]

B = [−|I3|2], −||I4||2]
where:

|I|2 = |I3|2 + ||I4||2 + ||I6||2

and

[
B2

B1

]
= P T (pdiagI)W T

Ω =
−I3

−I4 B2

I3 I4 I6 B1

which yields set of linear Eqs. (110):

1
2|I|2




IT
3

IT
4

IT
6


 [I3, I4, I6]




x3

x4

x6


 =






−IT

3 0
0 −IT

4

0 0




−



IT
3

IT
4

IT
6


 1
|I|2

[−||I3||2,−||I4||2
]



[
v1

v2

]
−




p3

p4

p6




or

1
2|I|2




IT
3 I3 IT

3 I4 IT
3 I6

IT
4 I3 IT

4 I4 IT
4 I6

IT
6 I3 IT

6 I4 IT
6 I6







x3

x4

x6




=

(
||I3||2
|I|2 − 1

)
IT
3

||I4||2
|I|2 IT

3

[
v1

v2

]
p3

||I3||2
|I|2 IT

4

(
||I4||2
|I|2 − 1

)
IT
4 – p4

||I3||2
|I|2 IT

6
||I4||2
|I|2 IT

6 p6

We can see that equation matrix is the Gram matrix (matrix
of scalar products). Thus it is positively definite , and the set
of linear equations has a solution. In the worst case the set of
equations can be bad conditioned, when a determinant of the
Gram matrix will approach zero.

To determine the unique independent voltage signal the
equation (108) is designed for:

u6 = − 1
|I|2 [−||I3||2,−||I4||2]

[
v1

v1

]
− 1

2||I||2 [I3, I4, I6]

×



x3

x4

x6


 =

||I3||2
|I|2 v1 +

||I4||2
|I|2 v2

− 1
2|I|2 [x3I3 + x4I4 + x6I6]

and

U = P




v1

v2

u6


 = ΦU (I)

Determining of iterative functionU → ΦI(U) proceeds ac-
cording to diagram:

C= j1 j2 I6

1 2 6
I3 3 –1 1 −j1 − I6

I4 4 1 1 j2
I5 5 –1 –1 –1 −j1 − j2 − I6

I6 6 1 I6

WΩ=
3 4 5 6

3 1 p3 The vector

5 1 p5 of assumed powers

6 1 p6 of independent branches

6
A: 6 {3,4,6}

1 2
B: 6 {5} {3, 5 }

thus

A = [|U |2],
B = [||U5||2, ||U3||2 + ||U5||2]

where:
|U |2 = ||U3||2 + ||U5||2 + ||U6||2

and

[
B2

B1

]
= CT (pdiagU)W T

Ω = −U3 −U5 B2

−U3 −U5 U6 B1

which yields the set of linear Eqs. (113):

1
2|U |2



−UT

3

−UT
5

UT
6


 [−U3,−U5, U6]




x3

x5

x6


 =







0 −UT
3

0 −UT
5

0 −0




−


−UT

3

−UT
5

−UT
6


 1
|U |2 [||U5||2, ||U3||2 + ||U5||2]




[
j1

j2

]

−



p3

p5

p6




or

1
2|I|2




UT
3 U3 UT

3 U5 −UT
3 U6

UT
5 U3 UT

5 U5 −UT
5 U6

−UT
6 U3 −UT

6 U5 UT
6 U6







x3

x5

x6




=

||U5||2
|U |2 UT

3

(
||U3||2+||U5||2

|U |2 − 1
)

UT
3

[
æv1

æv2

]
p3

||U5||2
|U |2 UT

5

(
||U3||2+||U5||2

|U |2 − 1
)

UT
5 – p5

||U5||2
|U |2 UT

6
||U3||2+||U5||2

|U |2 UT
6 p6

This time the equation matrix also turns out to be the Gram
matrix . But the size of a linear equation set can be reduced
by one. From observation of matrixC follows that with fixed
vectorU active powerp4 in branch 4 is also fixed ( the current
in this branchI4 = j2 is forced) . Thus from the balance of
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power it follows that:p3 + p4 + p5 + p6 = const it yields
p3 + p5 + p6 = const it means that only two values of the
sum out of three(p3, p5, p6) are independent. Thus the set of
branch choiceΩ can be assumed asΩ = {5, 6} or {3, 5} or
{3, 6}.

Suitable matrices of choiceWΩ take form:

3 4 5 6 3 4 5 6 3 4 5 6
5 1 3 1 3 1
6 1 5 1 6 1

Then block matrices

[
B2

B2

]
are respectively:

−U5 −U5

−U5 B2 −U3 −U5 −U3

−U5 U6 B1 −U3 −U5 −U3 U6

which yields following set of linear equations

1
2|U |2

[
UT

5 U5 −UT
5 U6

−UT
6 U5 UT

6 U6

] [
x5

x6

]
=

([−UT
5 −UT

5

0 0

]

− 1
|U |2

[−UT
5

UT
6

] [||U5||2, ||U3||2 + ||U5||2
])

×
[

j1

j2

]
−

[
p5

p6

]

or

1
2|U |2

[
UT

3 U3 −UT
3 U5

−UT
5 U3 UT

5 U5

] [
x3

x5

]
=

([
0 −UT

3

−UT
5 −UT

5

]

− 1
|U |2

[−UT
3

UT
5

] [||U5||2, ||U3||2 + ||U5||2
])

×
[

j1

j2

]
−

[
p3

p5

]

or

1
2|U |2

[
UT

3 U3 −UT
3 U6

−UT
6 U3 UT

6 U6

] [
x3

x6

]
=

([
0 −UT

3

0 0

]

− 1
|U |2

[−UT
3

UT
6

] [||U5||2, ||U3||2 + ||U5||2
])

×
[

j1

j2

]
−

[
p3

p6

]

Similarly while determining previous functionΦU (I),
from the observation of matrixP it results that with the as-
sumed distribution of currents power p5 in branch 5 is also
prescribed. Thus out of three remaining powers two can be
chosen independently i.e.Ω = {3, 4} or {3, 6} or {4, 6}. It
yields then the following matricesWΩ:

3 4 5 6 3 4 5 6 3 4 5 6
3 1 3 1 4 1
4 1 6 1 6 1

and block matricesB2, B1:

−I3 −I3

−I4 B2 −I4

I3 I4 B1 I3 I6 I4 I6

then the set of linear Eqs. (110)takes form:

1
2|I|2

[
IT
3 I3 IT

3 I4

IT
4 I3 IT

4 I4

] [
x3

x4

]
=

([−IT
3 0
0 −IT

4

]

− 1
|I|2

[
IT
3

IT
4

] [−||I3||2,−||I4||2
])

×
[

v1

v2

]
−

[
p3

p4

]

or

1
2|I|2

[
IT
3 I3 IT

3 I6

IT
6 I3 IT

6 I6

] [
x3

x6

]
=

([−IT
3 0
0 0

]

− 1
|I|2

[
IT
3

IT
6

] [−||I3||2,−||I4||2
])

×
[

v1

v2

]
−

[
p3

p6

]

or

1
2|I|2

[
IT
4 I4 IT

4 I6

IT
6 I4 IT

6 I6

] [
x4

x6

]
=

([
0 −IT

4

0 0

]

− 1
|I|2

[
IT
4

IT
6

] [−||I3||2,−||I4||2
])

×
[

v1

v2

]
−

[
p4

p6

]

7. Conclusion

As a matter of fact the problems which were considered in this
article lie between the synthesis and the analysis of branched
circuits. Just in the preface the thesis was proved that there ex-
ists an unequivocal voltage distribution on the inner branches
whose sum of squared instantaneous voltage values is mini-
mal. At the same time, there exists an unequivocal current dis-
tribution on the inner branches whose sum of squared instan-
taneous current values is minimal. By means of minimization
of the positively defined functionals it is possible to find the
voltage-current distributions on the net without the use of the
immitance operators and basing only on the Kirchhoff laws.
Consequently it is possible to find the individual branch pa-
rameters in the syntheses process.

This issue is next developed in Sections 3,4,5 where the
power functionals are minimized. These are the squared
voltage-current functionals, which represent the global power
losses in the network. The generalization of that issue is pre-
sented in Section 6, where the synthesis of control of power net
was done in such a way as to minimize the global power func-
tional with some branch active power constrains. The practical
application of that method is to synthesize the globally pas-
sive compensators of two port networks structure connected
between the source and the receiver [6–8,2]. In Figs. 20,21
the two-port compensators of T andΠ shape are shown. They
have only one free signalx (voltage and current respectively).
These signals can be determined uniquely when using some
minimum criteria.
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Fig. 20. Four terminal network with ‘global minimal voltage’

Fig. 21. Four terminal network with ‘global minimal current’

Both four terminal networks shown in Figs. 20,21 are glob-
ally passive, i.e.

(u, i) = (u0, i0)

The power conditions of the four terminal network shown
in Fig. 20 can be recorded as:

(u− x, i) = P1

(x− u0, i0) = P2

(116)

or

(x, i) = P0 − P1

(x, i0) = P0 + P2

(117)

whereP0 is the prescribed Power flux transmitted by the four
terminal network. In order to find unequivocalx the ‘global
minimal voltage condition’ must be put.

(x, x) + (u− x, u− x) + (x− u0, x− u0) → min (118)

or

0.5(x, x)− 1/3(u + u0, x) → min (119)

The suitable functional for tasks (117)-(119) has form:

fλ,µ(i) = 0.5(x, x)−1/3(u+u0, x)−λ(x, i)−µ(x, i0) → min
(120)

For the four terminal network from Fig. 21 the analogous
power condition can be put

(x, i) = P0 − P1

(x, i0) = P0 + P2

(121)

and the ‘global minimal current condition’

(x, x) + (i− x, i− x) + (x− i0, x− i0) → min (122)

or

0.5(x, x)− 1/3(i + i0, x) → min (123)

The suitable functional for tasks (121)-(123) has form:

fλ,µ(x) = 0.5(x, x)−1/3(i+i0, x)−λ(x, u)−µ(x, u0) → min
(124)

The minimization tasks (120) and (124) are solved by the
following equations:

x = 1/3(u + u0) + λi + µu0 (125)

[
(i, i) (i0, i)
(i0, i) (i0, i0)

][
λ
µ

]
=

[ 2
3P0 − P1 − 1

3 (u0, i)
2
3P0 + P2 − 1

3 (u, i0)

]
(126)

x = 1/3(i + i0) + λi + µi0 (127)

and

[
(u, u) (u0, u)
(u0, u) (u0, u0)

][
λ
µ

]
=

[ 2
3P0 − P1 − 1

3 (u, i0)
2
3P0 + P2 − 1

3 (u0, i)

]
(128)

We can see the similarity between the results (125–128)
and those from the examples 9 and 10 in Section 6.

It is important to notice that the above described four termi-
nal networks are globally passive. Thanks to that it is possible
to supply its branches from the constant energy accumulators
or capacitors by means of switching system resulting from the
synthesis of procedures (125–128) [2,6,8].
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