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CRITICAL STATE OF SIMPLY SUPPORTED ELASTIC
RECTANGULAR PLATE UNDER NON-UNIFORMLY DISTRIBUTED

COMPRESSIVE LOAD

The paper is devoted to a simply supported rectangular plate subjected to two
types of compressive edge loads. The first load is applied uniformly along a part of
two opposite edges, the second one has a non-uniform distribution (defined by a half
wave of the sink function). The critical load value of the plate is located between the
values for uniformly distributed and concentrated load. Critical value of thickness
of the plate is determined. The problem is solved by the orthogonalization method,
and the results are compared with those of numerical analysis done by means of the
finite element method.

1. Introduction

Thin-walled structures are usually made of rectangular plate elements,
which are subjected to complex types of loads. Therefore, conditions of
strength and stability must be precisely analysed during designing these
structures. The problem of buckling of a rectangular plate due to an uni-
formly distributed compressive load distributed along two opposite edges of
the plate was formulated by Bryan in 1891. Bryan also calculated a critical
load for this case. The buckling of rectangular plates for complex cases of
load was described (for example) by Volmir (1967) and collected by Woź-
niak (2001). The problem of buckling of a rectangular plate compressed
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by a concentrated load was solved by Sommerfeld in 1907. A review of the
strength and the stability problems of plates and shells subjected to a concen-
trated load was presented by Łukasiewicz (1976). The buckling problem of
non-uniformly compressed cylindrical shells was described by Binkevich and
Krasovskii (1973), Teng and Rotter (2004) and also by Błachut (2005). These
authors, however, paid less attention to the buckling response induced by a
non-uniform compression. Yamaki in 1984 also demonstrated an analysis of
compressed shells and the effect of non-uniform compression on the critical
load value. The recent analysis of the rectangular plates submitted to a set of
complex non-uniform loading cases was provided by Bert and Devarakonda
(2003).

The solutions proposed by Bryan (1891) and Sommerfeld (1907) for com-
pressed rectangular plates are concerned with two ideal cases of load. The
first one is connected with an uniformly distributed load along the plate
edges, the second one – with a concentrated load. In actual structures, usu-
ally occur non-uniformly distributed loads. The values of critical loads are
located between these two ideal cases. The analysis presented in this paper is
concerned with a simply supported rectangular plate subjected to two types
of load distribution: an uniform loading on a portion of the plate edge and
a non-uniform loading (defined by a half wave of the sink function). This
paper provides an analytical and a numerical approach to the problem, and
is a continuation of the work by Kurpisz et al. [5].

2. Analytical solution

At the beginning, we consider the plate subjected to a compressive load
uniformly distributed along a part of two opposite edges. The scheme of the
considered load distribution is presented in figure 1.

Fig. 1. Plate loading uniformly distributed on two opposite edges
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The critical load value of uniaxially and uniformly compressed simply
supported rectangular plate [8] occurs for a square plate (a = b), and is given
by

F (uni f )
CR = b · Nx,CR = 4π2 D

b
,

where D =
E · t3

12 · (1 − v2) – plate bending stiffness, a – plate length, b – plate

width, t – plate thickness, E – Young’s modulus, ν – Poisson ratio.
The critical load value of a simply supported rectangular plate subjected

to a concentrated load [6], [8] can be written as

F (con)
CR = απ

D
b
,

where

a/b 0,5 0,75 1 1,5 2 3

α 18,80 9,00 6,00 4,46 4,11 4,02

Hence, for square plate, we have

F (con)
CR = 6π

D
b
.

The concentrated load put on the edge can cause a local plastification
of the plate. Therefore, it is essential to place this load along a part of the
plate edge, so that the critical stresses do not exceed the allowable stresses
(σCR = σALL).

The critical load of a simply supported rectangular plate exerted by a
compressive load uniformly distributed along a part of two opposite edges
is held in the following interval

F (con)
CR < F (part−uni f )

CR < F (uni f )
CR ,

thus
π

2 · (1 − ν2) E
σALL

( t
b

)2
<

(
bL

b

)
CR
<

π2

3 · (1 − ν2) E
σALL

( t
b

)2
, (1)

where

F (part−uni f )
CR = bL · t · σCR = bL · t · σALL.

The stability equation of the longitudinal compressed plate is given by the
following formula
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D
(
∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
= tσx

∂2w
∂x2 , (2)

where σx – compression stress of the axially loaded plate.
The load uniformly distributed along a part of two opposite edges is defined
by the following formula

F (part−unit) = bL · t · σx = bL · N0
x ,

where

N0
x (y) =


c · Nx f or y ∈

[
b − bL

2
,
b + bL

2

]
; bL ∈ (0, b)

0 other cases

is the intensity of load.

It is assumed that

b∫
0

N0
x (y)dy = b · Nx, therefore c =

b
bL

.

The deflection function takes the form

w(x, y) = w0 sin
(mπx

a

)
sin

(nπy
b

)
f or x ∈ [0, a] ; y ∈ [0, b] ; n,m = 1, 2, 3, ...

(3)
Substituting w(x, y) into equation (2), we have

D
[(mπ

a

)2
+

(nπ
b

)2
]2

sin
(mπx

a

)
sin

(nπy
b

)
= N0

x (y)
(mπ

a

)2
sin

(mπx
a

)
sin

(nπy
b

)
.

(4)
Using the Galerkin’s method for equation (4), we obtain

D
[(mπ

a

)2
+

(nπ
b

2)]2

= Nx

(mπ
a

)2
[
1 − b · (−1)n

nπbL
sin

(
nπbL

b

)]
.

Hence

Nx =

D
[
mπ
a +

n2π
b2

a
m

]2

1 − b · (−1)n

nπbL
sin

(
nπbL

b

) . (5)
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The critical intensity of load Nx,CR is the minimum value of equation (5).
Let α =

a
b

, then equation (5) takes the following form

Nx =

Dπ
2

b2

1 − b · (−1)n

nπbL
sin

(
nπbL

b

) ·
(
m
α
+

n2α

m

)2

. (6)

In order to find minimum value of equation (6), let us assume that n = 1 and

f (α) =
(m
α
+
α

m

)2
. It is easy to see that

d f
dα
= 0 and

d2 f
dα2 > 0 for α = m,

therefore fmin = f (α = m) = 4.

Thus Nx,CR =

4Dπ
2

b2

1 + b
πbL

sin
(
πbL
b

) , and therefore the critical intensity of non-

uniformly distributed load is given by

N (part−uni f )
CR =

b
bL
· Nx,CR =

4D π
2

bbL

1 + b
πbL

sin
(
πbL
b

) .

The critical compressive non-uniformly distributed load value has the fol-
lowing form

F (part−uni f )
CR =

4Dπ
2

b

1 + b
πbL

sin
(
πbL
b

) .

It is obvious that if bL → b then F (part−uni f )
CR → 4D

π2

b
= F (uni f )

CR , and if bL → 0

then F (part−uni f )
CR → 2D

π2

b
= 6.28D

π

b
≈ F (con)

CR . This small difference is due to
a different method of deriving the formula for the critical concentrated load.
The critical stress can be written as

σ
(part−uni f )
CR =

4D π
2

tbbL

1 + b
πbL

sin
(
nπbL

b

) .

By transformation of inequality (1), we obtain
√

3 · (1 − ν2)σALL

π2E
bL

b
<

t
b
<

√
2 · (1 − ν2)σALL

πE
bL

b
, (7)
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where

t
b
=

√
3 · (1 − ν2)σALL

π3E

[
πbL

b
+ sin

(
πbL

b

)]
. (8)

Now, let us consider a simply supported rectangular plate subjected to
an uniaxially, non-uniformly distributed compressive load (defined by a half
wave of the sink function). Figure 2 presents this kind of load distribution.

Fig. 2. The load scheme for a non-uniformly distributed load and k = 1

The critical load of a simply supported rectangular plate exerted by an
uniaxially but non-uniformly distributed compressive load is held in the fol-
lowing interval

F (con)
CR < F (non−uni f )

CR < F (uni f )
CR ,

where

F (non−uni f )
CR = b · t · σCR = b · t · σALL.

The intensity of load is defined by the following formula

N0
x (y) = ck · Nx · sink

(
πy
b

)
f or y ∈ [0, b]; k = 1, 3, 5, .... (9)

It is also assumed that

b∫
0

N0
x (y)dy = b · Nx, therefore
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ck =



π · k!

2k ·
[(

k − 1
2

)
!
]2 for odd k

2k ·
[(

k
2

)
!
]2

k!
for even k

First, we analyze the intensity of load (9) for odd k.
The substitution of formulas (3) and (9) into (4) gives

D
[(mπ

a

)2
+

(nπ
b

)2
]2

sin
(mπ x

a

)
sin

(nπ y
b

)
=

=
Nx · π · k!

2k ·
[(

k − 1
2

)
!
]2

(mπ
a

)2
sink

(nπ y
b

)
sin

(mπ x
a

)
sin

(nπ y
b

)

from which, using the Galerkin’s method and taking advantage of the fact
that

b∫
0

sink
(
π y
b

)
dy =

2k · b ·
[(

k − 1
2

)
!
]2

π · k !
for odd k ,

we obtain

D
[(mπ

a

)2
+

(nπ
b

)2
]2

= 2 ·
(mπ

a

)2 k + 1
k + 2

Nx.

Thus

Nx =

D
[
mπ
a +

n2π
b2

a
m

]2

2 · k + 1
k + 2

(10)

In a similar way like in the case of non-uniformly distributed load one can
find the minimum value (NCR) of equation (10). This value is obtained for
n = 1 and m =

a
b

.
Hence, the critical intensity of load takes the form

N (non−uni f )
CR =

2D π2

b2 · k + 2
k + 1

.

The critical compressive load has the following form
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F (non−uni f )
CR = N (non−uni f )

CR · b = 2D π2

b
· k + 2

k + 1
. (11)

It is easy to see that the load from formula (11) appears between two extreme
cases of the critical load – the uniformly distributed (for k → 0) and the
concentrated one (for k → +∞). The critical stress can be written as

σ
(non−uni f )
CR =

F (non−uni f )
CR

t b
=

2D π2

t b2 ·
k + 2
k + 1

.

From inequality (1), one obtains the following inequality

√
3 · (1 − ν2)σALL

π2 E
<

t
b
<

√
2 · (1 − ν2)σALL

π E
(12)

Obviously, inequality (12) is satisfied by

t
b
=

√
6(1 − ν2)σALL

π2E
· k + 1

k + 2

for σALL = σCR.

Due to the fact that

b∫
0

sink
(π y

b

)
dy =

b · k!

2k ·
[(

k
2

)
!
]2 for oven k, we can

derive, in a similar way, the formulas for N (non−uni f )
CR , F (non−uni f )

CR , σ(non−uni f )
CR ,

for even k. These formulas are the same as those for odd k.

Fig. 3. The graph of the ratio t/b for fixed k



CRITICAL STATE OF SIMPLY SUPPORTED ELASTIC RECTANGULAR PLATE... 309

The region below the curve in figure 3 pertains to the case in which plate
load is too high, and the stresses evoked by this load exceed the critical value.
A plate in this state can buckle and lose its stability. It is then necessary to

avoid this area, and take the ratios
t
b

(for fixed k) which lie above the curve.

3. Numerical analysis

The numerical analysis is carried out by means of the FE code ABAQUS/
/Standard. Quadrilateral shell elements SR4 are used in the FE model. Nu-
merical analysis is performed only for a load uniformly distributed on the
part of the edge of length bL. The value of the considered load is equal to
F = 1000 N. The material properties are E = 2, 05 · 105 MPa, ν = 0, 3,
σALL = 200 MPa. This analysis is performed for the square plate family with

the dimensions a = b = 100 mm and the ratio
bL

b
taken from the interval

[0,05; 1]. The results shown below are calculated for
bL

b
= 0, 5. The critical

value of plate thickness t in this case is obtained from formula (8) and equals
1.486 mm.

Fig. 4. The critical ratios of plate sizes

The curves marked as “concentrated” and “uniformly” in figure 4 cor-
respond to formula (7). The analytical solution associated with formula (8)
is represented by the curve “analytical” and the results from ABAQUS by
“ABAQUS”. The region above the “analytical” curve represents safety ratios

of
t
b

. It means that if the
t
b

value is not taken from this region, then the
plate can buckle.
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4. Conclusion

Many structures are usually submitted to non-uniformly or partly uniform-
ly distributed loads, therefore these two types of loads has been investigated
in this paper. The considered plate is in the critical state, so it can easy

buckle. The formula for safety value of
t
b

for each type of the analysed loads
has been determined. The FEM analysis has shown a good agreement with
the analytical solution.

Manuscript received by Editorial Board, January 04, 2008;
final version, November 26, 2008.
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Stan krytyczny przegubowo podpartej sprężystej płyty prostokątnej ściskanej
nierównomiernie rozłożonym obciążeniem

S t r e s z c z e n i e

Przedmiotem badań jest stan krytyczny nierównomiernie ściskanej prostokątnej płyty podpartej
przegubowo-przesuwnie na czterech brzegach. Rozwiązania dla płyt równomiernie ściskanych i
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obciążonych siłą skupioną są dobrze znane. Badany stan krytyczny występuje pomiędzy stanem
krytycznym dla równomiernie obciążonej płyty, a stanem krytycznym dla płyty obciążonej siłą
skupioną. Krytyczne wymiary płyty są ustalone w wyniku badań. Problem rozwiązano przy pomocy
metody ortogonalizacji, wyniki porównano z obliczeniami z programu ABAQUS.


