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EXPERIMENTAL APPROACH TO THE DESIGN OF PIEZO-ACTIVE

STRUCTURE

The examination of a smart beam is presented in the paper. Experimental inves-

tigations were carried out for flexible beam with one fixed end and free opposite end.

Piezoelectric strips were glued on both sides of the beam. One strip works as a sensor,

and the second one as an actuator. It is a single input and single output system. The

study focuses on the analysis of natural frequencies and modes of the beam in the

relation to the position of the piezo-elements. The natural frequencies, mode shapes,

generated control forces, and levels of the measured signals are considered and cal-

culated as a functions of the piezo-element locations. We have found correlations

between mode shapes, changes of natural frequencies, control forces and measured

signals for the lowest four modes. In this way, we can find the optimal localization

of the distributed sensors and actuator on the mechanical structure directly by the

using of the finite elements method (FEM).

1. Introduction

In the design of vibration control of the mechanical structure we should

solve the following problems.

1. The choice of the sensors and actuators and their localization along

the structure.

2. Mathematical modeling of the structure as a control plant.

3. The choice of the control method and the design of the control law.

4. Implementation of the control system and its validation.

∗ Mechanical Department, Bialystok Technical University, ul. Wiejska 45c, 15-351

Białystok, Poland; E-mail: gosiewski@pb.bialystok.pl
∗∗ Mechanical Department, Bialystok Technical University, ul. Wiejska 45c, 15-351

Białystok, Poland; E-mail: lucasczapko@pb.bialystok.pl
∗∗∗ Mechanical Department, Bialystok Technical University, ul. Wiejska 45c, 15-351

Białystok, Poland; E-mail: akoszewnik@pb.edu.pl

DOI: 10.24425/ame.2007.131551



156 ZDZISŁAW GOSIEWSKI, ŁUKASZ CZAPKO, ANDRZEJ KOSZEWNIK

In the paper, first of all we consider the first problem since it is also important

for proper analysis and finding solutions to other problems.

The sensors and actuators can act at specific points on the structure, or

can be distributed along the structure [1], [2]. The localization of the actuators

influences the level of the exerted forces [3], while localization of the sensors

has the influence on the power of the measurement signals [3]. The vibration

process is sufficiently fast to reduce the number of actuators we can use to

generate the control forces. Electromagnetic suspensions, magnetic bearings,

piezo-strips, or piezo-stocks can be such actuators. Among these actuators,

the piezo-strips can be considered as the distributed actuators.

Piezo-strips can be also used as distributed sensors. Distributed actuators

and sensors act on the vibration control system in an unpredictable manner.

This means that as long as optimal distribution of the piezo-stripes is not

known, we do not know how these piezos act on the structure and how they

influence the vibrations. Therefore, there is a need to find any simple tool to

estimate this influence. The best solution would be to express this influence

by an indicator which can be obtained by means of the finite element method

(FEM) analysis of the structure. Presently such analysis is carried out during

the design of each more loaded structure.

In the paper, we investigate the dynamics of the uniform beam without

piezo-strips, and with two such strips fixed on it. One of them works as an

actuator while the other one is used as a sensor. The dynamics is investigated

for the different locations of the strips along the beam using both an analytical

solution and the finite element solution. We find the natural frequencies, first

four mode shapes, the generated control forces, and levels of the measured

signals. We also calculate the correlations between mode shapes, changes of

natural frequencies, control forces and measured signals for the four lowest

vibration modes.

2. Finite element model of the smart beam

The laboratory model of the smart beam consists of a steel beam in can-

tilever configuration with two piezoelectric stripes bonded onto its surface.

It is shown in Figure 1. The steel beam has the dimensions of 25×280×1

[mm], while the sensor and the actuator are single piezoelectric stripes of

25×56×0.38 [mm] and 25×56×0.75 [mm], respectively.

In the first step, the passive beam without piezoelectric elements was

investigated to determine natural frequencies. For this purpose we used the

software Ansys, and a proper finite element method was generated.
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Fig. 1. The experimental smart beam

In the next step, in the same procedure we examined the smart beam.

In this case, the finite element model (FEM) was rebuilt taking into account

the piezoelectric parameters given in Table 1.

Table 1.

Parameters of structure

Parameters steel beam actuator Sensor

dimensions [m] 0.28×0.025×0.001 0.056×0.025×0.00075 0.056×0.025×0.00038

mass [kg] 0.0546 0.00675 0.00342

Material hard steel Piezo-cristal Piezo-cristal

volume [m3] 7∗10−6 0.9375∗10−6 0.475∗10−6

Young’s modulus (E) [GPa] 200 0.18 0.18

Poisson’s coefficient (ν) 0.3 0.28 0.28

density (ρ) [kg/m3] 7800 7200 7200

Fig. 2. Natural frequencies of examined beam: a) steel beam, b) beam with piezo-elements

The natural frequencies and modal shapes of the beam were calculated.

The obtained results are shown in Fig. 2. Fig. 2a shows the mode shapes of

the steel beam without piezo-elements. Fig. 2b shows the mode shapes for

the same beam with piezo-elements located at a distance of 0.056 [m] from

the fixed end (control force and strain for the fourth mode has a maximal

value).
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The first four natural frequencies of the steel beam and the smart beam are

given in Table 2. We can notice that adding the piezo-elements to the structure

results in its greater stiffness. This causes a slight increase of the natural

frequencies. The reason for this is that the length of the piezo-elements is

relatively small in the comparison to the length of the whole beam (the ratio

is 0.17).

Table 2.

First four natural frequencies of the beam

freqencies [Hz] passive beam smart beam Increase [%]

f1 10.51 10.82 2.94

f2 64.14 65.83 2.63

f3 184.42 191.58 3.88

f4 361.82 372.95 3.08

For further calculations, the smart beam was divided into ten equal seg-

ments. The first segment, located on the free end of the beam had the smallest

stiffness. The tenth segment, located on the clamped end of beam had the

greatest stiffness. We divided the beam into 10 segments, because the piezo-

elements were moved with steps equals to half the length of the piezo-stripes

(0.028 [m]). The divided beam is shown in Fig. 3.

Fig. 3. Divided beam

Table 3.

Calculated coordinates of elements

Location of piezo-stripes (center point)

0.028 0.056 0.084 0.112 0.140 0.168 0.196 0.224 0.252

amplitude for

first mode
0.133 0.53 1.17 1.96 2.88 3.91 5.00 6.25 7.44

amplitude for

second mode
−0.75 −2.56 −4.53 −5.81 −6.09 −5.05 −2.81 0.68 4.61

amplitude for

third mode
1.93 5.13 6.22 4.06 −0.078 −4.00 −5.44 −3.14 2.19

amplitude for

fourth mode
−3.2 −5.67 −3.17 3.57 5.82 2.22 −3.4 −5.24 0.018
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The total length was measured from the fixed end. In the next step, anoth-

er simulation was performed. The displacement coordinates were measured

for the four lowest natural frequencies. The obtained results are collected in

Table 3 and the modes are plotted in Fig. 4. The results are the same as in

the case of FEM. The horizontal axis shows the next center points location

of piezo-stripes on the beam, and the vertical axis shows the deflection am-

plitude. In accordance to the vibration theory of beam the values in points

describe the shapes of the vibration modes.

Fig. 4. Calculated coordinates of divided beam

3. The influence of piezoelement position on the beam natural

frequencies

It is well known that location of actuators and sensors has a significant

influence on vibration control system of mechanical structures. It is much

easier to determine such influence in the case of point actuators and sensors.

Piezoelectric actuator and sensor are distributed-parameter elements. In this

section, we try to find a simple method, which would allows us to find the

best location for such elements. First we will check how location of the
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elements influences natural frequencies of a smart beam. In order to do so,

both sensor and actuator are shifted from the fixed end to the opposite end

in 28 mm steps. Fig. 5 shows the start and end position of piezo-elements. In

every step (repeated 9 times), the first four natural frequencies are calculated.

Fig. 5. Examination of piezo-element position influence
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Fig. 6. Natural frequencies of the smart beam versus the piezo-element position

The obtained results are presented in Fig. 6. The first mode is shown in the

top left corner and the fourth mode is shown in the bottom right corner.

Only the first natural frequency monotonically falls when the sensor and

the actuator depart from the fixed end of the beam. Other three frequencies

oscillate around average values. It appears that all the natural frequencies

of the smart beam depend on the piezo-elements position. On the one hand,

these piezo-elements act as an additional masses, and on the other hand, they

change the mechanical parameters of the beam.
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4. Control forces

A question arises whether the above result can give us the information

about the best position of sensors and actuators in the control system. We

consider the smart beam where the bending moment of piezoelement is

represented by three forces as it is shown in Fig. 7.

The model of the piezoelements was considered as a “static coupled

model” [7] with the difference that the whole piezoelement was divided into

two equal segments. In each segment the bending moment was represented

by a couple of opposite forces concentrated at the segment’s edge. Such a

modeling of an actuator is allowable in the case when the distances between

nodal points of controlled modes are greater than a length of the segment.

Therefore, a force equal to Q is introduced at position xp1, at xp2 – force 2Q

and at xp3 – force Q.

Fig. 7. Forces generated by the piezoelement

The equation of forced vibrations of the beam has the well-known form [4]:
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where δ is the Dirac function. After modal transformation
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the modal transversal force of piezo-actuator is represented by the equation
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(
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The modal force in function of the piezo-actuator location is shown in

Fig. 8.
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Fig. 8. Forces generated by piezo-actuator

5. Measurement signals

The extension of piezo-sensors results in voltage signal generated on its

walls. Let us assume that piezo-element in Fig. 7 is now a piezo-sensor. The

extension is the result of angular deformation of the beam, which produces

strain in the piezo-sensor. The angular deformation of the piezo-sensor will

be considered separately for both of its parts indicated in Fig. 7. We express

the unit elongation of each part in terms of angular deformations in the

following form:

ε1(t) = −
∆rT(t)

L
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The total unit elongation is a sum of unit elongations of both parts of the

piezo-sensor:

ε(t) = ε1(t) + ε2(t) (6)

where U(x) is the function of mode shape, ∆r is radius of the beam curvature,

T(t) is the time function of mode vibrations.

All unit elongations are presented in Fig. 9 for four modes. The elonga-

tions for the first mode are shown in the top left corner and for the fourth

mode the elongations are shown in the bottom right corner. In proper easier

interpret the graphs, the variable in horizontal axis shows the next positions
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piezoelectric’s centre, and that in vertical axis is corresponding value of

deformation. Obtained results for measurement signals are very similar to

the control forces but they have the opposite phase.

dla n=1

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,028 0,056 0,084 0,112 0,14 0,168 0,196 0,224 0,252

[m]

Epsilon 1

Epsilon 2

Epsilon

dla n=2

-20

-15

-10

-5

0

5

10

15

0,028 0,056 0,084 0,112 0,14 0,168 0,196 0,224 0,252

[m]

Epsilon 1

Epsilon 2

Epsilon

dla n=3

-1400

-1050

-700

-350

0

350

700

1050

1400

0,028 0,056 0,084 0,112 0,14 0,168 0,196 0,224 0,252

[m]

Epsilon 1

Epsilon 2

Epsilon

dla n=4

-52000

-39000

-26000

-13000

0

13000

26000

39000

52000

0,028 0,056 0,084 0,112 0,14 0,168 0,196 0,224 0,252

[m]

Epsilon 1

Epsilon 2

Epsilon

Fig. 9. Unit elongations (strains) of piezo-sensor versus its location. The maximal point of the

green line indicates the best position of the piezo-element from measurement side

(for a given mode)

6. Corelation between obtained results

In this section, we collect and compare the above results. As a tool for

the comparison we used correlation matrices. The Matlab software was used

to design four matrixes. Individual matrices are associated with the four low-

est vibration modes. Every matrix has nine rows which represent the centre

position of the piezoelectric element along the beam and four columns which

contain values of: control forces, mode shapes, natural frequency changes,

and unit elongations. Using these matrices, we obtained correlation coef-

ficients between control force, mode shape, changes of natural frequencies

and unit elongation for each vibration mode. The correlation coefficients are

presented in Tables 4–7.

We can notice that all variables are strongly correlated, except of the

variable describing the changes of natural frequency. The frequency changes

have twice more extreme points than other variables. So, after some modi-

fications (for example the correlation with half of the values of the natural

frequency changes) we could also obtain high correlation for this variable.

We can ten find the best localization of the sensors and actuators by the

analysis of the structure with the help of FEM.
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Table 4.

Correlation coefficients for the first natural frequency

Control force Mode shape Freq. change Elongation

Control force 1.0000 0.9614 −0.9016 −0.9927

Mode shape 0.9614 1.0000 −0.9843 −0.9783

Freq. change −0.9016 −0.9843 1.0000 0.9287

Elongation −0.9927 −0.9783 0.9287 1.0000

Table 5.

Correlation coefficients for the second natural frequency

Control force Mode shape Freq. change Elongation

Control force 1.0000 −0.5596 −0.7579 −0.9999

Mode shape −0.5596 1.0000 0.6926 0.5464

Freq. change −0.7579 0.6926 1.0000 0.7525

Elongation −0.9999 0.5464 0.7525 1.0000

Table 6.

Correlation coefficients for the third natural frequency

Control force Mode shape Freq. change Elongation

Control force 1.0000 0.9279 −0.5959 −0.6301

Mode shape 0.9279 1.0000 −0.4444 −0.6765

Freq. change −0.5959 −0.4444 1.0000 −0.0705

Elongation −0.6301 −0.6765 −0.0705 1.0000

Table 7.

Correlation coefficients for the fourth natural frequency

Control force Mode shape Freq. change Elongation

Control force 1.0000 −0.9128 −0.1654 −0.9989

Mode shape −0.9128 1.0000 0.2387 0.8934

Freq. change −0.1654 0.2387 1.0000 0.1541

Elongation −0.9989 0.8934 0.1541 1.0000

7. Conclusions

In this paper, we have shown strong correlation between the optimal

location of distributed sensors and actuators and the results of the finite

element analysis (FEM). By using FEM analysis, we obtained changes of
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natural frequencies and vibration mode shapes for different localization of

piezo-element strips. In the future work we will find the following:

1. The optimal localization of a single strip used for control/measurement a

few modes (SISO).

2. The optimal localization of several strips used for control/measurement

of many modes (MIMO).

3. Identification method for obtaining a control plant model without spillover

effects.

4. Design method of control law.

Such approach do the vibration control system design can be called the

fast prototyping of the smart mechanical systems.
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Eksperymentalne podejście przy projektowaniu układów aktywnego sterowania drganiami

konstrukcji z wykorzystaniem elementów piezoelektrycznych

S t r e s z c z e n i e

Szybkie prototypowanie układu aktywnego sterowania drganiami wybranych konstrukcji

z wykorzystaniem elementów piezoelektrycznych realizowane jest w czterech etapach:

1. Określenie optymalnego położenia piezo-elementów pomiarowych i wykonawczych na kon-

strukcji dla przyjętych kryteriów.

2. Przyklejenie piezoelektryków i eksperymentalna identyfikacja modelu układu otwartego.

3. Zaprojektowanie praw sterowania i ich implementacja w wybranych sterownikach.

4. Weryfikacja eksperymentalna działania układu zamkniętego.

W artykule skoncentrowano się na rozwiązaniu problemów związanych z pierwszym etapem. Bada-

nia przeprowadzono dla stalowej belki wraz przyklejonymi do niej obustronnie piezo-elementami.

Jeden z piezo-elementów pracuje jako aktuator drugi zaś jako sensor. Przesuwając paski piezoelek-

tryczne wzdłuż belki wyliczono zmiany wartości naturalnych częstotliwości własnych drgań belki,
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postaci drgań, sił sterujących oraz sygnałów pomiarowych. Na podstawie zebranych danych symula-

cyjnych zostały utworzone macierze korelacyjne dla pierwszych czterech postaci drgań. Wszystkie

prezentowane badania zostały wykonane z wykorzystaniem metody elementów skończonych. Wyz-

naczono położenia piezoelektryków dla których uzyskuje się największe wartości modalnych sił

sterujących i modalnych sygnałów pomiarowych.


