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QUALITATIVE DESCRIPTION OF METAL ORE DEPOSITS PARAMETERS BASED 
ON SELECTED FUZZY LOGIC OPERATORS ON THE EXAMPLE OF 

A KGHM POLISH COPPER S.A. COPPER-SILVER MINE 

JAKOŚCIOWY OPIS PARAMETRÓW ZŁOŻA RUD METALI W OPARCIU O WYBRANE 
OPERATORY LOGICZNE ZBIORÓW ROZMYTYCH NA PRZYKŁADZIE KOPALNI 

RUD MIEDZIOWO-SREBROWYCH W KGHM „POLSKA MIEDŹ” S.A.

The basis for a mineral deposit delimitation is a qualitative and quantitative assessment of deposit 
parameters, qualifying a deposit as an economically valuable object. A conventional approach to the 
mineral deposit recognition and a deposit detailed parameters qualification in the initial stages of develop-
ment work in the KGHM were presented in the paper. The goals of such recognition were defined, which 
through a gradual detailed expansion, resulting from the information inflow, allows for the construction 
of a more complete decision-making model. The description of the deposit parameters proposed in the 
article in the context of fuzzy logic, enables a presentation of imprecise statements and data, which 
may be a complement to a traditional description. Selected non-adjustable and adjustable s-norm and 
t-norm operators were demonstrated. Operators effects were tested for selected ore quality parameters 
(copper content and deposit thickness) by constructing adequate membership functions. In a practical 
application, the use of chosen fuzzy logic operators is proposed for the assessment of the qualitative 
parameters of copper-silver ore in the exploitation blocks for one of the mines belonging to KGHM Polish 
Copper S.A. The considerations have been extended by including the possibility of using compensation 
operators.

Keywords: ore deposit parameters, mineral deposit management, fuzzy sets, logical operator

Podstawą delimitowania złoża jest ocena parametrów jakościowych oraz ilościowych, kwalifikująca 
twór przyrodniczy jako obiekt o znaczeniu gospodarczym. W artykule przybliżono konwencjonalne 
podejście do rozpoznania serii złożowej i szczegółowych parametrów złoża, realizowane w kopalniach 
KGHM Polska Miedź S.A. w trakcie wykonywania tzw. robót przygotowawczych. Określono celowość 
takiego rozpoznania, które poprzez stopniowe uszczegółowianie, wynikające z napływu informacji, 
pozwala na konstrukcję bardziej kompletnego modelu decyzyjnego. Dopełnieniem tego tradycyjnego 
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opisu może być zaproponowana w artykule deskrypcja parametrów złoża w ujęciu logiki rozmytej, 
umożliwiająca przedstawienie nieprecyzyjnych stwierdzeń i danych. Zademonstrowano wykorzystanie 
nastawialnych i nienastawialnych operatorów mnogościowych s-normy i t-normy a działanie operatorów 
przetestowano dla wybranych parametrów jakościowych rudy (zawartości miedzi oraz miąższości złoża) 
konstruując adekwatne funkcje przynależności. W praktycznym zastosowaniu przetestowano wybrane 
operatory logiki rozmytej do oceny parametrów jakościowych złoża rud miedziowo-srebrowych w blokach 
eksploatacyjnych dla jednej z kopalń KGHM Polska Miedź S.A. Rozważania poszerzono o możliwość 
zastosowania operatorów kompensacyjnych.

Słowa kluczowe: ruda miedzi, jakość złoża, zbiory rozmyte, operator logiczny

1. Introduction

Estimation of mineral deposit parameters aimed at the most faithful representation of actual 
deposit size is a difficult task. Evaluation of the parameters of the deposit – resource volume, 
quality of the mineral, position in space – is, irrespective of the method used, usually character-
ised by a certain degree of inaccuracy. This is due both to variation in the deposit itself and to 
the degree to which the deposit has been explored.

Certain fuzzy categories operate in the deposit description. Mining geologists use descriptive 
terms, e.g. large/small deposit, rich/poor ore, high/low series thickness, high/low metal content, 
and good/bad enrichment indicators. Quantitative quantifiers usually enable a precise description 
of a specific deposit parameter, but this is usually based on point observation; a need exists for 
the use of such observation regarding the part of the deposit which cannot be sampled directly. 
The issue of deposit description and its grade qualification is debatable and difficult to assess 
clearly. For example, the evaluation ‘rich ore’ does not specify the limits of metal content at which 
a given part is considered rich. In relation to porphyry copper deposits, should the content be 
0.5 or 0.7% Cu, or perhaps more? Easy and unequivocal conversion of qualitative to quantita-
tive terms is not usually possible. The use of classical set theory, using a membership of 0 (does 
not belong) or 1 (belongs), is simply ineffective here. More helpful is fuzzy reasoning based 
on estimation of membership in a particular set within a certain range. Usually, this involves 
the interval [0, 1], where ‘0’ means exclusion from the set, while ‘1’ signals full membership. 
Between these two extremes is a field of partial membership, which can be successfully used in 
the description of deposit features.

Certainly, deposit parameters, both overall and at a particular point, are usually, as mentioned 
above, quantitative measures, e.g. deposit thickness (m) or content of useful components (%). 
Evaluation of these parameters is the basis for spatial deposit orientation and ultimately boils 
down to calculation of mineral resources and/or useful component. It will also be recalled that, 
apart from quantitative terms, descriptive characterisations are also used. Such characterisations 
are sometimes carried out very crudely, based on individual feelings and observations.

In the geological and mining field, set theory and fuzzy logic tools have been used occasion-
ally. Use of a fuzzy approach in various geology branches has been presented by Demmicco’s 
and Klir’s (2003) in their book. Possible applications of fuzzy reasoning in basic geology are 
indicated, i. a. for: stratigraphic modeling, earthquake research, or reef growth. List of applica-
tions in the mining field is wider. Bandopadhyay (1987) indicates the potential for the use of 
fuzzy logic in the selection of an appropriate system of operation. Kesimal & Bascetin (2002) 
have authored a study using applications of the fuzzy approach to multi-criteria decision-making 
in mining practice. Whittle and Borzorgebrahimi (2004) tested the set theory for a hybrid pits 
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model, where the pits model, derived from Lerchs-Grossmann algorithm and conditional simu-
lation were linked. Such approach reduce uncertainty at the early stages of mine development, 
where the data related to orebody characteristic are usually presented imprecisely. Kawalec 
(2005, 2008) creates the concept of fuzzy model of an ultimate lignite pit also with the use of 
the Lerchs-Grossmann algorithm. A similar concept was developed by Niedbał (2014) in rela-
tion to the open pit mine for the unspecified porphyry copper ore deposit. Yujić et al. (2011) 
present a deterministic fuzzy linear optimisation model of mine production for various mining 
systems. Mine operations planning has been presented by Brzychczy et. al (2014) in case of 
coal mine and by Gligoric et al. (2015) in relation to lead-zinc ore mine. Pham (1997) uses 
fuzzy set tools in a quality assessment of iron ore. Tutmez (2007) applies uncertainty-oriented 
fuzzy methodology to the estimation of an ore reserve. Elmas & Sahin (2013) present reasoning 
about barite ore grades based on a fuzzy neural network. The use of fuzzy numbers and fuzzy 
modelling for quantitative evaluation of solid mineral resources is the subject of scientific inves-
tigations by Bárdossy et al. (2003) and Tutmez et al. (2007). Similar considerations concerning 
evaluation of a resource base have been attempted by Luo & Dimitrakopoulos (2003) for tin 
skarn deposits, Tahmasebi and Hezarkhani (2010) in relation to porphyry copper deposits, and 
Tutmez & Dag (2007) in the context of lignite coal deposits. Bárdossy & Fodor (2005) identify 
the importance of fuzzy arithmetic in assessing the completeness and usefulness of explo-
ratory work.

Papers by Bárdossy et al. (1988, 1990) in the field of geostatistics, related to shortages of 
exploration data, can also be useful for geological-mining applications. Such gaps occur frequently 
in geological and mining practice and can be compensated with the use of fuzzy logic tools.

2. Evaluation of deposit grade parameters in the activities of 
KGHM mines

The copper-silver ores of the Fore-Sudetic Monocline (SW Poland) are among the largest 
deposits in the world. They are classified among strata bound within the Zechstein sedimentary 
series. These objects, which are not homogeneous, include Permian sandstones, bitumen-carbo-
naceous marly shales, dolomites or marls of Central Europe, Carboniferous Bunter Sandstone in 
Kazakhstan, Precambrian metamorphic rocks in Siberia or Brazil, Precambrian metamorphosed 
sandstones and shales and dolomites of the Copperbelt in central Africa, and sandstones of as-
sorted ages in the US and Canada. Deposits in the Fore-Sudetic Monocline, which show great 
continuity and adherence to the same geological layers, are divided into mining areas within which 
operations are being carried out. The boundaries of these separated deposits are contractual and 
run independently of lithological boundaries or gaps in mineralisation; their horizontal course 
is determined partially according to administrative reasons and deposit tectonics. Extraction of 
minerals is being carried out by three mines: Lubin, Rudna and Polkowice-Sieroszowice.

The deposit is characterised by imprecise boundaries determined by the breakeven grade 
of equivalent copper (Cue) in the deposit profile according to the viability criteria of 0.5% for 
balance resources (Fig. 1). In the contour thus described it occupies an area of over 40 km and 
is slightly more than 10 km wide, covering an area of over 400 km2. After the dip marking the 
boundary of the deposit, regardless of Cue content, the agreed limit of available technical support 
at a depth of 1250 meters has been adopted.
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Fig. 1. Heterogeneity of copper content in the deposit profile (according to Nieć, 1997, updated)

In the vertical profile the zone of balanced copper content includes the following lithostrati-
graphic links (from top):

• dolomite 0-4 m
• shale (Kupferschiefer) 0-1.2 m
• sandstone 0.5-20 m.

The largest area is covered by a sandstone series. Depending on its form, the thickness of 
the deposit varies from 0.4 to 26 m. The lowest value (about 1 m) is reached where the deposit 
occurs only in copper shale and clay dolomite underlain by red sandstone, as well as in marginal 
zones of the deposit area. If ore mineralisation includes all three types of rock (sandstone, shale, 
and dolomite) and the deposit has a regular form, its thickness is typically 3-6 meters, increasing 
to more than 10 m within the elevation of the sandstone roof. The maximum thickness found was 
26 m (Nieć, 1997). However, over such a wide range, low and medium thicknesses dominate. 
The minimum thickness occurs in the south-western area in the Polkowice and Sieroszowice 
deposits, where the ore mineralisation is confined essentially to Kupferschiefer and clay do-
lomite. Deposit thickness in this zone is negligible and usually does not exceed 2 m, and over 
a considerable deposit area is only 0.4-1 m (Nieć & Piestrzyński, 1996). The mineralisation is 
discontinuous and creates lens-nest forms. In the case of full profile mineralisation the deposit 
form becomes more complex.

The main components of useful ores are copper and silver. As mentioned above, isolines 
of 0.5% Cu content define the boundaries of the deposit. The copper content in the ore depends 
on the lithological type of ore and distance between the mineralisation zone and the sandstone 
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roof. Among the lithological types of ore, the highest metal contents are recorded within the ore 
shale (Kupferschiefer), where they vary from 2-3% to more than 10%. The remaining lithologi-
cal types of ore mineralisation are several times lower and the average content in sandstone and 
carbonate rocks is in the range of 1-3% copper. Silver content is much more varied, in the range 
30-70 g/Mg. Again, the richest is Kupferschiefer, in which silver concentrations reach hundreds 
of grams per ton. The thickness of Kupferschiefer has a critical influence on the average content 
of copper and silver.

The Polkowice and Sieroszowice deposits, where the relative share of Kupferschiefer is 
higher than in other mines despite the generally lower total deposit thickness, result in high 
average contents of copper.

Mines using development galleries lead to the identification of ore series. The primary 
purpose of development works is evaluation of geological-mining conditions as well as of the 
value of minerals so as to enable profitable excavation. With regard to geological and mining 
law and other requirements, the mining entrepreneur is obliged to conduct so-called rational 
mineral deposit management. The degree to which this task is carried out is verified by mining 
geological surveys, along with the appropriate mining supervisory organs. There is a great and 
fully justified necessity for the mine operator to acquire the necessary geological information to 
carry out ‘safe’ mining work in the following areas: delimitation of the roof and bottom of the 
deposit, identification of geological-mining conditions (faults, the main directions of fracture, 
coverage of barren zones, geotechnical parameters of surrounding rocks, potential natural haz-
ards, etc.). Along with geological information related to ore quality parameters, it is possible to 
qualify particular parts of the deposit for economically justified operation.

In the initial stages of development work, the geologist possesses only point information, 
derived from a drilled hole at the initial stage of deposit exploration. These generalised deposit 
parameters are accepted for a certain parcel, using e.g. the Bołdyriew polygon method (Fig. 2). 
Depending on the sampling result, such a block is qualified as positive (in economic terms), sub-
economic, or barren. Basic deposit parameters defined in this and subsequent stages comprise 
thickness, copper content, and reserve volume.

Starting from an initial, single observation point, drill hole S-102 (shown in Fig. 2), the data 
derived therefrom are extrapolated to the entire polygon X1, to which the following initial grade 
parameters are assigned: deposit thickness – 2.5 m, copper content – 2.87%, yield – 165 kg/m2. 
The necessity for detailed geological information requires further geological exploration with the 
use of heading and development excavations. In the present case, this is represented by a cluster 
of galleries in a triple arrangement (galleries X-120, X-121, X-122, Fig. 2). The aim of heading 
and development is the identification of geological forms and structures and natural hazards, the 
acquisition of geological information related to deposit parameters, and, finally, preparation of 
initial excavations for mining. An entrepreneur incurring financial expenditure on development 
work expects results at least similar to the parameters obtained from the drill hole, because this 
information at this stage is equivalent to the value of the work, which he wishes to confirm. 
At the moment of the implementation of heading and development work there is, at a geologist’s 
disposal, initially information derived from the channel sample taken in three places, where the 
development galleries begin, and also from the Bołdyriew polygon. In the Polish classification 
of mineral resources, such a polygon is estimated to be in the C1 category, i.e. the resources 
are initially identified with an accuracy of ±30%. This category corresponds to the Indicated 
Resources class in CRIRSCO nomenclature. As a result of the further identification of block X1 
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within mining works, additional geological information is obtained. In the analysed example 
there were 1,711 side channel samples (Table 1). The input of new data enabled reclassification 
of block X1 to X2 with detailed accuracy at levels B (±15% accuracy) and A (±5-10% accu-
racy). For simplicity, all smaller blocks (Fig. 2) should be considered in the category A+B. This 
separation corresponds to the proved reserves class in CRIRSCO code. Separation of block X2 
corresponds to separation of the operating (exploitation) unit (block). Exploitation blocks may 
include more than one Bołdyriew polygon, and thus can refer to several master blocks, not only 
to X1 as was shown in the cited example. Geological blocks refer only to deposit management 
and are distinguished according to geological criteria. These blocks are not linked to the mining 
blocks identified for technological and organisational reasons. Fields, blocks, or exploitation 
floors are designated in order to improve the organisational activities of the mining operation. 
Returning to the starting point related to estimation of block parameters, 1,090 geological samples 
were used in the area X2 (Table 1). Within block X2 three further, smaller parts (e.g. X3) were 
selected, corresponding to the geological block. Grade parameters for block X3 were calculated 
using 166 geological samples (Table 1).

Fig. 2. Part of the deposit covered by a Bołdyriew polygon: 1 – block X1; 2 – block X2; 3 – block X3; 
4 – direction of exploitation; 5 – geological drill; 6 – channel sample number; 7 – borders of the Bołdyriew 

polygon; 8 – surface drill; 9 – part of mining development galleries
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TABLE 1

List of grade parameters in individual deposit blocks

Block,
area
[m2]

Lithology
Number of 
geological 
samples

Thickness
[m]

Copper 
content
Cu [%]

Silver and 
lead content
Ag [g/Mg]/

Pb [%]

Copper 
yield 

[kg/m2]

Equivalent 
copper yield 

[kg/m2]

Drill hole
S-102

1,079,573

average 1 1.96 1.68 25/- 85.48 98.0
carbonates 1.77 1.74 25/-

shale 0.19 1.17 25/-

Block X1
1,079,573

average 1,711 1.40 3.10 35.51/0.08 112.0 124.8
carbonates 1.09 2.47 31.47/0.095

shale 0.31 5.41 50.32/0.021
Without 

stone 
samples

average 1,554 1.54 3.1 36.38/0.08 123.2 137.6
carbonates 1.20 2.46 32.38/0.095

shale 0.34 5.41 51.1/0.021
Without sub-

economic 
samples

average 1,511 1.56 3.10 36.81/0.07 124.8 139.6
carbonates 1.22 2.47 33.41/0.08

shale 0.34 5.45 49.45/0.02

Block X2
745,889

average 1,090 1.44 3.07 39.3/0.09 114.1 128.7
carbonates 1.14 2.51 34.69/0.111

shale 0.31 5.24 57.46/0.019
Without 

stone 
samples

average 980 1.61 3.07 40.79/0.09 127.5 144.5
carbonates 1.27 2.51 36.22/-

shale 0.34 5.24 58.65/0.019
Without sub-

economic 
samples

average 953 1.64 3.07 42.14/0.07 129.9 147.7
carbonates 1.30 2.52 38.52/0.087

shale 0.34 5.26 56.49/0.015

Block X3
54,575

average 166 1.79 3.05 21.97/0.01 140.9 151.0
carbonates 1.48 2.65 20.13/0.006

shale 0.31 4.99 31.04/0.011

A geologist supervising the progress of mining work, based on his or her own knowledge 
and experience, adjusts the sampling grid (in accordance with the provisions of the Geological 
Works Project, licences and applicable normative acts) and the method of controlling the height 
of the exploitation gate, with the objective of optimal recognition of the ore deposit series. In 
the case of deposits with low or average variation coefficients, which are usually not possible 
to quantify at this stage due to the small number of observations, a square grid in the range of 
20 to 30 m between samples is assumed. Geological samples are taken directly from the mine 
face or side walls of excavations galleries using the point method in a linear system. Usually, the 
sampling grid is adapted to the technical works project of the deposit mine workings. Deposit is 
excavated with the chamber and pillar systems, and geological samples are taken in every sec-
ond chamber, and their spatial grid is determined by the dimensions of the technological pillars 
adopted in the technical project. Such a system allows to obtain a regular sampling grid, which 
can be concentrated in case of sudden ore declining, barren zone appearing or high variability 
of the ore deposit. The average waiting time for the results of the sampling assays is three days; 
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the maximum daily rate of progress of exploitation can range from 3.5 to 7 m, which means that 
a geologist receives information related to deposit parameters at the moment when he should be 
getting the next sample. It follows that an erroneous decision by the geologist made as a result 
of observation of macroscopic ore in the endgate while waiting for the assay results can lead to 
improper qualification of ore as barren rock or of barren rock as ore. The way to minimise the 
risk of such mistakes is elimination of human error and entrusting the supervision of the work to 
an experienced geologist or enforcing more rapid analysis of collected samples. 

3. Deposit parameters descriptions using 
the fuzzy logic concept

Fuzzy logic uses several elementary concepts: linguistic variable, linguistic value, linguistic 
term set, universe of discourse, fuzzy set, membership function, and grade of membership. The 
most important of these concepts are function and grade of membership. Contrary to classical set 
theory, a fuzzy set A is an object comprising non-empty elements of universe X (A  X) whereby 
each of its elements may be fully included, be a fuzzy member, or be completely excluded (Za-
deh, 1965). In mathematical notation, fuzzy set A is a set of ordered pairs A = {(x.μA(x)); x  X}, 
where μA : X → [0.1] is called a membership function of fuzzy set A. Taking into account three 
cases of membership, the following situations are possible:

1. μA(x) = 1, the element is fully included in fuzzy set A.
2. μA(x) = 0, the element is not included in fuzzy set A.
3. 0 < μA(x) < 1, the element is a fuzzy member of fuzzy set A.

Using the fuzzy approach. one can define an example of a variable and a linguistic value, 
e.g. ‘rich copper ore’. Assuming that rich ore should contain at least 1.5% metal, then, accord-
ing to classical set logic, ore containing less than 1.5% copper would not be considered rich 
(membership function equals ‘0’). This is not a satisfactory solution because a content of 1.45% 
copper, being slightly less than 1.5%, thus would likely be considered ‘poor ore’. Where should 
we draw the line? A satisfactory answer to that question is confusing, due to the conversion from 
a descriptive to a quantitative measure. In fuzzy logic, metal content in ore of less than 1.5% 
copper does not rule out its classification in the category ‘rich ore’. According to fuzzy reason-
ing, all ore is rich, but falls within a different grade of membership, as illustrated in Fig. 3. The 
grade of membership for ore with metal content of less than 1% copper is 0, while in the range 
of 1 to 1.5% the grade of membership in the class ‘rich ore’ is defined at greater than zero. In 
this approach, a hypothetical ore content of 1.3% copper is rich at the grade 0.6. The higher the 
copper content of the ore, the higher, obviously, the grade of membership.

The qualifications described above can be implemented in a mixed manner, with fuzzy defi-
nition of the limit using fuzzy numbers. This number, for the analysed example, is about 1.5% 
Cu. Again, there is no clear separation of classes (Fig. 4). In this model, the ore content of 1.3% 
copper is described using the membership function μ = 0.3, and thus lower, which is consistent 
with intuitive selection of the imprecise determination of the border between sets.

Use of fuzzy sets and their membership functions enables the presentation of imprecise state-
ments and data. With the help of fuzzy operators, data conversion is possible. The fundamental 
operations used in the context of fuzzy sets are sum (MAX), product (MIN), and complement. 
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The sum of fuzzy sets A and B is the fuzzy set A  B, with membership function defined as:

 max[ ,   ]x X A B A Bx x x   (1)

The product of fuzzy sets A and B is fuzzy set A  B, with the membership function defined as:

 min[ ,   ]x X A B A Bx x x  (2)

The complement of fuzzy set A is fuzzy set A′, with the membership function defined as:

 1'x AX A x x  (3)

Operations as defined above do not always accurately reflect the intuitive properties of 
operations on fuzzy sets. For example if μA(x) ≤ μB(x), the intersection of sets with such mem-
bership functions is equal to μA(x), no matter how large the function μB(x) is. To avoid such an 
inconvenience, the adjustable and non-adjustable operators s-norm (sum) and t-norm (intersection) 
are used. The operators applied later in the article are presented in Tables 2 and 3.

The calculation of s- and t-norm operators was tested for the description of the ore grade 
parameters copper content and deposit thickness. Both linguistic variables, ‘copper content’ and 
‘deposit thickness’, are defined as membership functions in Fig. 5.

Both copper content and deposit thickness are subject to continuous monitoring during 
ongoing mining operations. Copper content is a significant parameter from the processing point 
of view, determining the efficiency and economics of the processing. It also affects the quality 
of the obtained concentrate and influences sales revenue. Deposit thickness is one of the key 
parameters determining the appropriate mine operating system. Selection of a suitable system 
translates directly into the costs of the extraction process. Qualification of copper content in the 
ore and deposit thickness (Fig. 5a) was carried out by a mine geologist (an expert in the field) 
using three meanings and the membership functions assigned to them. Copper content of the ore 
of less than 1.3% was considered ‘low’, about 1.9% ‘medium’, and more than 1.9% ‘high’. Fig. 5a 

Fig. 3. Ore membership function for the ‘rich ore’ 
set category

Fig. 4. Ore membership function in the ‘rich ore’ 
set category defined using fuzzy numbers
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also shows that a copper content of 1.6% is (μ = 0.25) ‘low’ and ‘medium’ to the same degree, and 
content of 2.1% ‘medium’ and ‘high’ to the same degree (μ = 0.33). Similar reasoning applied to 
the thickness parameter (Fig. 5b) leads to the conclusion that a thickness of 1.33 m is equivalently 
‘low’ and ‘medium’ at grade μ = 0.33, while a thickness of 3.75 m is both ‘medium’ and ‘high’ 
at membership grade μ = 0.5. Due to the fuzzy delimitation of classes in thickness and copper 
content it is possible, according to fuzzy logic, to carry out different s- and t-norm operations.

Figure 6 illustrates the selected t-norm operators used to determine the membership function 
of copper content for the fuzzy set ‘low copper content AND medium copper content’. Definition 
of this set according to classical logic would be impossible.

The MIN operator is the most optimistic in relation to the decision criteria. The copper 
content of 1.6% is equally low and medium here for the grade of membership μ = 0.25. For the 
remaining operators, lower values of membership function were obtained. This means that the 
rules of metal content qualification for a set of ‘low AND medium copper content’ are sharper and 
require a higher grade of fulfilment for both low and medium copper content in a fuzzy product. 

TABLE 2

Selected non-adjustable s-norm operators 

maximum (MAX) max[ ,   ]x X A B A Bx x x

algebraic union  A BX Ax B A Bx x x x x

Hamacher union
2

1
A B A B

A B
A

x X
B

x x x x
x

x x
 

Einstein union
1

A B
A B

B
X

A
x

x x
x

x x
 

bounded union
2

1
A B A B

A B
A

x X
B

x x x x
x

x x
 

TABLE 3

Selected non-adjustable and adjustable t-norm operators

minimum (MIN) min[ ,   ]x X A B A Bx x x

intersection (PROD) Bx BX A Ax x x

Hamacher product A B
AX B

A B A B
x

x x
x

x x x x
 

Einstein product
2

A B
A Bx

B
X

A A B

x x
x

x x x x

bounded difference max[0. 1]x X A B A Bx x x

Dubois-Prade intersection . , 0.1
max . .

A B
A B

A A
x X

x x
x

x x
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Fig. 5. Significance of the terms; a) low, medium, and high copper content, b) low, medium, 
and high deposit thickness

Fig. 6. Membership functions for the fuzzy set ‘low AND medium copper content’
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An extreme case is represented by a bounded difference operator for which the membership 
function reaches a constant value μ = 0.

Functioning of s-norm operators is presented in Fig. 7, which shows the fuzzy set ‘medium 
OR high deposit thickness’.

Fig. 7. Membership functions for the fuzzy set ‘medium OR high deposit thickness’

In the present approach, based on the union of fuzzy sets, the relationship is the reverse of 
that of the product. The most optimistic is the bounded-sum operator. For a thickness of 3.8 m 
it is either medium or high with the grade of membership μ = 0.93, while for the MAX operator 
this grade is μ = 0.53.

In practical use, fuzzy operators were tested for six exploitation blocks in one of the KGHM 
PC mines. In blocks (corresponding to the X3 block mentioned in Chapter 2) symbolically marked 
with letters A to F, ore samples were taken from the mine face or side walls in the rhombic system 
of regular grid with the 24 m parallel interval and 14 m orthogonal interval (Fig. 8).

Average copper content and deposit thickness are compiled in Table 4. Blocks qualified for 
extraction must be ‘rich’ in terms of copper content as well as ‘thick’ in terms of deposit thickness.

TABLE 4

Average deposit parameters in exploitation blocks

Block Copper content, [%] Thickness, [m]
A 2.01 4.5
B 2.12 3.6
C 3.11 2.6
D 2.05 3.1
E 2.21 4.2
F 2.25 3.3
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Using the membership function defining high deposit thickness and high copper content 
(Fig. 7), appropriate grades of membership have been defined (Table 5).

TABLE 5

Grade of membership for deposit parameters in exploitation blocks

Block Copper content, [%] Thickness, [m]
 A 0.03 1.00
B 0.40 0.40
C 1.00 0.00
D 0.18 0.07
E 0.70 0.80
F 0.83 0.20

Qualification of the exploitation blocks for extraction is based on two t-norm fuzzy opera-
tors, MIN and Einstein product. Ranking of the blocks is summarised in Table 6.

Fig. 8. Fragment of an exploitation block with a scheme of sampling grid; 1 – technological pillars 
in an exploitation block, 2 – technological pillars in technical project of mine workings, 3 – mine faces, 

4 – samples location (exemplary sample number), 5 – technological zones, 5 – chambers
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TABLE 6

Exploitation block ranking according to chosen t-norm operators

Block MIN Block Einstein product
E 0.7000 E 0.5283
B 0.4000 F 0.1461
F 0.2000 B 0.1176
D 0.0700 A 0.0300
A 0.0300 D 0.0067
C 0.0000 C 0.0000

This results in a slightly different classification of exploitation blocks. In the case of the 
selection of the MIN operator, block B occupies the second position, while for the Einstein product 
operator it occupies the third position. As mentioned above, the MIN operator is more optimistic, 
while for the Einstein product operator it is necessary to meet both requirements simultaneously 
at a higher grade. An interesting consideration is that, assuming a greater deposit thickness and 
copper content in the blocks, the result of the MIN operator remains unchanged, conditioned by 
the lower membership function of copper content or deposit thickness. The decision-making 
process does not always occur in the way thus presumed. Decision-making is usually done 
under certain environmental conditions, which define the state of the factors influencing the 
decisions and are independent of the decision-maker. Additionally, the decision-maker may 
make his or her choice depending on his or her mood, preferences, inclination to incur risks, etc. 
Analysis of this type of behaviour resulted in the introduction of compensation operators (Zim-
mermann & Zysno, 1980), which combine the AND operator to a greater or lesser extent with 
the OR operator. Zimmermann & Zysno (1980) suggest an Iγ operator, defined as the intersec-
tion of sets:

 

1

1 1
1 1

m m

A Ai Ai
i i

 (4)

where:
 γ — grade of compensation. 0 ≤ γ ≤ 1;
 μA — grade of fulfilment of all premises. A = A1  A2  ...  Am;
 μAi — grade of fulfilment of component premises.

Compensation operators were calculated for the exploitation blocks, assuming the step range 
of the grade of compensation. The results are shown in Table 7.

Ranking of blocks which satisfies the condition of high deposit thickness and high copper 
content differs with respect to the MIN operator and replicates the scheme of the Einstein product 
operator. Application of the compensatory operator better reflects the complexity of the decision-
making process, taking into account the influence and importance of both deposit parameters.

Also, in the case of a single exploitation block (e.g. B), a higher deposit thickness would 
result in a change in the ranking position of the units qualified for extraction (Table 8). With 
the increasing value of the membership function for deposit thickness, the coefficients indicate 
the need to position block B in an ever-higher position in the ranking. Similar reasoning can be 
applied in relation to the other blocks and their parameters.
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TABLE 7

Values of compensation operators in exploitation blocks

Block
Grade of compensation

0.1 0.2 0.3 0.4
A 0.0426 0.0605 0.0859 0.1220
B 0.1838 0.2111 0.2425 0.2786
C 0.0000 0.0000 0.0000 0.0000
D 0.0169 0.0227 0.0304 0.0408
E 0.5898 0.6211 0.6541 0.6889
F 0.1958 0.2309 0.2723 0.3211

TABLE 8

Values of compensation operator for block B with membership function for copper content μ = 0.4 
and variable membership function of thickness

Thickness
μ

Grade of compensation
0.1 0.2 0.3 0.4 0.5 0.6

0.4 0.1838 0.2111 0.2425 0.2786 0.3200 0.3676
0.5 0.2267 0.2569 0.2912 0.3301 0.3742 0.4241
0.6 0.2693 0.3022 0.3391 0.3806 0.4271 0.4792
0.7 0.3118 0.3471 0.3865 0.4303 0.4792 0.5335
0.8 0.3541 0.3917 0.4334 0.4796 0.5307 0.5871
0.9 0.3962 0.4362 0.4801 0.5284 0.5817 0.6403
1.0 0.4383 0.4804 0.5265 0.5771 0.6324 0.6931

4. Conclusions

Precise description of reality is a difficult and complex task. In geological mining activ-
ity it bears particular importance, because mineral deposits (natural objects) are characterised 
by considerable uncertainty regarding their real parameters. Full assessment and knowledge of 
a mineral deposit’s form and structure and all of its features is possible, as some experts joke, 
only when the total resources have been depleted. This, of course, is associated with mine 
closure and the completion of mining activities. Unfortunately, this is an ex post assessment, 
useless for operational mine activity. Wherever it is necessary to define parameters in a descrip-
tive way, the use of fuzzy set tools appears to be justified and facilitates the characterisation 
of the object.

The considerations presented in this paper were selected from many possible decision-making 
problems in the operational management of an ore mineral deposit. Some of the proposed approxi-
mations of deposit parameters using the membership function may be debatable; nevertheless, 
the reasoning based on fuzzy logic seems to be useful in and of itself. The fuzzy approach was 
presented in the context of a mineral deposit description in which a verbal description of deposit 
parameters was converted into the precise language of mathematics. Additionally, the utility of 
fuzzy logical operators was demonstrated. Testing of the fuzzy reasoning usefulness was based 
on simplified examples. Calculations were based on virtual data. However ,the real usability of 
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the fuzzy approach in a qualitative assessment of mineral deposit parameters requires its testing 
and confirmation in the practice of  geological-mining activity. The questions about the density 
of sampling grid and samples locations seem to be important during a mineral deposit model 
construction. Information about deposit parameters in an exploitation block comes mainly from 
side walls of a mine contouring a mine parcel, and the distance between samples may affect 
the assessment of fuzzy parameters. Perhaps it would be advisable to gather information from 
inside of the selected block. Mentioned doubts indicate that the fuzzy set theory tools may be 
useful in addition to, for example, geostatistical methods. The presented outline of the fuzzy 
logic operators use is only a preliminary step towards the construction of a more complex fuzzy 
decision-making model. In that model, taking into consideration a number of assumptions and 
limitations, the final solution would be evaluation of the ore deposit parameters using the fuzzy 
reasoning.
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