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A new 4-D dynamical system exhibiting chaos
with a line of rest points, its synchronization
and circuit model

SUNDARAPANDIAN VAIDYANATHAN, ACENG SAMBAS and SEN ZHANG

A new 4-D dynamical system exhibiting chaos is introduced in this work. The proposed
nonlinear plant with chaos has an unstable rest point and a line of rest points. Thus, the new
nonlinear plant exhibits hidden attractors. A detailed dynamic analysis of the new nonlinear
plant using bifurcation diagrams is described. Synchronization result of the new nonlinear plant
with itself is achieved using Integral Sliding Mode Control (ISMC). Finally, a circuit model
using MultiSim of the new 4-D nonlinear plant with chaos is carried out for practical use.
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1. Introduction

In science and engineering, much research attention has been devoted to
the modelling and applications of dynamical systems having chaotic behaviour
[1,2]. Chaotic systems are useful in applications such as mechanical systems
[3-7], secure communication [8, 9], neurology [10-12], steganography [13, 14],
cryptosystems [15,16], chemical reactors [17—-19], ecology [20], finance [21], etc.

Chaos theory has significant applications in transmission and communication
engineering. Recently, Liu [22] suggested a direct acquisition algorithm using
chaotic sequences to improve the communication systems based on chaotic DSSS
signals, which aids in overcoming difficulties in different acquisition problems.
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For secure systems, Wang and Li [23] devised a color image encryption method
which is constructed using Hopfield chaotic neural network. Hua et al. [24]
treated the image encryption problem by proposing a cosine-transform-based
chaotic system, which is useful in cryptography. Gohari et al. [25] suggested
an algorithm for 3-D planning using chaotic maps for the motion planning and
regulation of a quadrotor for boundary surveillance applications. Naseer et al. [26]
gave a new approach to improve the security of multimedia systems using a chaotic
map. Karakaya et al. [27] built a memristive chaotic circuit and discussed also
FPGA implementation and TRBG based on it. Wang and Dong [28] dealt with a
4-D autonomous quadratic hyperchaotic system from the classical Lorenz system
and built an electronic circuit design.

This work describes a new 4-D dynamical system with only two quadratic
nonlinearities. It is shown that the proposed chaotic system the new nonlinear
plant has an unstable rest point and a line of rest points. Thus, the new nonlinear
plant exhibits hidden attractors [1,2].

As a control application, we discuss global chaos synchronization of the new
nonlinear plant with itself using Integral Sliding Mode Control (ISMC). Sliding
mode control has many advantages in control theory such as order reduction,
decoupling design procedures, disturbance rejection and insensitivity to small
parameter variations [29, 30].

Finally, a circuit model using MultiSim of the new nonlinear plant with chaos
is carried out for practical use.

2. A new chaotic dynamical system with a line of rest points

In this work, we propose a nonlinear plant given by

X =aly—x)+w,

)') :.X(b—Z),

' (1)
7 = xy-—cg

W =r—ay—-w,

where X =[x, y, z, w]? is the state vector and a, b, ¢, r are constant parameters.
In this work, we shall show that the plant (1) exhibits chaos for the choice of
parameter values

a=10, b=20, ¢=3, -1<r<l (2)

Throughout this section, we fix the values of a, band c as (a, b, ¢) = (10, 20, 3).
We consider r in the range —1 < r < 1.
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To determine the rest points of the plant (1), we solve the system

aly—x)+w=0, (3a)
x(b-2)=0, (3b)
xy—cz=0, (3¢)
r—ay—-w=0. (3d)
From Egq. (3d), we have
r=ay+w. 4)

Thus, we can eliminate w from (3) and rewrite it as

r—ax =0, (5a)
x(b-12z) =0, (5b)
xy—cz=0. (5¢)

When r = 0, the system (5) can be solved as
x=0, z=0, ay+w=20 (6)

which is a line of rest points in the (y, w)-plane.
When r # 0, the system (5) can be solved as

) z=0b, y=—. (7)

Since w = r — ay, we have a single rest point given by

2_ 2
e )
a r r
Thus, the nonlinear plant (1) has a line of rest points (6) when r = 0 and the
single rest point (8) when r # 0.
Lyapunov exponents of the nonlinear plant (1) are calculated for (a, b, c,r) =
(10,20, 3,0) and X(0) =[0.2,0.2,0.2,0.2]" for T = 1E4 seconds as

LE; =0.5182, LE, =0, LE; = —0.1703, LE, = —-14.3479. (9)

From Eq. (9), it is clear that the nonlinear plant (1) is chaotic and dissipative
when r = 0.
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Lyapunov exponents of the nonlinear plant (1) are calculated for (a, b, c,r) =
(10,20, 3, 1) and X(0) =[0.2,0.2,0.2,0.2]" for T = 1E4 seconds as

LE, = 0.5206, LE, =0, LE3 = -0.1704, LE, = —14.3502. (10)

From Eq. (10), it is clear that the nonlinear plant (1) is chaotic and dissipative
when r = 1.

Similarly, the Lyapunov exponents of the nonlinear plant (1) are calculated
for (a,b,c,r) = (10,20,3,-1) and X(0) = [0.2,0.2,0.2,0.2]" for T = 1E4
seconds as

LE, = 0.5227, LE, =0, LE3 = -0.1704, LEs = —-14.3523. (11)

From Eq. (11), it is clear that the nonlinear plant (1) is chaotic and dissipative
when r = —1.

By calculating the Lyapunov exponents of the nonlinear plant (1), it is also
easy to show that the plant (1) is chaotic and dissipative for all values of r in
O<r<land-1<r<0.

We also note that the nonlinear plant (1) stays invariant under the change of
state coordinates displayed by

(x’y’ 2, W) = (_xa -Y, % _W)- (12)

This pinpoints rotation symmetry of the nonlinear plant (1) about z = 0 and
highlights an important property that every non-zero trajectory of the plant (1)
has a twin trajectory.

For the chaotic case (a, b, c,r) = (10,20, 3, 1), the nonlinear plant (1) has a
unique rest point given by Xy = [0.1, 600, 20, —5999]”. We calculate that
-10 10 0 1

0 0 -0.1 0O
600 0.1 -3 O
0O -10 0 -1

J(Xo) = (13)

The linearization matrix J(Xy) has the spectral values
¢1 = —0.0002, ¢r = —14.1154, ¢34 = 0.0578 + 6.6810i. (14)

Thus, the rest point Xy is a saddle-focus, which is unstable.

Similarly, for the chaotic case (a, b, ¢, r) = (10,20, 3, —1), the nonlinear plant
(1) has a unique rest point given by ¥y = [-0.1, -600, 20, 5999]". It is easy to
check that the matrix J(¥p) has the same spectral values as J(X(). Hence, the rest
point Yy is a saddle-focus, which is unstable.

The phase plots of the nonlinear plant (1) are shown in Figs 1-4 with the values
(a,b,c,r) = (10,20,3,0) for the parameters and X (0) = [0.2,0.2,0.2,0.2]" for
the initial state of the nonlinear plant (1).
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Figure 1: The phase signal plot of the nonlinear plant (1) simulation in MATLAB
in the (x, y)-plane with (a, b, ¢, 7) = (10,20, 3,0) and X (0) = [0.2,0.2,0.2,0.2].
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Figure 2: The phase signal plot of the nonlinear plant (1) simulation in MATLAB
in the (y, z)-plane with (a, b, ¢, ) = (10,20, 3,0) and X (0) = [0.2,0.2,0.2,0.2].
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Figure 3: The phase signal plot of the nonlinear plant (1) simulation in MATLAB
in the (z, w)-plane with (a, b, ¢, ) = (10,20, 3,0) and X (0) = [0.2,0.2,0.2,0.2].
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Figure 4: The phase signal plot of the nonlinear plant (1) simulation in MATLAB
in the (x, w)-plane with (a, b, ¢, r) = (10,20, 3,0) and X (0) = [0.2,0.2,0.2, 0.217.
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3. Bifurcation analysis of the new 4-D chaotic system

The bifurcation diagram, as a significant tool, is commonly applied for con-
ducting a qualitative study of the dynamics of a nonlinear system [31, 32]. To
present the dynamics of the system (1), we plot the bifurcation diagram of the
state y and the corresponding Lyapunov characteristic exponents of the system
(1) as shown in Fig. 5 with the parameter r taking values in [—1, 1], fixing other
parameters as a = 10, b = 20, ¢ = 3 and the initial state as (0.2,0.2,0.2,0.2).
As can be seen from Fig. 5b, all the Lyapunov exponents are unchanged and
the largest Lyapunov exponent of the system (1) is positive, which means that
the system (1) is in robust chaotic state and has a unique property of constant
Lyapunov exponents [31,32].

a) 30 : : : by 5
ag 0
[/}
c
S
§ — LEf
: —LE2
2 —LE3
2 — LE4
S-10} -

_20 I 1 1 o L L |
1 05 0 05 1 L 05 0 05 1

r r

Figure 5: Dynamics of the system (1): a) bifurcation diagram of the state variable y with
respect to the control parameter r, b) the corresponding Lyapunov exponents spectrum.

Additionally, multi-stability means the coexistence of two or more attractors
with the same parameter set but with different initial values. Multi-stability can
lead to very complex behaviors and it has been found in many dynamical systems
[33,34]. Fix a = 10, b = 20, r = 1, and keep ¢ as the control parameter in the
dynamic analysis of the system (1). When c is varied in [2, 3], the coexisting
bifurcation model of the state y and the corresponding Lyapunov exponents
(for better clarity, only the three largest Lyapunov exponents are presented, and
the missing ones have smaller negative values) are plotted in Figs 6a and 6b,
respectively, where the blue orbit starts from the initial state (0.2, 0.2,0.2,0.2) and
the red orbit starts from the initial state (—0.2, —0.2,0.2, —0.2). From Fig. 6a, we
can observe some kinds of coexisting attractors with different initial conditions.
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Figure 6: Dynamics of the system (1): a) coexisting bifurcation diagram of the state y with
respect to the control parameter c, b) the first three corresponding Lyapunov exponents
spectrum with the initial state (0.2,0.2,0.2,0.2). Note that the blue trajectory begins
with the initial state (0.2,0.2,0.2,0.2) and the red trajectory begins with the initial state
(-0.2,-0.2,0.2,-0.2).

Figure 7 exhibits the coexisting chaotic attractors with ¢ = 2.2 and the co-
existing periodic and chaotic attractors with ¢ = 2.022, where the blue attrac-
tor begins with the initial state (0.2,0.2,0.2,0.2) and the red one begins with
(-0.2,-0.2,0.2, -0.2). Particularly, from Fig. 6b it can be seen that the system
starts from a chaotic orbit in the beginning and then evolves into an extremely
narrow period window and then goes into chaos again with the control parameter
¢ increasing in the region of [2, 3].

Figure 7: Different coexisting attractors of the system (1): a) coexisting chaotic attractors
with ¢ = 2.2, b) coexisting period attractor and chaotic attractor with ¢ = 2.022.
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On the other hand, transient chaos and bursting oscillation, as two special
dynamical phenomena, has been reported in some nonlinear systems [35]. In-
terestingly, the system exhibits complex transient chaos and periodic bursting
behaviors when choosing appropriate parameters and initial conditions. When
takingasa = 10, b = 20, ¢ = 1,r = 1 and the initial conditions (0.2, 0.2, 0.2, 0.2),
the time series and the corresponding phase portraits are plotted in Figs 8a—8d,

a) 40 . . — ‘ b) 40
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-10 5 0 5 10 40 360 380 400 420 440
X t

Figure 8: Transient chaos behavior of the system (1): a) the time series of the state
variable z, b) the corresponding phase portrait in the (x, z) plane, c) the phase portrait in
the (x, z) plane in the region of [340, 450]s, d) the time series of the state z in the region
of [340,450]s.
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respectively. From Fig. 8a, it can be seen that the system has a transition from
transient chaos to steady period with the time evolution. What’s more, when se-
lecting a = 1.5, b = 20, ¢ = 1, r = 1 and the initial conditions (0.2, 0.2, 0.2, 0.2),
the system exhibits the distinctive phenomenon of periodic bursting as shown in
Fig. 9. From the above analysis, we can conclude that the system indeed displays
extremely complicated dynamics.
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Figure 9: Periodic bursting oscillation of the system (1): a) the phase portrait in the
(x, z) plane, b) the time series of the state x.

4. Chaos synchronization of the new 4-D chaotic system

As a control application, this section details the control design of achieving
global chaos synchronization of the new 4-D chaotic system with itself via Integral
Sliding Mode Control (ISMC) [36].

As the drive system of the synchronization process, we focus on the nonlinear
plant
X1 = alyr—xi) +wi,
yi = xi1(b-2z1),
: (15)
21 = X1y1 — i,

Wl =r—-ayy—wi,

where X = [x1, y1, 21, wi]7 is the state vector and a, b, ¢, r are constant parame-
ters.
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As the drive system of the synchronization process, we focus on the nonlinear
plant

X2 = a(yz — x2) + w2 + ¢y,
v2 = x2(b-22) + ¢y,

22 = X2Y2—C22 + @y,

Wy =1 —ayy—wa+ @y,

(16)

where Xo = [x2, y2, 22, w»]" is the state vector and x> Py, Pz, Py Serve as the
sliding controls.

We shall next define the synchronization error between the drive system (15)
and the response system (16) in the following manner:

€x = X2 — X1,
€y = Y21,
e, = 22 —11,
€y = Wy —Wwip.

(17)

It follows that we can derive the synchronization error between the two 4-D
nonlinear plants (15) and (16) as follows:

éx = a(ey_ex) + ey + ¢y,

éy = bex —x222 + X121 + ¢y,
€; = —ce;+ x2y2 — X1)1 + ¢z,
€y = —aey— ey + .

(18)

The integral sliding surface associated with each error variable can be classi-
fied by the following equations.

t

Sy = ex+/leex(r)d7',

0
t
sy = ey + 4, f ey(7)dr,
0 (19)
Sz = ez+/lzfez(7')d7',
0

t

Sw = €y + Ay f ey(T)dT.

0
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Using (19), we derive the differential equations of the integral sliding surfaces
as follows:
Sy = éx+ Adyey,
Sy = éy+ Ayey,
y y T Ay€y (20)
§, = é;,+ A e,

Sw = €+ Ay ey, .

We assume that A,, Ay, A, A, are positive conditions. Thus, the Hurwitz con-
dition is satisfied.
Using integral sliding mode control [36], we take the feedback control law as

ox = —aley —ex) — ey — Ayex — nxSgN(sy) — kysy,
¢y = —bey + x225 — x121 — Ayey —nysgn(sy) — kysy,

(21)
@, = ce;—Xxay2 + x1y1 — dze; —msgn(s;) — ks,

Oy = aey+ ey, — Ayey —1,,8gn(sy) — ky Sy, .

Substitution of the control law (21) into (18) yields the closed-loop system

éx = —Ayex —nysgn(sy) — kySy,
€y = —Ayey —1y8gn(sy) — kysy,
- (22)
€, = —Adze; —nzsgn(s;) — k;sz,
éy = —Aye, — nwsgn(sw) —kywSw .

The main result of this section is proved next.

Theorem 1 The new 4-D systems (15) and (16) are globally and asymptotically
synchronized for all initial values by the integral SMC law (21) where Ay, Ay, A,
A, kyx, ky, ko, ky, 0y, 1y, 112, and 1, are taken as positive constants.

Proof. We consider the Lyapunov function defined by means of the following
formula

1
V(Sx, Sy, Sz, Syw) = 3 (sjzc + si + s?) . (23)

It is obvious that V is a quadratic and positive definite function defined on R*.
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The time-derivative of V along the error trajectories is calculated using (22)
and (20) as follows:

V= —nlsel = mylsyl = malszl = mwlswl = kest = kysy — kos = kysy, . (24)

Thus, V is a negative definite function defined on R*,

Therefore, the proof is complete by Lyapunov stability theory [37]. O

For simulations, we take k, = ky, = k; = k,, = 10. We also take n, = n, =
n,=n,=0.1.

Furthermore, we take A, = 1, = 4, = 4,, = 20.

The initial state of the drive system (15) is taken as x{(0) = 5.4, y;(0) = 3.1,
z1(0) = 1.8 and wy(0) = 12.9.

The initial state of the response system (15) is taken as x,(0) = 1.2, y»(0) =
9.5, 25(0) = 4.7 and w»(0) = 0.4.

Figures 10—13 depict the complete synchronization between the states of the 4-
D systems (15) and (16), while Fig. 14 shows the time-plot of the synchronization
error between the 4-D systems (15) and (16).

20

15

10

-10

-15 I I I
0 0.5 1 1.5 2 25 3

Time (sec)

Figure 10: MATLAB plot showing the synchronization between the states x| and x, of the
4-D systems (15) and (16) for X;(0)=(5.4,3.1,1.8,12.9) and X,(0)=(1.2,9.5,4.7,0.4).
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0.5 1 15 2 25 3
Time (sec)

Figure 11: MATLAB plot showing the synchronization between the states y; and y, of the
4-D systems (15) and (16) for X;(0)=(5.4,3.1,1.8,12.9) and X,(0)=(1.2,9.5,4.7,0.4).
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Figure 12: MATLAB plot showing the synchronization between the states z; and z; of the
4-D systems (15) and (16) for X;(0)=(5.4,3.1,1.8,12.9) and X,(0)=(1.2,9.5,4.7,0.4).
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Figure 13: MATLAB plot showing the synchronization between the states w; and w, of the
4-D systems (15) and (16) for X;(0)=(5.4,3.1,1.8,12.9) and X,(0)=(1.2,9.5,4.7,0.4).
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Figure 14: MATLAB plot showing the time-history of the synchronization error
(ex, ey, e, e,,) between the 4-D systems (15) and (16) for X;(0)=(5.4,3.1,1.8,12.9)
and X»(0)=(1.2,9.5,4.7,0.4).
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5. Circuit simulation of the new 4-D chaotic system

The implementation of electronic circuits using chaotic signals has been
investigated in various engineering applications such as secure communication
system [38], robotics [39] and high frequency generator [40]. In this work, the
four state variables of system (1) x, y, z, w are rescaled. As a result, we transform
system (1) into system (25):

X = a(y—x)+2w,

y :x(b_2Z)9
1 2 = 2xy—cz, (25)
1 ay

w—4 > w.

1 1 1 1
In (25), X = Ex, Y = Ey, Z = EZ’ and W = Zw. In this case, we take r = 0

for chaotic system with line equilibrium. By applying Kirchhoft’s circuit laws
into the circuit of Fig. 15, we get its circuital equations:

1 1 1

X = Y - X + W,
CiR CiR, CiR;
. 1 1
Y = X - XZ,
CoRy 103 R5
(26)
) 1 1
/Z = XY — Z,
10C3Rs C3R;
. 1 1
W = - Y - w.
C4Rg C4R9

We note that X,Y,Z and W correspond to the voltages on the integrators
U1A, U2A, U3A and U4A, respectively. The values of components in the circuit
are selected as: R = R, =40 kQ, R3 = 200 kQ, Ry = R; = Rg = 20 kQ,
R7 = 133.33 kQ, Ry = 80 kQ, Ry = 400 kQ, Rjo = Rj1 = Rj2 = Rj3 = Rj4 =
Ri5 =100 kQ, C; = C; = C3 = C4 = 1 nF. MultiSIM outputs of the circuit are
presented in Fig. 16. The MultiSIM simulation results (see Fig. 16) show a good
match with the MATLAB simulation of the 4-D chaotic system in Section 2 (see
Figs 1-4).
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Figure 15: Circuit design of the new 4D chaotic system (1): a) X signal, b) Y signal,
¢) Z signal and d) W signal.
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Figure 16: Chaotic attractors of system (1) using MultiSIM circuit simulation:
a) X — Y plane, b) Y — Z plane, c) Z — W plane and d) X — W plane.

6. Conclusions

This work presented a new 4-D dynamical system exhibiting chaos. It was
proved that the new nonlinear plant has an unstable rest point and a line of rest
points. Thus, it is concluded that the new nonlinear plant exhibits hidden attrac-
tors. A detailed dynamic analysis of the new nonlinear plant using bifurcation
diagrams was carried out. Synchronization result of the new nonlinear plant with
itself was worked out using Integral Sliding Mode Control (ISMC). Finally, a cir-
cuit model using MultiSim of the new 4-D nonlinear plant with chaos was done
for practical use.
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