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Abstract: Averaged models: an AC large signal, DC and AC small signals of a current-
controlled buck converter are described. Only peak current mode control of a converter
working in the continuous conduction mode (CCM) is considered. The model derivation
differs from the typical approaches presented in the literature and doesn’t refer to the multi-
loop concept of a current controlled converter. The separation of the variables method is
used in the model derivation. The resulting models are presented in the form of an equation
set and equivalent circuits. The calculations based on the presented models are verified by
measurements and full-wave PSpice simulations.
Key words: averaged model, buck converter, continuous conduction mode, peak current
mode control

1. Introduction

A buck converter, also known as a step-down converter is one of the most popular DC-DC
switch-mode power converters. Averaged models are usually used for the description of the
converter behavior for time scales containing many switching periods (in other words: in the low
frequency range). Such models are necessary in the process of designing control algorithms and
circuits for converters [1, 2]. The current-mode control (CMC) is one of the possible control
schemes and is widely discussed in many papers, technical notes and textbooks, where, among
others, the advantages of CMC over voltage-mode control (VMC) are pointed out. Several versions
of current mode control are known, such as peak current mode control (PCMC), average current
mode control, valley current mode control and others. Only PCMC for a buck converter in a
continuous conduction mode (CCM) is discussed in the further text.
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It is well-known that in a standard VMC, the main switch in the power stage of a converter
(being switched ON at the beginning of the switching period) is switched OFF at the moment
tON and the time tON (or the duty ratio dA = tON/TS , where TS is a switching period) is the output
signal of the control circuit. In the CMC (in PCMC variant), the main switch is switched OFF
when the instantaneous value of the rising inductor current becomes equal to the value of the
current iW established by a control circuit. The principal idea of the current mode control was
proposed in 1978 [3, 4] and the detailed analysis and modeling of current controlled converters has
been presented in 1979 [5] and next in many further papers, among others in the comprehensive
studies of Middlebrook [6, 7] published in 1985 and 1989 respectively. One of the specific features
of current-controlled converters observed in the early analyses is the instability of a converter
in the case if the duty ratio of a switching signal exceeds 0.5. The solution of the instability
problem is to use the additional external ramp in the control loop. This external ramp is taken
into account in the description of current controlled converters presented in further publications.
Averaged models of the current controlled converters described in [5, 6] and [7] are derived
with the use of the state-space averaging approach. The attempts of description of a current
control method within the frame of state-space averaging leads to the concept of a double (or
generally – multiple) control loop (presented also by Ridley in [8]) as a characteristic feature of
current-mode control, where specifically, the “inner loop” is referred to as a “current loop” and
the outer – as a voltage loop. The “inner loop” describes the dependence of the inductor current
on the control quantity, namely current iW or a corresponding voltage and other circuit variables.
According to [5–7], the inner control loop is responsible for the above mentioned instability. In
some, variants of the discussed models, the inductor current is treated as an independent variable
and the resulting model is of the first order (only one pole in the small signal averaged model,
corresponding to the angular frequency 1/RC, where R is the load resistance and C – capacitance
of the capacitor connected to the converter output). Other models are usually of the second (or
even higher) order.

In the next model of current controlled converters, presented by Ridley in 1991, the relatively
new idea of the averaged models derivation, presented by Vorperian in 1990 [9, 10], based on the
concept of a three-terminal switch model, is adopted. A similar idea of creating the averaged model
of a pair of switches is adopted in the so called behavioral relationship in [11]. The derivation of
averaged models of pulse-modulated converters based on a three-terminal switch model instead
of the state-space averaging approach has been widely accepted and used, among others, to the
current-controlled converter modeling, but the double-loop description is still present in papers
based on this approach.

In papers of Ridley [12, 13] it is pointed out, that continuous-time models of current-controlled
converters [5–7] cannot predict the instability of the converter, observed experimentally. This
opinion is repeated in many other papers (for example [14–18]) and seems to be generally
accepted. Sampled-data models have been proposed by Ridley for proper description of the
instability phenomenon. The modified continuous-time models have been obtained by various
approximations of the esT term in sampled-data models. Other attempts to the modeling of various
variants of current-controlled converters and different variants of the analog or digital control
subcircuit are presented in more modern papers, as for example in [19–22]. The newest papers in
the field (as for example [23–27]) are devoted to the practical implementations of various digital
techniques of current mode control and does not concern strictly the topic of averaged models.
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Small-signal averaged models of current controlled converters discussed in some papers, for
example [14–18], have the form of the transmittances of the fourth (or higher) order. The applica-
bility of such complex transmittances to the design of control circuits seems to be questionable.
On the other hand, models discussed in [14–18] are derived on a basis of double-loop description
of current-controlled converters. It may be inferred, that the concept of a double-control loop is
not a convenient way of current-controlled converter description.

The main purpose of this paper is to derive the continuous-time averaged model of a pulse
modulated converter without the use of the double-loop concept. The buck converter in a contin-
uous conduction mode (CCM) is taken as an example and the separation of the variables method
[28, 29] is used in the model derivation. In this paper, the current iW is treated as a control quantity
and tON as well as duty ratio dA are secondary variables. The connection between the control
current and the inductor current is described by introducing the quantity iX being the difference
between the control current iW and the averaged inductor current in a single switching period.
The presented approach to current-controlled converter modeling may be a convenient alternative
to modeling based on a double control loop approach.

An outline of the proposed method has been previously presented in the short paper [30] on
the example of an ideal buck converter without small-signal analysis, and without verification of
dynamic characteristics. The present paper is a substantial extension of [30], takes into account
parasitic resistances of converter components and includes verification of the proposed model by
measurements and full-wave simulations.

The large-signal averaged model is presented in Section 2. The DC and small-signal aver-
aged models and the resulting transmittances are discussed in Sections 3 and 4. The numerical
calculations and experiments are described in Section 5. Section 6 contains some concluding
remarks.

2. Large-signal averaged model of current-controlled buck converter

The considered power stage of the converter and its equivalents for the ON and OFF sub-
intervals are depicted in Figs. 1(a, b) and (c), respectively. The waveform of the inductor current
iL (t) in a single switching period is presented in Fig. 2. According to the idea of an averaged model,
each circuit variable in a given period is represented by its averaged value and these averages
are varying slowly (with low frequency) in consecutive switching periods. The symbol iL (t)
describing the waveform of the inductor current inside a single period should be distinguished
from iLS representing the average value in a given period. Symbols of other variables such as vG
(input voltage), vO (output voltage) and iW (control current) denote averaged values in a given
period.

The changes of the current iW forced by a control circuit influence the averaged inductor
current iLS. The difference:

iX = iW − iLS (1)

depends on other circuit variables and this dependence is crucial for the averaged model. From
Figs. 1(b, c) and 2 one can find the dependencies of iX on the input and output voltage and the
time tON.
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(a) (b)

(c)

Fig. 1. Power stage of buck converter (a);
its equivalents in ON (b) and OFF (c)

subintervals

Fig. 2. The waveform of the inductor current of buck in a single switching period

From Fig. 1(b) for the ON subinterval:

iL (t0 + tON) = iL (t0) +
1
L

t0+tON∫
t0

[vG − vO − iL (t) · (RT + RL )] · dt. (2)

Denoting:

R1 = RT + RL , R2 = RD + RL (3)

and taking for simplicity t0 = 0, one obtains:

iL (tON) = iL (0) +
1
L

tON∫
0

[vG − vO − iL (t) · R1] · dt . (4)
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The term containing iL (t) under an integral is much smaller than vG − vO. Calculations may
be simplified by replacing iL (t) under an integral by its average value iLS. The result is:

iL (tON) = iL (0) +
1
L
· (vG − vO − iLS · R1) · tON, (5)

therefore:
∆iL = iL (tON) − iL (0) =

1
L
· (vG − vO − iLS · R1) · tON . (6)

Similar dependence may be obtained for the OFF subinterval:

∆iL = iL (tON) − iL (TS ) =
TS − tON

L
· (vO + R2 · iLS) . (7)

For a low-frequency range it may be assumed that the values of vO during a single switching
period are the same for the ON and OFF subintervals, therefore from Eqs. (6) and (7), using
dA = tON/TS one obtains:

dA =
vO + iLS · R2

vG + iLS · (R2 − R1)
. (8)

In derivation of the averaged model of a switching converter with the separation of the variables
approach [28, 29], all circuit variables are divided into two groups. The first contains variables
having the same local averages in the ON and OFF subintervals and the second-variables having
different local averages in ON and OFF. The first group in the present case contains quantities
vG , vO, iL , iW and the second-quantities vL (the voltage on the ideal part of the inductor – see
Fig. 1) and iG (the input current).

The averaged value of vL is:

vLS = dA · vL (ON) + (1 − dA) · vL (OFF)

= dA · (vG − vO − iL · R1) + (1 − dA) · (−vO − iL · R2)
, (9)

After introducing Eq. (8) into (9) one obtains:

vLS = 0, (10)

therefore, the ideal part of the inductor is shorted in the averaged model.
The averaged value of the input current is:

iGS = dA · iG (ON) + (1 − dA) · iG (OFF) = iLS · dA . (11)

From Eqs. (8) and (11) we have:

iGS = iLS ·
vO + iLS · R2

vG + iLS · (R2 − R1)
. (12)

The difference iX defined by Eq. (1) is:

iX = iW − iLS =
∆iL
2
. (13)
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By introducing Eq. (8) into (6), with the use of (13) one obtains:

iX ≈ GZ ·
vO · (vG − vO) + iLS · [R2 · vG − (R1 + R2) · vO]

vG + iLS · (R2 − R1)
, (14)

where:
GZ =

TS

2 · L . (15)

Eq. (14) is obtained as an approximation of the exact formula. The omitted term R1 · R2 · i2LS
in the numerator of Eq. (14) is three to four orders smaller than the main term vO · (vG − vO) for
typical values of circuit parameters.

The additional equations describing the output cell of the converter, valid in both subinter-
vals are:

vO = vC + RC ·
dvC
dt

, (16)

iL = C · dvC
dt
+ G · vO . (17)

The equivalent circuit representing the large-signal model of a current-controlled buck con-
verter in a continuous conduction mode (CCM), based on Eqs. (1), (10), (12), (14), (16), (17) is
shown in Fig. 3. It differs from the model discussed in [30] by the existence of the capacitor series
resistance RC and different description of the current sources iX and iGS – see Eqs. (12) and (14).

Fig. 3. The averaged large-signal model of a current-controlled buck converter in CCM

3. DC model

The DC model is obtained from the AC large-signal model by replacing the capacitor branch
by an open-circuit and using symbols of DC quantities for circuit variables. The result is shown
in Fig. 4. From this figure we obtain:

IL = G · VO . (18)

From Fig. 4 and DC equivalents of Eqs. (13) and (14), the relation between the DC output
voltage VO and DC terms VG and IW of the input voltage and the controlling current may be
obtained in the form:

IW − G · VO = GZ ·
VO · (VG − VO) + G · [R2 · VG − (R1 + R2) · VO]

VG + G · VO · (R2 − R1)
. (19)
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Fig. 4. The averaged DC model of a current-controlled buck converter in CCM

The approximation for |G(R2 − R1) | ≪ 1 leads to the equation:

A · V 2
O − B · VG · VO +

IW
GZ
· VG = 0, (20)

where:
A = 1 + G · (R1 + R2) (21)

and
B =

G
GZ
+ G · R2 + 1. (22)

The physically accepted solution of Eq. (20) is:

VO =

VG ·
(

G
GZ
+G·R2+1

)
−

√
V 2
G
·
(

G
GZ
+G·R2+1

)2
−4· IW ·VG

GZ
· [1+G· (R1+R2)]

2· [1+G· (R1+R2)]
. (23)

In the ideal case, R1 = R2 = 0, we obtain:

VO =
VG

2
·
(

G
GZ
+ 1

)
− 1

2
·

√
V 2
G
·
(

G
GZ
+ 1

)2
− 4 · IW · VG

GZ
. (24)

Alternatively, the DC voltage transfer function MV = VO/VG may be obtained from Eq. (20):

MV =

G
GZ
+ G · R2 + 1 −

√(
G

GZ
+ G · R2 + 1

)2
− 4 · IW

GZ · VG
· [1 + G · (R1 + R2)]

2 · [1 + G · (R1 + R2)]
. (25)

Transfer function MV for an ideal case have been presented in [30] and the related formula
corresponds to (25) for R1 = R2 = 0. Another possibility is to express MV as a function of VO

and IW :

MV =

GZ · (1 + G · R2) + G − IW
VO

GZ · [1 + G · (R1 + R2)]
. (26)

The additional equation in the DC averaged model is a description of the DC term of input
current

IG =
G · V 2

O

VG
· (1 + G · R2) . (27)
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4. Small-signal model

A small-signal model is obtained from the large-signal one by finding the linear equivalent
for the nonlinear description of current sources iX and iGS, namely:

iX = f1 (vO, vG, iLS) , (28)

iGS = f2 (vO, vG, iLS) , (29)

expressed by Eqs. (14) and (12). The s-domain representation of the small-signal terms of the
currents iX and iGS are:

Ix =
∂ f1

∂vO
· Vo +

∂ f1

∂vG
· Vg +

∂ f1

∂iLS
· Il , (30)

Ig =
∂ f2

∂vO
· Vo +

∂ f2

∂vG
· Vg +

∂ f2

∂iLS
· Il , (31)

where Vo, Vg and Il are the s-domain representation of small-signal terms of vO, vG and iL .
In the calculations of derivatives given in Eqs. (30) and (31), the approximated form of

Eqs. (12) and (14) are used for |G(R2 − R1) | ≪ 1. The resulting expressions for the small-signal
quantities are as follows:

Go =
∂ f1

∂vO
= GZ ·

[
1 − VO

VG
· (2 + G · (R1 + R2))

]
, (32)

Gmx =
∂ f1

∂vG
= GZ ·

V 2
O

V 2
G

· [1 + G · (R1 + R2)] , (33)

Km =
∂ f1

∂iL
= GZ ·

[
R2 −

VO

VG
· (R1 + R2)

]
, (34)

Gmg =
∂ f2

∂vO
=

IL
VG
= G · VO

VG
, (35)

Gin =
∂ f2

∂vG
= −

V 2
O

V 2
G

· (1 + G · R2) · G, (36)

Kg =
∂ f2

∂iLS
=

VO

VG
· (1 + 2 · R2 · G) . (37)

A small-signal equivalent circuit of a current-controlled buck converter working in a CCM is
shown in Fig. 5. The small-signal term Vo of the output voltage, according to Fig. 5 is:

Vo =

(
Iw − Gmx · Vg

)
· Zc

1 + Km + Go · Zc
, (38)

where:
Zc =

s · C · RC + 1
s · C · (1 + RC · G) + G

. (39)
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Fig. 5. Small-signal model of a current-controlled buck converter in CCM

Several transmittances may be calculated from the obtained model, such as control-to-output
transmittance Hw and input-to-output transmittance Hg. For example:

Hw =
Vo

Iw

�����Vg=0
=

Zc

1 + Km + Go · Zc
, (40)

By introducing Eqs. (32, 34) and (39) into (40) one obtains an expression for transmittance
Hw in the form:

Hw = Hwo ·
1 + s/ωz

1 + s/ωp
, (41)

where Hwo is the low-frequency value of Hw , ωz and ωp are the circular frequencies of zero and
a pole of the control–to output transmittance.

Hwo =
1

G + GZ · (1 − 2 · MV ) + G · GZ · R2 − 2 · G · GZ · MV · (R1 + R2)
, (42)

ωz =
1

C · RC
, (43)

ωp =
G + GZ · (1 − 2 · MV ) + G · GZ · R2 − 2 · G · GZ · MV · (R1 + R2)

CZ + CZ · GZ · [R2 − MV · (R1 + R2)] + [1 − 2 · MV − G · MV · (R1 + R2)] · GZ · RC · C
, (44)

where:
CZ = C · (1 + RC · G) . (45)

For an ideal converter, R1 = R2 = RC = 0, we have:

1
ωz
= 0, (46)

Hwo =
1

G + GZ · (1 − 2 · MV )
, (47)

ωp =
G + GZ · (1 − 2 · MV )

C
. (48)

Other small-signal transmittances for a current-controlled buck converter may be obtained in
a similar way.

According to Eqs. (47) and (48), the expression for Hwo may give undetermined results and
ωP tends to zero, if:

MV → 0.5 ·
(
1 +

G
GZ

)
, (49)
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or, for small G, if:
MV → 0.5. (50)

This observation coincides with the known feature of a current-controlled buck converter, that
it may be unstable for a duty ratio (being in an ideal case equal to MV ) approaching 0.5 [5, 6, 13].

5. Simulations and measurements

The verification of the obtained models has been performed by comparison of the results of
calculations based on the equations given in Sections 2–4 with full-wave PSpice simulations and
measurements in the laboratory model of the converter presented in Fig. 6. The control quantity
iW is obtained in this circuit as:

iW =
vW

K · RF
. (51)

Fig. 6. Power stage of a current-controlled buck converter

Particulars of the measurement circuit are shown in Appendix.
The calculations and measurements have been performed for the following values of converter

parameters: input voltage vG = 12 V, switching frequency fS = 200 kHz, load resistance
R = 2.4 Ω, L = 10 µH, RL = RLE + RF = 135 mΩ, C = 470 µF, RC = 76 mΩ, switch:
transistor IRFR3806 (described in simulations as resistance RT = 40 mΩ in ON subinterval),
diode MBRD4040, RD = 200 mΩ. Fig. 7 presents the results of time-domain PSpice simulations
of the circuit in Fig. 6 for several switching periods in steady-state conditions. The time shift
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Fig. 7. The PSpice waveforms of the characteristic quantities in converter for constant values IW = 2 A:
(1) vCOMP, (2) iW , (3) vF/(RF ·K ), (4) iL , (5) vPWM

between waveforms of the inductor current iL and the current corresponding to the voltage vF is
the result of the non-ideality of the amplifier K .

The comparison of the calculation results for the averaged models represented by Figs. 3–5
and Eqs. (14)–(17), (23) and (41)–(45) with the measurements or PSpice for full-wave simulations
of the converter are shown in Figs. 8, 9 and 10.

Fig. 8. DC dependencies of the output voltage VO on the control current IW

Curves 1 (full wave simulations including real parameters of a comparator and differential
amplifier), 2 (measurement) and 3 (full wave simulations with idealized descriptions of the
comparator and amplifier) in Figs. 10(a) and (b) are obtained by large signal full-wave PSpice
simulations for the circuit in Fig. 6 with the assumed control voltage:

vW (t) = VW + Vm · sin (2π f t) , (52)

with VW = 2 V and Vm = 50 mV (corresponding to DC component IW = 2 A and the amplitude
of the harmonic term Iwm = 50 mA); curves 4 (a small-signal averaged model with parasitic
resistances) and 5 (a small-signal averaged model without parasitic resistances).
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Fig. 9. Time-domain response of the output voltage VO (t) on
the step change of the control current iW from 1.3 A to 1.8 A

(a) (b)

Fig. 10. Small signal transmittance HW (see Eq. (40)): (a) magnitude (normalized to 1Ω); (b) phase

6. Conclusions

The averaged models: an AC large signal, DC and AC small signals of a current-controlled
non-ideal buck converter in a continuous conduction mode (CCM) are presented and verified by
measurements and PSpice simulations. A satisfactory consistency of the calculations based on
presented models with the results of measurements and large-signal full-wave PSpice simulations
is achieved. The derivation of the model is based on the separation of the variables method and
differs from the approach presented usually in the literature, because the multi-loop description
of current control is not used. The descriptions of the power stage of a converter in the form
of equations and equivalent circuits shown in Sections 2–4 gives a base for the analysis of the
full converter (the power stage and a control circuit) treated as a single loop system. One of the
interesting features of the presented model, in the small-signal variant, is the observation that
the formulas for parameters in the description of the control-to-output transmittance Hw may
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give undetermined results in the situation corresponding to duty ratio DA approaching 0.5 (see
Eqs. (47)–(50)). The phenomenon of the current-controlled converter instability at DA → 0.5 is
well known but according to many opinions (for example in [12, 18]) it cannot be explained by
the continuous-time models. It seems that our model gives such a possibility.

The proposed approach may be applied to other switch-mode converters as well as to buck
converters working in a discontinuous conduction mode (DCM) but the detailed derivations and
the resulting equations should be, of course, different.

Appendix

Detailed version of the measurement circuit

Fig. 11. Particulars of the measurement circuit
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