Synchronization of neuronal bursting using backstepping control with recursive feedback

SURESH RASAPPAN

J.L. Hindmarsh, R.M. Rose introduced the concept of neuronal burst. In this paper, synchronization is investigated for the construction of a model of neuronal burst using backstepping control with recursive feedback. Synchronization for a model of neuronal bursting system is established using Lyapunov stability theory. The backstepping scheme is a recursive procedure that links the choice of a Lyapunov function with the design of a controller. The backstepping control method is effective and convenient to synchronize identical systems. Numerical simulations are furnished to illustrate and validate the synchronization result derived in this paper.

Key words: Hindmarsh-Rose neuronal bursting system, chaos, synchronization, backstepping control, Lyapunov, stability

1. Introduction

Chaotic systems are highly sensitive depending on their initial conditions. The synchronization of two or more systems is not easy to achieve [1–3], as the sensitive initial conditions and time delay are the factors that affect the synchronization [4–6].

The most striking aspect of a chaos synchronization is that it can share a common dynamical behaviour under the background. Synchronization has potential application in various fields such as secure communication [7, 8], physical systems [9], chemical reaction [10], ecological systems [11], information science [12], energy resource systems [13], ghost burster neurons [14], bi-axial magnet models [15], neuronal models [16, 17], IR epidemic models with impulsive vaccination [18], predicting the influence of solar wind to celestial bodies [19], etc., [20–38].

Recently, chaos theory has been applied in the field of biomedicine to explain the cardiac and neural tissue to pacing stimuli, therapeutic intervention, neuronal...
systems, etc., [39–42]. Due to the fact that the brain acts as the intricate part of the human body, chaos theory and dynamical equations provide a good base for studying it. In the model of electrical signals of nerves in the brain, chaos theory can help in the field of neurological diseases and also to the achievement of the invention of artificial intelligence [43–46].

In recent years, a backstepping method has been developed for designing controllers to control the chaotic systems [47]. A generally followed concept of the method is the design of a globally stable control chaotic system. The backstepping method is based on the mathematical model of the examined system, wherein new variables are introduced in a form depending on the state variables, controlling parameters and stabilizing functions. The difficult task of stabilizing a chaotic system is to remove nonlinearities from the system that influence the stability of its operation. The use of backstepping method comes in handy to create an additional non-linearity and eliminates the undesirable nonlinearities from the system.

The purpose of this paper is to propose a backstepping control design with novel feedback input approach. Our concept is a systematic design approach that guarantees global stability of the chaotic systems. Based on the Lyapunov function, the backstepping control is determined to tune the controller gain based on the precalculated feedback control inputs.

This paper is organized as follows. Section 2, present the methodology of chaos synchronization by backstepping control method. Section 3, provide a description of the chaotic systems discussed in this paper. Section 4 is devoted to the demonstration of the synchronization of identical neuronal bursting system [48, 49]. The results of the study are summarized in Section 5.

2. The problem statement and methodology

In general, two coupled dynamic systems in a synchronization scheme are called the master and slave systems, respectively. A well designed controller will make the trajectory of the slave system to track the trajectory of the master system, that is, the two systems will be synchronous.

Consider the chaotic system described by the dynamics

\[
\begin{align*}
\dot{x}_1 &= F_1(x_1, x_2, \ldots, x_n), \\
\dot{x}_2 &= F_2(x_1, x_2, \ldots, x_n), \\
\dot{x}_3 &= F_3(x_1, x_2, \ldots, x_n), \\
& \vdots \quad \vdots \\
\dot{x}_n &= F_n(x_1, x_2, \ldots, x_n),
\end{align*}
\]

(1)
where \(x(t) \in \mathbb{R}^n \) is a state of the system. The system (1) is considered as master system. Also the chaotic system described by the dynamics with the controller \(u \) as
\[
\begin{align*}
\dot{y}_1 &= G_1(y_1, y_2, \ldots, y_n) + u_1(t), \\
\dot{y}_2 &= G_2(y_1, y_2, \ldots, y_n) + u_2(t), \\
\dot{y}_3 &= G_3(y_1, y_2, \ldots, y_n) + u_3(t), \\
&\vdots \\
\dot{y}_n &= G_n(y_1, y_2, \ldots, y_n) + u_n(t),
\end{align*}
\]
(2)
is considered the slave system, where \(y(t) \in \mathbb{R}^n \) is a state of the system and \(F_i, G_i \) \((i = 1, 2, 3, \ldots, n)\) are linear and nonlinear functions with inputs from systems (1) and (2). If \(F_i \) equals to \(G_i \), then the systems states are identical otherwise that systems states are non identical. The chaotic systems (1) and (2) depend not only on state variables but also on time \(t \).

The synchronization error is defined as \(e_i = y_i - x_i; i = 1, 2, 3, \ldots, n \), then the synchronization error dynamics is obtained as
\[
\begin{align*}
\dot{e}_1 &= G_1(y_1, y_2, \ldots, y_n) - F_1(x_1, x_2, \ldots, x_n) + u_1(t), \\
\dot{e}_2 &= G_2(y_1, y_2, \ldots, y_n) - F_2(x_1, x_2, \ldots, x_n) + u_2(t), \\
\dot{e}_3 &= G_3(y_1, y_2, \ldots, y_n) - F_3(x_1, x_2, \ldots, x_n) + u_3(t), \\
&\vdots \\
\dot{e}_n &= G_n(y_1, y_2, \ldots, y_n) - F_n(x_1, x_2, \ldots, x_n) + u_n(t).
\end{align*}
\]
(3)
The synchronization error system controls a controlled chaotic system with control input \(u_i, i = 1, 2, 3, \ldots, n \) as a function of the error states \(e_1, e_2, e_3, \ldots, e_n \). That means the systematic feedbacks so as to stabilize the error dynamics (3), \(e_1, e_2, e_3, \ldots, e_n \) converge to zero as time \(t \to \infty \). This implies that the controllers \(u_i, i = 1, 2, 3, \ldots, n \) should be designed so that the two chaotic systems can be synchronized. In mathematical,
\[
\lim_{t \to \infty} \| e(t) \| = 0.
\]

Backstepping design is recursive and guarantees global stabilities performance of strict-feedback chaotic systems. By using the backstepping design, at the \(i^{th} \) step, the \(i^{th} \) order subsystem is stabilized with respect to a Lyapunov function \(V_i \) by the design of virtual control \(\alpha_i \) and a control input function \(u_i \).

We consider the stability of the system,
\[
\dot{e}_1 = G_1(y_1, y_2, \ldots, y_n) - F_1(x_1, x_2, \ldots, x_n) + u_1(t),
\]
(4)
where \(u_1 \) is control input, which is the function of the error state vectors \(e_i \), and the state variables \(x(t) \in \mathbb{R}^n, y(t) \in \mathbb{R}^n \). As long as this feedback stabilizes the system (4) converges to zero as the time \(t \to \infty \), where \(e_2 = \alpha_1(e_1) \) is regarded as virtual controller.
For the design of $\alpha_1(e_1)$ to stabilize the subsystem (4), we consider the Lyapunov function defined by

$$ V_1(e_1) = e_1^T P_1 e_1, \tag{5} $$

where P_1 is a positive definite matrix. The derivative of V_1 is

$$ \dot{V}_1 = -e_1^T Q_1 e_1, \tag{6} $$

where Q_1 is a positive definite matrix, then \dot{V}_1 is a negative definite function on R^n. Thus by Lyapunov stability theory [50] the error dynamics (4) is asymptotically stable. The virtual control $e_2 = \alpha_1(e_1)$ and the state feedback input u_1 makes the system (4) asymptotically stable. The function $\alpha_1(e_1)$ is estimative when e_2 is considered as controller.

The error between e_2 and $\alpha_1(e_1)$ is

$$ w_2 = e_2 - \alpha_1(e_1). \tag{7} $$

Considering the (e_1, w_2) subsystem given by

$$ \begin{align*}
\dot{e}_1 &= G_1(y_1, y_2, \ldots, y_n) - F_1(x_1, x_2, \ldots, x_n) + u_1, \\
\dot{w}_2 &= G_2(y_1, y_2, \ldots, y_n) - F_2(x_1, x_2, \ldots, x_n) - \dot{\alpha}_1(e_1) + u_2.
\end{align*} \tag{8} $$

Consider e_3 as a virtual controller in system (8), assume when it is equal to $\alpha_2(e_1, w_2)$ and it makes system (8) asymptotically stable. Consider the Lyapunov function defined by

$$ V_2(e_1, w_2) = V_1(e_1) + w_2^T P_2 w_2, \tag{9} $$

where P_2 is a positive definite matrix. The derivative of V_2 is

$$ \dot{V}_2 = e_1^T Q_1 e_1, \tag{10} $$

where Q_1, Q_2 are positive definite matrices, then \dot{V}_2 is a negative definite function on R^n. Thus by Lyapunov stability theory the error dynamics (8) is asymptotically stable. The virtual control $e_2 = \alpha_2(e_1, w_2)$ and the state feedback input u_2 makes the system (8) asymptotically stable. For the n^{th} state of the error dynamics, define the error variable w_n as

$$ w_n = e_n - \alpha_{n-1}(e_1, w_2, w_3, \ldots, w_n). \tag{11} $$

Considering the $(e_1, w_2, w_3, \ldots, w_n)$ subsystem given by

$$ \begin{align*}
\dot{e}_1 &= G_1(y_1, y_2, \ldots, y_n) - F_1(x_1, x_2, \ldots, x_n) + u_1, \\
\dot{w}_2 &= G_2(y_1, y_2, \ldots, y_n) - F_2(x_1, x_2, \ldots, x_n) - \alpha_1(e_1) + u_2, \\
\dot{w}_n &= G_n(y_1, y_2, \ldots, y_n) - F_1(x_1, x_2, \ldots, x_n) \\
&\quad - \alpha_{n-1}(e_1, w_2, w_3, \ldots, w_n) + u_n. \tag{12}
\end{align*} $$
Consider the Lyapunov function defined by

\[V_n(e_1, w_2, w_3, \ldots, w_n) = V_{n-1}(e_1, w_2, w_3, \ldots, w_{n-1}) + w_n^T P_n w_n, \]

where \(P_n \) is a positive definite matrix. The derivative of \(V_n \) is

\[\dot{V}_n = -e_1^T Q_1 e_1 - w_2^T Q_2 w_2 - \ldots - w_n^T Q_n w_n, \]

where \(Q_1, Q_2, Q_3, \ldots, Q_n \) are positive definite matrices, then \(\dot{V}_n \) is a negative definite function on \(\mathbb{R}^n \). Thus by Lyapunov stability theory the error dynamics (12) is asymptotically stable. The virtual control

\[e_n = \alpha_{n-1}(e_1, w_2, w_3, \ldots, w_{n-1}) \]

and the state feedback input \(u_n \) makes the system (12) asymptotically stable. Thus by Lyapunov stability theory [50], the error dynamics (3) is globally exponentially stable and satisfied for all initial conditions \(e(0) \in \mathbb{R}^n \). Hence, the states of the master and slave systems are globally and exponentially synchronized.

3. System description

A model of nerve impulse system is based on Fitzhugh equation. The generalization of this model assumes that the rate of change of membrane potential \((x_1) \) depends linearly on the current passing through the electrode \((x_2) \) and an intrinsic current \((x_3) \) depending nonlinearly on membrane potential [48, 49].

The membrane potential is given by

\[\dot{x}_1 = x_2 - f(x_1), \]

where \(f(x_1) \) is governed by the relation

\[f(x) = ax_1^3 - bx_1^2 \]

and the rate of intrinsic current is provided by

\[\dot{x}_2 = g(x_1) - x_2, \]

where \(g(x) \) is furnished by

\[g(x) = c - dx_1^2. \]

The difference between the two concerned systems is that the Hindrose equation is parabolic in contrast to the form of straight line assumed by the Fitzhugh equation.

To stimulate the neuronal system, an intracellular recording from a small identified cell in the vis-cerel ganglion of the pond snail Lymnaea is introduced. Usually Lymnaea is silent. However, when it is depolarized, it fires several times and continues to fire after cessation of the stimulating current. Now the external
current I is added into the membrane potential. The modified two-dimensional Hindmarsh-Rose system is given by [48, 49].

$$\begin{align*}
\dot{x}_1 &= x_2 - ax_1^3 + bx_1^2 + I, \\
\dot{x}_2 &= c - dx_1^2 - x_2.
\end{align*}$$ \hspace{1cm} (17)

The difference between neuronal burst and the cell is always necessary to fire the cell several times during the application of the current pulse for an after-discharge to occur. During the short current pulse, the fire is produced after discharge. Inward current is slower activation kinetic in the snail Lymnaea. Greater undershoot and rapid recovery are possible in recorded action potentials. The cell in Lymnaea, does not fire indefinitely, but slows down and is terminated with a slow after hyperpolarizing wave. By the introduction of a slow current, the Lymnaea cells are gradually hyperpolarized. A slowly increasing outward current has been reported to cause adaptation in molluscan neurons which is generally underlies the depolarization process in molluscan bursters. Let r denote the ratio of slow current and fast current in Lymnaea.

The mathematical expression of an adaptation current x_3 is given by [48, 49]

$$\dot{x}_3 = r(s(x_1 - x_0) - x_3).$$ \hspace{1cm} (18)

The Hindmarsh-Rose neuronal bursting system is given [48, 49]

$$\begin{align*}
\dot{x}_1 &= x_2 - ax_1^3 + bx_1^2 + I, \\
\dot{x}_2 &= c - dx_1^2 - x_2, \\
\dot{x}_3 &= r(s(x_1 - x_0) - x_3).
\end{align*}$$ \hspace{1cm} (19)

where x_1 describes the membrane potential, x_2 describes the exchange of ions across the neuron membrane through fast ionic channels and x_3 the change of ions through slow ionic channels.

The parameters a, b, c, d are constants determined experimentally and $x_0 = -\frac{1}{2}(1 + \sqrt{5})$ is the equilibrium $x-$ coordinate of system (19) for the parameters

$$a = 1, \quad b = 3, \quad c = 1, \quad d = 5, \quad r \leq 1, \quad \text{and} \quad s = 4.$$ \hspace{1cm} (20)

It take up the question of occurrence of different types of a bursting cell. The system of differential equations can be modeled as a bursting cell when the current parameter I is set at a constant level.

Let us consider r as a variable, while the value of I is fixed. With the choice of the parameters $I = 3.25$, $a = 1$, $b = 3$, $c = 1$, $d = 5$, and $s = 4$, the model generates a classical period doubling cascade. Fig. 1 and Fig. 2 illustrating the
SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL WITH RECURSIVE FEEDBACK

Figure 1: Phase portraits of bursting bifurcation phenomena

a) Lyapunov exponents $L_1 = -0.001829$, $L_2 = -0.042157$, $L_3 = -3.815855$ of (19) with parameters given in (20) and $I = 3.25$, $r = 0.00041$

b) (x, y, z) phase portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.0145$

c) Time series portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.0145$, a period doubling cascade is observed

d) Lyapunov exponents $L_1 = -0.032696$, $L_2 = -0.226844$, $L_3 = -29.73009$ of (19) with parameters given in (20) and $I = 3.25$, $r = 0.0001$

e) (x, y, z) phase portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.017$

f) Time series portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.017$, a period doubling cascade is observed
a) Lyapunov exponents $L_1 = -0.002382$, $L_2 = -0.059071$, $L_3 = -10.738918$ of (19) with parameters given in (20) and $I = 3.25$, $r = 0.008$

b) (x, y, z) phase portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.03$

c) Time series portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.003$, a period doubling cascade is observed

d) (x, y, z) phase portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.05$

e) Time series portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.05$, a period doubling cascade is observed

f) Lyapunov exponents $L_1 = -0.011976$, $L_2 = -0.0065696$, $L_3 = -10.010001$ of (19) with parameters given in (20) and $I = 3.25$, $r = 0.0145$

Figure 2: Phase portraits of bursting bifurcation phenomena
SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL
WITH RECURSIVE FEEDBACK

Figure 3: Phase portraits of period doubling cascade starting with a period three solution

a) Time series portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.008$, a period doubling cascade with a period three solution is observed

b) (x, y, z) phase portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.008$

c) Time series portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.0095$, a period doubling cascade with a period three solution is observed

d) (x, y, z) phase portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.0095$

e) Time series portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.01$, a period doubling cascade with a period three solution is observed

f) (x, y, z) phase portraits of the system (19) with parameters given in (20) and with $I = 3.25$ for $r = 0.01$
bursting bifurcation phenomena in the HR model with parameters given in (20) and \(I = 3.25 \). As this slow parameter increases, the period which corresponds to the number of spikes per burst decreases. A classical period doubling cascade is observed.

Fig. 3 illustrates the bursting bifurcation phenomena in the HR model (19) with parameters given by (20) and \(I = 3.25 \). We observe a period doubling cascade starting with a solution of period three.

Fig. 4 illustrates the bursting bifurcation phenomena in the HR model (19) with parameters given by (20) and \(I = 3.25 \). According to the chosen parameter \(r \), the neuron behaviour changes from tonic to spiking to bursting.

Figure 4: Phase portraits of the neuron behavior changes from tonic spiking to bursting
Fig. 4 and Fig. 5 illustrate the model (19) with parameters given by (20) for the chosen values of parameters I. Moreover, for each value of I, there is the same number of spikes within burst in time series and same number of laps in the phase portraits.

Figure 5: Phase portraits illustrating show a periodic behavior of system (19) for the chosen values of parameter I and spikes and laps

With the choice of parameters as $I = 0.4$, $a = 1$, $b = 3$, $c = 1$, $d = 5$, $r = 0.005$, and $s = 4$, the model generates an isolated burst followed by an
after hyperpolarizing wave. Fig. 6 illustrate an isolated burst followed by an after hyperpolarizing wave.

Figure 6: Phase portraits illustrating show a periodic behavior of system (19) for the chosen values of parameter I and spikes and laps

When $I = 2$, $a = 1$, $b = 3$, $c = 1$, $d = 5$, $r = 0.005$, and $s = 4$, the model has a long burst initially in response to the current step and terminates to give the periodic burst pattern. Fig. 7 illustrates the periodic burst pattern.

When $I = 4$, $a = 1$, $b = 3$, $c = 1$, $d = 5$, $r = 0.005$, and $s = 4$. The model has a continuous high frequency discharge, with the frequency declining from
SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL WITH RECURSIVE FEEDBACK

Figure 7: Phase portraits illustrating show a periodic behavior of system (19) for the chosen values of parameter I. Moreover, for each value of I, there is the same number of spikes within burst in time series and the same number of laps in the phase portraits the onset of the step to the steady repetitive firing. Fig. 8a and 8b illustrates the periodic burst pattern with steady repetitive firing.

When $a = 1$, $b = 3$, $c = 1$, $d = 5$, $r = 0.005$, $s = 4$, $I = 3.25$, a deterministic system producing a burst with a random structure [40, 41] is generated. Fig. 8c and 8d illustrates periodic burst with random structure.
a) Time series portraits of the system (19) with parameters given in (20) with \(I = 3 \) for \(r = 0.001 \), a period doubling cascade with a period three solution is observed.

b) \((x, y, z)\) phase portraits of the system (19) with parameters given in (20) with \(I = 3 \) for \(r = 0.001 \).

c) Time series portraits of the system (19) with parameters given in (20) with \(I = 3.25 \) for \(r = 0.001 \), the neuron behaviour changes from tonic spiking to bursting is observed.

d) \((x, y, z)\) phase portraits of the system (19) with parameters given in (20) with \(I = 3.25 \) for \(r = 0.001 \).

Figure 8: Phase portraits illustrating show a periodic behavior of system (19) for the chosen values of parameter \(I \) and spikes and laps.

4. **Synchronization of neuronal model using backstepping control with recursive feedback**

The plant system dynamics [48, 49] is described as

\[
\begin{align*}
\dot{x}_1 &= x_2 - ax_1^3 + bx_1^2 - x_3 + I, \\
\dot{x}_2 &= c - dx_1^2 - x_2, \\
\dot{x}_3 &= r[s(x_1 - x_0) - x_3],
\end{align*}
\]

where \(x_1, x_2, x_3 \) are state variables. \(a, b, c, d \) and \(x_0 \) are positive parameters of the neuronal impulsive system.
The observer system dynamic also defined as neuronal impulsive system [48, 49], and the system dynamics is described by

\[
\dot{y}_1 = y_2 - ay_1^3 + by_1^2 - y_3 + I + u_1, \\
\dot{y}_2 = c - dy_1^2 - y_2 + u_2, \\
\dot{y}_3 = r[s(y_1 - y_0) - y_3] + u_3,
\]

(22)

where \(y_1, y_2, y_3\) are state variables.

Let the error be defined as

\[
e_1 = y_1 - x_1, \quad e_2 = y_2 - x_2, \quad e_3 = y_3 - x_3.
\]

(23)

The error dynamics is obtained as

\[
\dot{e}_1 = e_2 - a(y_1^3 - x_1^3) + be_1(y_1 + x_1) - e_3 + u_1, \\
\dot{e}_2 = -de_1(y_1 + x_1) - e_2 + e_3 - y_3 + x_3 + u_2, \\
\dot{e}_3 = rse_1 - re_3 + u_3.
\]

(24)

First consider the stability of the system

\[
\dot{e}_1 = e_2 - a(y_1^3 - x_1^3) + be_1(y_1 + x_1) - e_3 + u_1,
\]

(25)

where \(e_2\) regarded as virtual controller.

The Lyapunov function is defined by

\[
V_1(e_1) = \frac{1}{2}e_1^2,
\]

(26)

and its derivative is as follows

\[
\dot{V}_1 = e_1\dot{e}_1 = e_1 \left(e_2 - a(y_1^3 - x_1^3) - e_3 + u_1 \right).
\]

(27)

Assume the controller \(e_2 = \alpha_1(e_1)\). If

\[
\alpha_1(e_1) = -k_1e_1
\]

and

\[
u_1 = e_3 + a(y_1^3 - x_1^3) - be_1(y_1 + x_1),
\]

then

\[
\dot{V}_1(e_1) = -k_1e_1^2
\]

(29)

which is a negative definite function. Hence the system (25) is globally asymptotically stable.

The function \(\alpha_1(e_1)\) is an estimative when \(e_2\) is regarded as virtual controller.

The error between \(e_2\) and \(\alpha_1(e_1)\) is

\[
w_2 = e_2 - \alpha_1(e_1) = e_2 + k_1e_1.
\]

(30)
Consider \((e_1, w_2)\) subsystem given by
\[
\dot{e}_1 = w_2 - k_1 e_1, \\
\dot{w}_2 = -de_1(y_1 + x_1) - (1 - k_1)(w_2 - k_1 e_1) + e_3 - y_3 + x_3 + u_2.
\] (31)

Let \(e_3\) be a virtual controller in (30).
Assume that when \(e_3 = \alpha_2(e_1, w_2)\), the system (30) is globally exponentially stable. Consider the Lyapunov function defined by
\[
V_2(e_1, w_2) = V_1(e_1) + \frac{1}{2} w_2^2.
\] (32)
The derivative of \(V_2(e_1, w_2)\) is
\[
\dot{V}_2(e_1, w_2) = \dot{V}_1 + w_2 \dot{w}_2, \\
\dot{V}_2(e_1, w_2) = -k_1 e_1^2 + w_2(e_1 - de_1(y_1 + x_1) - (1 - k_1)(w_2 - k_1 e_1) \\
+ e_3 - y_3 + x_3 + u_2.
\] (33)
Substituting for \(e_3\) (30) into (32)
\[
\dot{V}_2(e_1, w_2) = -k_1 e_1^2 + w_2(e_1 - de_1(y_1 + x_1) - (1 - k_1)(w_2 - k_1 e_1) \\
+ \alpha_2(e_1, w_2) - y_3 + x_3 + u_2.
\] (34)
If
\[
\alpha_2(e_1, w_2) = -e_1 - k_2 w_2 + (1 - k_1)(w_2 - k_1 e_1)
\] and
\[
u_2 = de_1(y_1 + x_1) + y_3 - x_3,
\] then
\[
\dot{V}_2(e_1, w_2) = -k_1 e_1^2 - k_2 w_2
\] (36)
which is a negative definite function. Hence the system (30) is globally asymptotically stable.
The function \(\alpha_2(e_1, w_2)\) is an estimative when \(e_3\) is regarded as virtual controller.
The error between \(e_3\) and \(\alpha_2(e_1, w_2)\) is
\[
w_3 = e_3 - \alpha_2(e_1, w_2) = e_3 + e_1 + (k_1 + k_2 - 1)w_2 + (1 - k_1)k_1 e_1.
\] (37)
Consider \((e_1, w_2, w_3)\) subsystem given by
\[
\dot{e}_1 = w_2 - k_1 e_1, \\
\dot{w}_2 = w_3 - e_1 - k_2 w_2, \\
\dot{w}_3 = rse_1 - re_3 + (w_2 - k_1 e_1)(1 + k_1 - k_1^2) \\
+ (k_1 + k_2 - 1)(w_3 - e_1 - k_2 w_2) + u_3.
\] (38)
Consider the Lyapunov function

$$V_3(e_1, w_2, w_3) = V_2(e_1, w_2) + \frac{1}{2}w_3^2. \quad (39)$$

The derivative of $V_3(e_1, w_2, w_3)$ is

$$\dot{V}_3 = \dot{V}_2(e_1, w_2) + \dot{w}_3w_3 \quad (40)$$
i.e.,

$$\dot{V}_3 = -k_1e_1^2 - k_2w_2^2 + w_3[w_2 + rse_1 - re_3 + (w_2 - k_1e_1)(1 + k_1 - k_1^2) + (k_1 + k_2 - 1)(w_3 - e_1 - k_2w_2) + u_3]. \quad (41)$$

Choose the controller u_3 as follows

$$u_3 = -w_2 - rse_1 + re_3 - (1 + k_1 - k_1^2)(w_2 - k_1e_1) - (k_1 + k_2 - 1)(w_3 - e_1 - k_2w_2) - k_3w_3. \quad (42)$$

Substituting for u_3 form (41) into (40), which give

$$\dot{V}_3 = -k_1e_1^2 - k_2w_2^2 - k_3w_3^2 \quad (43)$$

which is negative definite function on \mathbb{R}^3. Thus by Lyapunov stability theory [42], the error dynamics (23) is globally exponentially stable for all initial conditions $e_0 \in \mathbb{R}^n$.

Hence, the states of plant and observer systems are globally exponentially synchronized.

5. Numerical simulation

For the numerical simulations, the fourth order Runge-Kutta method is used to solve the system of differential equations (20) and (21) with the backstepping controls u_1, u_2 and u_3 given by equations (27), (34) and (41). The parameters of the systems (20) and (21) are taken in the case as $a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4$ and $l = 3.25$. The initial values of the plant system are chosen as: $x_1 = 0.632, x_2 = 0.912$ and $x_3 = 0.125$.

The initial value of the observer system are chosen as: $y_1 = 1.245, y_2 = 0.123$ and $y_3 = 0.001$.

Fig. 9 depicts the synchronization of Hindmarsh-Rose neuronal bursting when the injected current in the neuron $I = 1, 1.5$ and the ratio of time scales between spiking(fast dynamics) and resting(slow dynamics) $r = 0.001$.
a) synchronization of membrane potential when the injected current in the neuron $I = 1$ and the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics) $r = 0.001$

b) synchronization of electrode (the exchange of ions across the neuron membrane through fast ionic channels) when the injected current in the neuron $I = 1$ and the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics) $r = 0.001$

c) synchronization of intrinsic current (the exchange of ions through slow ionic channels) when the injected current in the neuron $I = 1$ and the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics) $r = 0.001$

d) synchronization of membrane potential when the injected current in the neuron $I = 1.5$ and the ratio of time scales between spiking and resting $r = 0.001$

e) synchronization of the exchange of ions across the neuron membrane through fast ionic channels when the injected current in the neuron $I = 1.5$ and the ratio of time scales between spiking and resting $r = 0.001$

f) synchronization of the exchange of ions through slow ionic channels when the injected current in the neuron $I = 1.5$ and the ratio of time scales between spiking and resting $r = 0.001$

Figure 9: Phase portraits of synchronization
SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL
WITH RECURSIVE FEEDBACK

Figure 10: Phase portraits of synchronization

a) synchronization of membrane potential when the injected current in the neuron $I = 2$ and the ratio of time scales between spiking and resting $r = 0.001$

b) synchronization of the exchange of ions across the neuron membrane through fast ionic channels when the injected current in the neuron $I = 2$ and the ratio of time scales between spiking and resting $r = 0.001$

c) synchronization of the exchange of ions through slow ionic channels when the injected current in the neuron $I = 2$ and the ratio of time scales between spiking and resting $r = 0.001$

d) synchronization of membrane potential when the injected current in the neuron $I = 3$ and the ratio of time scales between spiking and resting $r = 0.001$

e) synchronization of the exchange of ions across the neuron membrane through fast ionic channels when the injected current in the neuron $I = 3$ and the ratio of time scales between spiking and resting $r = 0.001$

f) synchronization of the exchange of ions through slow ionic channels when the injected current in the neuron $I = 3$ and the ratio of time scales between spiking and resting $r = 0.001$
Fig. 10 depicts the synchronization of Hindmarsh-Rose neuronal bursting when the injected current in the neuron $I = 2, 3$ and the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics) $r = 0.001$.

Fig. 11 depicts the synchronization of Hindmarsh-Rose neuronal bursting when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics) $r = 0.001$.

- a) synchronization of membrane potential when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.001$
- b) synchronization of the exchange of ions across the neuron membrane through fast ionic channels when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.001$
- c) synchronization of the exchange of ions through slow ionic channels when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.001$

Figure 11: Phase portraits of synchronization

Fig. 12 depicts the synchronization of Hindmarsh-Rose neuronal bursting when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics) $r = 0.0001$.
SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL
WITH RECURSIVE FEEDBACK

Figure 12: Phase portraits of synchronization

a) synchronization of membrane potential when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.0001$

b) synchronization of the exchange of ions across the neuron membrane through fast ionic channels when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.0001$

c) synchronization of the exchange of ions through slow ionic channels when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.0001$

d) synchronization of membrane potential when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.0017$

e) synchronization of the exchange of ions across the neuron membrane through fast ionic channels when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.0017$

f) synchronization of the exchange of ions through slow ionic channels when the injected current in the neuron $I = 3.25$ and the ratio of time scales between spiking and resting $r = 0.0017$
6. Conclusion

In this paper, the backstepping control method has been applied to achieve global chaos synchronization for Hindmarsh-Rose neuronal bursting systems. Since the Lyapunov exponents are not required for these calculations, the backstepping control design is very effective and convenient to achieve global chaos synchronization. Numerical simulations have been given to illustrate and validate the effectiveness of the backstepping control based synchronization schemes of the neuronal systems.

References

SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL WITH RECURSIVE FEEDBACK

