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Abstract. Machine learning (ML) methods facilitate automated data mining. The authors compare the effectiveness of selected ML methods 
(RBF networks, Kohonen networks, and random forest) as modelling tools supporting the selection of materials in ecodesign. Applied in the 
design process, ML methods help benefit from the knowledge, experience and creativity of designers stored in historical data in databases. 
Implemented into a decision support system, the knowledge can be utilized – in the case under analysis – in the process of design of environ-
mentally friendly products. The study was initiated with an analysis of input data for the selection of materials. The input data, specified in 
cooperation with designers, include both technological and environmental parameters which guarantee the desired compatibility of materials. 
Next, models were developed using selected ML methods. The models were assessed and implemented into an expert system. The authors show 
which models best fit their purpose and why. Models supporting the selection of materials, connections and disassembly methods help boost 
the recycling properties of designed products.
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selected added material must be technologically similar to the 
one used previously in order for the designer to proceed with 
the design process. Compatible materials need not be separated 
for recycling. This study is the outcome of continued research 
into the use of artificial intelligence to support designers in the 
ecodesign process. The topic is especially relevant in view of 
the implementation of Industry 4.0. The concept is based on 
integration of the physical world of manufacturing machines 
with the virtual reality of the Internet and information technol-
ogy. Human beings, machines and IT systems have access to 
tools which enable automated data, information and knowledge 
exchange [2].

2.	 Overview of the literature 

The concept of sustainable development originated in the final 
decades of the previous century and is still evolving [5]. How-
ever, environmental integrity should not only follow from legal 
compliance, but should be underpinned by a true belief that 
protection of the environment is a material aspect of business. 
Awareness in this area is shaped by the relation of business 
community with the natural environment, information on and 
perception of the organisation’s environmental footprint, as well 
as readiness to take action aimed at mitigating the impact of 
business operations on the environment [6]. The design process 
is highly influenced by environmental aspects [7]. Taking them 
into consideration throughout the product lifecycle minimizes 
the environmental footprint of products. Ecodesign provides for 
the manufacturing of products which do not contain hazardous 
substances or generate hazardous waste. Raw materials used in 

1.	 Introduction

This innovative study, exploring the selection of materials in 
ecodesign, is a follow-up on previous research into the applica-
tion of artificial intelligence (AI) in the selection of materials 
in product design to provide for their recycling compatibility. 
The research has been described in [1‒4]. Based on the deci-
sion tree induction methods and MLP artificial neural networks, 
the proposed tools automate the selection of materials in the 
design process, building upon the designer’s knowledge gained 
through experience. The expert system applied in previous 
research featured the following functionalities:
●	 selection of all additional materials based on the data pro-

vided on the main material and the anticipated compatibility,
●	 selection of connections between the materials.

In this paper, the authors describe the system’s function-
ality which determines the degree of compatibility between 
materials. The training examples include data deemed necessary 
for this task by the designers, i.e., the main material, its tech-
nological details, ecological features (cost of recycling), and 
any added materials. On this basis, the compatibility of mate-
rials is assessed. Models based on a neural (RBF or Kohonen) 
network or a random forest are implemented into the expert 
system. They support the designer when an additional com-
patible material, which is to be joined with the main material, 
needs to be replaced with another (compatible) one. The newly 
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manufacturing should be renewable and/or reusable. One of the 
pillars of ecodesign is the recyclability of products.

Computer systems supporting the environmental assessment 
of designed products, including recyclability, are coming into 
common use. Most of them are databases which store data 
applied in the environmental assessment. However, research 
is being conducted with the aim to create autonomous sys-
tems which suggest the designer the best solutions for optimal 
environmental parameters of the product. The systems rely 
on state-of-the-art information technologies implementing 
artificial intelligence (AI). The challenges of ecodesign fuel 
the development of increasingly powerful dedicated software 
tools. Among them are machine learning methodologies which, 
although not yet widely used in ecodesign, are certainly wor-
thy of attention. Initially developed and explored purely out 
of scientific curiosity, the methodologies have unexpectedly 
turned out to be useful in many applications, such as technol-
ogy, medicine, economics, and even social sciences. They can 
provide parameter estimates and suggest optimal decisions in 
the design process.

Recent studies show that businesses have been attempting 
to incorporate ecodesign into their practice with different levels 
of success [8, 9], using various ecodesign support solutions, 
from tools dedicated to ecodesign through ones integrated into 
other systems, such as Computer Aided Design (CAD) soft-
ware [10, 11], to tools of general use applied in, e.g., qualitative 
analyses (such as quality function deployment for environment 
– QFDE) [12, 13]. A growing number of ecodesign support-
ing tools use intelligent solutions, such as neural networks or 
genetic algorithms. One of them is the design for environment 
(DfE) methodology, which uses the back-propagation neural 
network (BPNN) model and the technique for order prefer-
ence by similarity to ideal solution (TOPSIS) method. Based 
on a BPNN, lifecycle assessment (LCA) models are devel-
oped to estimate quantities of hazardous chemical substances 
and energy consumption for a derivative consumer electronic 
product throughout the product lifecycle [14]. The solution 
described in [15] uses the artificial neural network (ANN) for 
forecasting and performance of product lifecycle assessment 
(LCA). Any missing data required for the LCA is estimated 
using the ANN.

Artificial intelligence is also applied in solutions support-
ing the sorting of retired products in the recycling process. In 
[16], the authors describe a waste sorting method based on AI 
combined with an intelligent vision system. The experimental 
models are pre-trained within VGG-16 (VGG16), AlexNet, sup-
port vector machine (SVM), K-nearest neighbour (KNN), and 
random forest (RF). Another application of AI in waste sorting 
is the deep learning-based method, implemented by Refined 
Technologies of Sweden [17]. It recognizes products or product 
models with a high degree of similarity. The software connects 
to optical and mechanical systems which sort electronic com-
ponents based on their material composition. The above-men-
tioned applications of AI in recycling are first and foremost 
aimed at streamlining the sorting of waste.

The AI-based methods developed by these authors have 
been designed so as to support the design of products, boosting 

their recyclability. Rather than facilitating the sorting of waste, 
it helps reduce its amount by enabling the design of readily 
recyclable products made of recoverable and reusable materials. 
A recyclable product must be made of materials which facilitate 
disassembly and reuse or re-processing of components at the 
end-of-life.

Research into the development of legal regulations concern-
ing the consumption of resources in product manufacturing to 
be implemented in the forthcoming years shows that further 
restrictions are likely to be imposed on the management of 
material resources [18].

In view of the above, it seems appropriate to apply tools 
supporting the environmental analysis of materials as early as 
at the product design stage.

Many researchers have described the application of ML 
methodologies across different scientif ic and practical 
domains. Numerous research papers discuss Kohonen networks 
applied for multidimensional data visualization to evaluate 
classification possibilities of various coal types [19], collision 
free path planning and control of wheeled mobile robot [20], 
parametric fault clustering in analog electronic circuits with 
the use of a self-organizing artificial neural network [21], 
intrusion detection in software defined networks [22], simu-
lating the milling cutter trajectory [23], or automated monitor-
ing of the surface grinding process [24], with the use of mul-
tilayer perception (MLP) network, radial basis function net-
work (RBFN), support vector machine (SVM), and the deci-
sion tree.

RBF networks are also widely discussed in literature as 
a tool supporting, among others, rotor fault detection of the 
converter-fed induction motor [25], local dynamic integration 
of ensemble in prediction of time series [26], predicting the 
corrections of the Polish time scale UTC(PL) (Universal Coor-
dinated Time) [27], accurate load forecasting in a power system 
[28]. Other research papers discuss using random forests to 
analyse distorted data of an electronic nose for recognising the 
gasoline bio-based additives [29], or in evaluating the impact 
of explanatory variables on the accuracy of prediction of daily 
inflow to the sewage treatment plant [30].

ML methods are widely used in many areas [31–36], rang-
ing from medicine [37] to the estimation of cutting tool wear 
[38]. However, solutions implementing the RBFN, Kohonen 
networks or random forest in ecodesign are scarce. Hence the 
authors’ interest in the application of these ML methodologies.

3.	 Machine learning methods

The most universal network commonly applied for resolving 
various problems, including technical ones, has been the MLP 
[39]. However, RBF networks also have a number of advan-
tages. Firstly, they are able to model any nonlinear function 
with a single hidden layer, which eliminates the need to decide 
on the number of layers at the design stage. Moreover, the RBF 
network typically has one hidden layer with radial neurons, each 
of which models the Gaussian process-based response surface 
[40]. Radial networks are composed of neurons whose activa-
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tion functions are given in (1). Their values change radially 
around a centre c.

	 x → ϕ(kx ¡ ck), x 2 Rn� (1)

where (k¢k) is usually typically an Euclidean norm. Functions 
ϕ(kx ¡ ck) are referred to as radial basis functions.

Secondly, a simple linear transformation performed in the 
output layer can be optimised by means of traditional linear 
modelling techniques, which are quick and free from such 
problems as local minima, occurring in the training of MLP 
networks. Therefore, RBF networks can be trained within 
a very short time period (the difference in the training speed 
can reach orders-of-magnitude). Another distinctive feature of 
RBF networks is the approach to space modelling. A model 
obtained with an RBF network is cluster-based. Owing to the 
cluster-based approach, RBF networks do not tend to extrap-
olate the modelled dependencies beyond the training data. If 
the test data points are far away from the training data, the 
network’s response rapidly reaches the value of zero. Extrapo-
lation of the modelled function far away from the training data 
is considered dangerous and unjustified.

Kohonen networks are one of the basic types of self-or-
ganising networks. Owing to their self-organising capability, 
they open up new possibilities, such as adaptation to input data 
they have little knowledge of. They learn in a way similar to 
the way human beings do, without defining any patterns – the 
patterns are created through the learning process, combined 
with normal functioning. Kohonen networks represent an entire 
group of networks which learn by the self-organising com-
petitive method. Signals are set up on the network’s inputs to 
choose the winning neuron – the one which best corresponds 
to the input vector. Kohonen’s topology correct feature maps 
first choose the winning neuron (by means of the Euclidean 
distance), and subsequently determine the learning coefficient 
of the winner’s neighbouring neurons [39, 41].

Once the network is triggered by the input vector x, neurons 
compete among themselves. The winning neuron is the one 
whose weights are most similar to the respective components of 
that vector. The winner, the wth vector, fulfils the relation (2).

	 d(x, ww) = min1 ∙ i ∙ n d(x, wi)� (2)

where d(x, w) represents the distance, in the selected metrics, 
between the nth vector and the wth vector.

A topological neighbourhood G(i, x) is assumed around the 
ith neuron. 

In the standard Kohonen algorithm, the G(i, x) function is 
defined as follows (3):

	 G(i, x) = 
1    for    d(i, w) ∙ R
0    for    others

� (3)

where d(i, w) represents the Euclidean distance between the 
winning vector wi and the ith neuron, and R – the neighbour-
hood radius.

Self-organising neural networks operate in three stages: 
construction, learning, and recognition.

Further research focused on the random forest method, 
considering its meaningful advantages, such as fast classifi-
cation, clarity, “mature methodology” and numerous practical 
applications. Moreover, random forests support the processing 
of both symbolic and numerical data, which is an important 
feature. A random forest is a fully functional application of the 
algorithm developed by Breiman [40, 42]. It is an ensemble of 
decision trees which predict the value of a dependent variable 
on the basis of a set of independent variables (predictors). In 
classification tasks, the result is provided as a value of the qual-
itative dependent variable. A random forest consists of a num-
ber of simple decision trees. Each individual tree in the random 
forest delivers a class prediction and the class with the most 
votes becomes the ensemble’s prediction. Ensemble predictions 
are more accurate than any prediction by an individual, even 
highly complex decision tree.

4.	 Creation of models based on the ML methods

The creation of ML method-based models for the selection of 
materials in eco-design has been organised in the following 
stages:
●	 analysis of input data for the selection of materials (based 

on an analysis of material properties),
●	 development of the training, testing and validation files, 

featuring example selections of materials to be used in the 
creation of the ML methods and assessment of their effec-
tiveness,

●	 development of models based on neural networks and ran-
dom forest,

●	 assessment of the models,
●	 selection of the most effective material selection models 

and their implementation in the expert system.

4.1. Data preparation. Recycling-oriented ecodesign relies pri-
marily on the selection of materials and methods of connecting 
them. The ultimate goal is to design a product made of the larg-
est possible number of standardized and recyclable materials. 
This has a positive impact on the environment in the last stages 
of the product’s lifecycle, such as maintenance or withdrawal 
from use [43]. When selecting product materials, we should also 
consider their compatibility: materials used in a product should 
allow for their recycling at the end of the lifecycle without 
having to be separated [44]. Recycling parameters are shaped 
primarily by the chemical composition of materials. Matrices 
of material compatibility have been developed [45, 46]. The 
matrices list the compatibility of materials regarding, among 
others, their recyclability. Figure 1 shows a matrix for selected 
plastics, which compares their recycling compatibility.

For a detailed analysis, selected properties of materials have 
been added upon consultation with designers. The files have 
been prepared based on an analysis of properties of materials, 
such as: name (text value, e.g. PVC), density in grams per cubic 
centimetre (a real number, e.g., 7.88), tensile strength expressed 
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in megapascal (a real number, e.g., 35.5), elongation at yield 
point (Re) expressed as a percentage value (a real number, 
e.g., 5.5), processing temperature expressed in degrees centi-
grade (a real number, e.g., 20.8), the dielectric constant (a real 
number, e.g., 2.0), dielectric strength expressed in kilowatts 
per millimetre (a real number, e.g., 22.0), Young’s modulus 
(E) expressed in gigapascal (a real number, e.g., 4.61), water 
absorbency expressed as a percentage value (a real number, e.g., 
22.55), environmental impact (a logical value, e.g., true), the 
recycling cost expressed in PLN per kilogram (a real number, 
e.g., 4.25), where a positive value represents a profit from the 
sale of material, and a negative one – the cost of disposal, and 
the name of the added material (a text value, e.g. ABS).

The data set includes 980 examples.

4.2. RBF network-based material selection models. The input 
parameters (10 inputs) for the construction of a neural net-
work include material properties, including eco-friendliness, 
the added material for the assessment of compatibility with the 
main material, and one output – the decision class, which in this 
case is the compatibility of materials (Fig. 2).

Table 1 shows the most important data of the material 
selection models developed as RBF networks. The models 
have different numbers of neurons in the hidden layer (from 

20 to 60). The activation function in the hidden layer is the 
Gaussian function, the activation function in the output layer 
is the Softmax function, and the training algorithm is the 
RBFT.

Table 1 
RBF networks for selection of materials

Parameters RBF neural networks 

NN 20 28 35 50 58

Effectiveness [%] 75.06 78.75 83.77 91.72 94.91

TE 0.9637 0.8954 0.7154 0.621472 0.3956

TEE 0.8452 0.8131 0.5298 0.533333 0.2954

VE 0.9234 0.8745 0.6932 0.5841 0.3512

EF SOS Entropy Entropy Entropy Entropy

where: �NN – neural number, TE – training error, TEE – testing quality, 
VE – validation quality, EF – error function.

The best RBF network (10‒58‒1) reached an efficiency of 
94.91%. It featured 10 inputs, 58 neurons in the hidden layer, 
and one output. Measured with cross entropy (CE), the training 
error was 0.3956, the testing error – 0.2954, and the validation 
error – 0.3512.

4.3. Kohonen network-based material selection models. 
Many neural network models were built in the course of the 
conducted experiments. They all featured the same input layer, 
whose size resulted from the amount of input data (11 inputs). 
The neural network models were parameterized by various 
values: the network topology, number of learning cycles and 
neighbourhood were changed. The learning process consisted 
in the assignment of cluster centres to the radial neuron layer. 
The functioning of a self-organising network during the learn-
ing process largely depends on the selection of the measure of 
distance between the winning neuron and the input vector. The 
learning coefficient represents the neighbourhood radius, whose 
value decreases over time.

Table 2 shows the changing parameters of the Kohonen 
network.

Table 2 
Kohonen network parameters

Parameter Values

Network topology 6£10, 10£20, 15£25

Neighbourhood 3, 5

Number of learning cycles 100, 500, 1000

Figure 3 shows a graph representing the learning process 
of the least effective (3 SOFM 11‒60) and the most effective 
(6 SOFM 11‒375) neural network (Fig. 3a and Fig. 3b, respec-
tively), and a graph which enables the visualisation of assign-
ment of cases to trials (Fig. 3c and Fig. 3d). The colour scheme 
on the right hand side represents the scale of the distance to the 

Fig. 1. Matrix of compatible materials [47]

Fig. 2. Structure of RBF network
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winning neuron. Table 3 shows a large part of the developed 
neural networks. The following model parameters are shown: 
network ID, network name, error (learning), Kohonen’s learning 
algorithm, neighbourhood, topology and effectiveness.

The best neural network is network no. 6, the least effective 
– network no. 3.

4.4. Random forest-based material selection models. Random 
forest-based models were developed based on the same training 
file as RBF networks. For each random forest-based model, 
classification parameters were set, which included the cost of 
incorrect classification and a priori probability. The stopping 
criterion included the parameter of the minimum number of 

Fig. 3. Graphs of Kohonen networks (the best – effectiveness at 99.66%, and the worst – effectiveness at 98.91%). a) The learning process of 
the least effective neural network: a) 3 SOFM 11‒60, b) 6 SOFM 11‒375. A graph which enables the visualisation of assignment of cases to 

trials for the least effective neural network: c) 3 SOFM 11‒60, d 6 SOFM 11‒375)

(a)

(c)

(b)

(d)

Table 3  
Models of Kohonen neural networks

Net ID Network name Error (learning) Kohonen’s learning algorithm Neighbourhood Topology Effectiveness [%]

1 SOFM 11‒60 0.942197 100 3 6£10 99.00

2 SOFM 11‒60 0.941915 500 3 6£10 99.00

3 SOFM 11‒60 1.032770 100 5 6£10 98.91

4 SOFM 11‒60 0.994567 1000 5 6£10 98.98

5 SOFM 11‒200 0.553123 1000 3 10£20 99.39

6 SOFM 11‒375 0.342688 500 3 15£25 99.66

7 SOFM 11‒375 0.343706 500 5 15£25 99.63
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training examples in the node. The cost of incorrect classifica-
tion refers to the distribution of examples among classes. Cost 
minimisation corresponds to minimisation of the percentage 
of incorrectly classified cases, where a priori probabilities are 
directly proportional to the class size, and the cost of incorrect 
classification is equal for each class [40].

Figure 4 shows a summary of the random forest model for 
the class of compatibility. The model contains 100 decision 
trees, the maximum size of a tree is 100. The assessed risk 
reached 0.159226 for the training sample and 0.155844 for the 
testing sample. The importance of predictors was determined. 
The most important predictor turned out to be the additional 
material. Other predictors were lower in rank.

4.5. Example implementation of a neural network into an 
expert system. An expert system implementing a neural net-
work model supporting the selection of materials and showing 
their compatibility (Fig. 5) advises designers in the product 
development process.

Fig. 4. Random forest summary

Fig. 5. Example of an expert system supporting the selection 
of materials. a) inputs; b) output – compatibility (good)

Summary of the Random Forest 
Compability

Number of Trees: 100; Maximum tree size: 100
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A classification matrix for the values observed and pre-
dicted is shown in Table 4.  

Table 4 
Classification matrix

Predicted class 
– good 

Predicted class 
– limited

Predicted class 
– incompatible

Observed 
good 220 55 5

Observed 
limited 10 510 5

Observed 
incompatible 25 55 95

The random forest proves to be highly efficient in terms 
of predicting the class with reference to the observed class, 
with the efficiency at 78.57%, 97.14%, and 54.29% for “good”, 
“limited”, and “incompatible”, respectively.

Material selection – input the data

Main material PCV
Density 1.43
Tensile_stress 40
Yield_point_elongation 35
Processing_temperature 170
Dielectric_constant 2
Modules_of_elasticity 470
Water_absorptivity 0.02
Recycling_cost 80
Added_material ASA

Material selection  
– result from the network 
– selected compability

Main material PCV
Density 1.43
Tensile_stress 40
Yield_point_elongation 35
Processing_temperature 170
Dielectric_constant 2
Modules_of_elasticity 470
Water_absorptivity 0.02
Recycling_cost 80
Added_material ASA

Compability good

a)

b)

On the basis of the input data representing properties of the 
main and added materials, the system provides information on 
their compatibility. In the case subject to analysis, the response 
generated for PVC and ASA is good.

5.	 Summary

Considering large amounts of numerical input data used in 
ecodesign, the application of machine learning methods as 
classification methods seems to be an appropriate choice to 
support the process. Classification has been conducted using 
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RBF neural networks, Kohonen networks, and random forest. 
All three methods are characterised by excellent classification 
abilities. It follows from the study that Kohonen networks are 
the best classifiers.

The selected classification methods have taken ecodesign 
to the next level. Owing to them, the knowledge which has so 
far been hidden in human minds or stored in databases can 
be automatically acquired and used in the design process. The 
study has proven ML methods to be highly useful and effective 
in the support of selection of materials in ecodesign.

Being advanced data mining algorithms, ML methods open 
a wide array of uses of data stored in databases. Among oth-
ers, they enable automated acquisition of designers’ knowledge, 
thus becoming a solution which helps utilize what has been 
learnt through experience. The models developed and imple-
mented into the decision support system aid in the design of 
new products. The system tells which materials are compatible 
and which are not, while the designer can take a decision on 
the materials to be used. What is important, the added material 
should meet both the environmental criteria and the techno-
logical requirements specified in the expert system, so as to 
maintain technological coherence of the product.

The more compatible the materials in the product are, 
the less time it takes to separate them. Incompatible mate-
rials are those which cannot be recycled or which degrade 
the secondary raw material – they deteriorate the quality of 
the recyclate. Therefore, only materials which together form 
a compatible combination should be used in production. Com-
patibility matrices enable us to determine which materials 
can be combined to make recycling most effective. Minimis-
ing the diversity of materials helps reduce the risk of their 
incompatibility.

Acknowledgments. The work presented in the paper has been 
co-financed under 02/23/DSPB/8716 and the research potential 
of the Kazimierz Wielki University.

References
	 [1]	 I. Rojek and E. Dostatni, “Artificial Neural Network-Sup-

ported Selection of Materials in Ecodesign”, in Advances in 
Manufacturing II. MANUFACTURING 2019. Lecture Notes 
in Mechanical Engineering, vol. I, pp. 422‒431, eds. J. Tro-
janowska, O. Ciszak, J. Machado and I. Pavlenko, Springer, 
Cham, 2019.

	 [2]	 I. Rojek, E. Dostatni, and A. Hamrol, “Automation and Dig-
itization of the Material Selection Process for Ecodesign”, in 
Intelligent Systems in Production Engineering and Maintenance, 
vol. 835, pp. 523‒532, eds. A. Burduk, E. Chlebus, T. Nowakow-
ski and A. Tubis, Springer, Cham, 2019.

	 [3]	 I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of Techno-
logical Processes with the Use of Decision Trees Method”, in 
International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 
León, Spain, September 6–8, 2017, Proceeding. SOCO 2017, 
CISIS 2017, ICEUTE 2017. Advances in Intelligent Systems and 
Computing, vol. 649, pp 318‒327, eds. H. Pérez García, J. Alfon-
so-Cendón, L. Sánchez González., H. Quintián and E. Corchado, 
Springer, Cham, 2018.

	 [4]	 E. Dostatni, I. Rojek, and A. Hamrol, “The Use of Machine 
Learning Method in Con-current Ecodesign of Products and 
Technological Processes”, in: Advances in Manufacturing. Lec-
ture Notes in Mechanical Engineering, vol. 649, pp. 321‒330, 
eds. A. Hamrol, O. Ciszak, S. Legutko and M. Jurczyk, Springer, 
Cham, 2018.

	 [5]	 R. Geryło, “Energy-related conditions and envelope properties 
for sustainable buildings”, Bull. Pol. Ac.: Tech. 64(4), 697‒707 
(2016).

	 [6]	 D.K. Zuzek, “ Environmental awareness of entrepreneurs as part 
of sustainable development”, Zeszyty Naukowe Uniwersytetu 
Ekonomicznego w Katowicach 11(326), 162‒171 (2017), [in 
Polish].

	 [7]	 ISO/TR 14062: Environmental management – integrating 
environmental aspects into product design and development 
(2001).

	 [8]	 N. Bey, M.Z. Hauschild, and T.C. McAloone, “Drivers and bar-
riers for implementation of environmental strategies in manu-
facturing companies”, CIRP Ann. e Manuf. Technol. 62, 43‒46 
(2013).

	 [9]	 E.A. Dekoninck, L. Domingo, J.A. O’Hare, D.C.A. Pigosso, 
T. Reyes, and N. Troussier, “Defining the challenges for ecode-
sign implementation in companies: Development and consoli-
dation of a Framework”, Journal of Cleaner Production, 135, 
410‒425 (2016).

	[10]	 E. Dostatni, “Recycling-oriented eco-design methodology based 
on decentralised artificial intelligence”, Manag. Prod. Eng. Rev. 
9(3), 79‒89 (2018).

	[11]	 E. Dostatni, J. Diakun, D. Grajewski, R. Wichniarek, and A. Kar-
wasz, “Multi-agent system to support decision-making process in 
design for recycling”, SOFT COMPUTING 20(11), 4347‒4361 
(2016).

	[12]	 I. Bereketli and E. Genevois Mujde, “An integrated QFDE 
approach for identifying improvement strategies in sustain-
able product development”, Journal of Cleaner Production 54, 
188‒198 (2013).

	[13]	 T. Sakao, “A QFD-centred design methodology for environmen-
tally conscious product design”, International Journal of Product 
Research, 45(18‒19), 4143‒4162 (2007).

	[14]	 T.A. Chiang, Z.H. Che, and T.T. Wang, “A design for environ-
ment methodology for evaluation and improvement of deriva-
tive consumer electronic product development”, J Syst. Sci. Syst. 
Eng. 20(3), 260‒274 (2011).

	[15]	 J. Li, Z. Wu, and H-C. Zhang, “Application of neural network 
on environmental impact assessment tools”, Int. J. Sustainable 
Manufacturing, 1(1/2), 100‒121 (2008).

	[16]	 B.S. Costa, A.C. Bernardes, J.V.A. Pereira, V.H. Zampa, 
V.A. Pereira, G.F. Mato, E.A. Soares, C.L. Soares, and A.F. Sil-
va, “Artificial Intelligence in Automated Sorting in Trash Recy-
cling”, in ENCONTRO NACIONAL DE INTELIGÊNCIA ARTI-
FICIAL E COMPUTACIONAL (ENIAC), 15, 1‒8 (2018).

	[17]	 Artificial Intelligence put to use in Recycling, http://www.mist-
breaker.com/sustainability/artificial-intelligence-put-use-recy-
cling, (access: 19.04.2019).

	[18]	 D. Hinchliffe and F. Akkerman, “Assessing the review process 
of EU Ecodesign regulations”, Journal of Cleaner Production 
168, 1603‒1613 (2017).

	[19]	 D. Jamróz and T. Niedoba, “Application of multidimensional 
data visualization by means of self-organizing Kohonen maps 
to evaluate classification possibilities of various coal types”, 
Arch. Min. Sci. 60 (1), 39–50 (2015), DOI 10.1515/amsc-
2015‒0003.

http://www.mistbreaker.com/sustainability/artificial-intelligence-put-use-recycling
http://www.mistbreaker.com/sustainability/artificial-intelligence-put-use-recycling
http://www.mistbreaker.com/sustainability/artificial-intelligence-put-use-recycling


206

I. Rojek and E. Dostatni

Bull.  Pol.  Ac.:  Tech.  68(2)  2020

	[20]	 Z. Hendzel, “Collision free path planning and control of wheeled 
mobile robot using Kohonen self-organising map”, Bull. Pol. 
Ac.: Tech. 53(1), 39‒47 (2005).

	[21]	 D. Grzecha, “Soft fault clustering in analog electronic circuits 
with the use of self-organizing neural network, Metrol. Meas. 
Syst. XVIII(4), 555–568 (2011).

	[22]	 D. Jankowski and M. Amanowicz, ”On Efficiency of Select-
ed Machine Learning Algorithms for Intrusion Detection in 
Software Defined Networks”, Intl Journal of Electronics and 
Telecommunications 62(3), 247‒252 (2016), DOI: 10.1515/ele-
tel-2016‒0033.

	[23]	 S. Klancnik, J. Balic, and F. Cus, “Milling Strategy Prediction 
with SOM Neural Network”, in Proc. 9th IFAC Workshop on 
Intelligent Manufacturing Systems, Szczecin, 2008.

	[24]	 A.P. Souza Braga, A.C. Carvalho, and O.J.F. Gomes, “Compu-
tational Intelligence Applied to the Automatic Monitoring of 
Dressing Operations in an Industrial CNC Machine”, in Advanc-
es of Computational Intelligence in Industrial Systems, vol. 116, 
pp. 249‒268, eds. L. Ying, S. Aixin, T.L. Han, F.L. Wen, and L. 
Ee-Peng, Springer-Verlag, Berlin, Heidelberg, 2008.

	[25]	 M. Kamiński and C.T. Kowalski, “Rotor fault detector of the 
converter-fed induction motor based on RBF neural network”, 
Bull. Pol. Ac.: Tech. 62(1), 69‒76 (2014), DOI: 10.2478/
bpasts-2014‒0008.

	[26]	 S. Osowski and K. Siwek, “Local dynamic integration of en-
semble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 
517‒525 (2019), DOI: 10.24425/bpasts.2019.129650.

	[27]	 M. Luzar, Ł. Sobolewski, W. Miczulski, and J. Korbicz, “Pre-
diction of corrections for the Polish time scale UTC(PL) using 
artificial neural networks”, Bull. Pol. Ac.: Tech. 61(3), 589‒594 
(2013).

	[28]	 S. Osowski, K. Siwek, and R. Szupiluk, “Ensemble neural net-
work approach for accurate load forecasting in the power sys-
tem”, International Journal of Applied Mathematics and Com-
puter Science 19(2), 303‒315 (2009).

	[29]	 S. Osowski and K. Siwek, “Mining Data of Noisy Signal Patterns 
in Recognition of Gasoline Bio-Based Additives using Electron-
ic Nose”, Metrology and Measurement Systems 24(1), 27‒44 
(2017), DOI: 10.1515/mms-2017‒0015.

	[30]	 B. Szeląg, L. Bartkiewicz, J. Studziński, and K. Barbusiński, 
“Evaluation of the impact of explanatory variables on the ac-
curacy of prediction of daily inflow to the sewage treatment 
plant by selected models nonlinear”, Archives of Environmental 
Protection 43(3), 74‒81 (2017), DOI: 10.1515/aep-2017‒0030.

	[31]	 V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural 
networks: A survey”, Bull. Pol. Ac.: Tech. 66(6), 799‒810 (2018).

	[32]	 Q. Zhu, X. Ji, C. Cai, and J. Wang, “A machine learning-based 
mobile robot visual homing approach”, Bull. Pol. Ac.: Tech. 
66(5), 621‒634 (2018).

	[33]	 J. Hook, F. Noroozi, O. Toygar, and G. Anbarjafari, “Automat-
ic speech based emotion recognition using paralinguistics fea-
tures”, Bull. Pol. Ac.: Tech. 67(3), 479‒488 (2019).

	[34]	 C. Li, Z. Zhang, G. Xia, X. Xie, and Q. Zhu, “Efficient learning 
variable impedance control for industrial robots”, Bull. Pol. Ac.: 
Tech. 67(2), 201‒212 (2019).

	[35]	 S. Osowski and K. Siwek, “Local dynamic integration of en-
semble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 
517‒525 (2019).

	[36]	 F. Horn and K.-R. Müller, “Predicting pairwise relations with 
neural similarity encoders”, Bull. Pol. Ac.: Tech. 66(6), 821‒830 
(2018).

	[37]	 M. Grochowski, A. Kwasigroch, and A. Mikołajczyk, “Selected 
technical issues of deep neural networks for image classification 
purposes”, Bull. Pol. Ac.: Tech. 67(2), 363‒376 (2002).

	[38]	 D. Rajeev, D. Dinakaran, and S.C.E. Singh, “Artificial neural 
network based tool wear estimation on dry hard turning process-
es of AISI4140 steel using coated carbide tool”, Bull. Pol. Ac.: 
Tech. 65(4), 553‒559 (2017).

	[39]	 R. Tadeusiewicz, R. Chaki, and N. Chaki, Exploring Neural Net-
works with C#, CRC Press, Taylor & Francis Group, Boca Raton, 
2014.

	[40]	 StatSoft Statistica, Internetowy podręcznik statystyki, http://www.
statsoft.pl/textbook/stathome_stat.html?http%3A%2F%2Fwww.  
statsoft.pl%2Ftextbook%2Fstclatre.html, [in Polish], (ac-
cess:10.01.2019).

	[41]	 T. Kohonen, “Self-Organizing Maps”, Computer Journal of 
Springer Series in Information Sciences, 30(3), 501‒505 (2001).

	[42]	 L. Breiman, “Random forests”, Machine Learning 45, Spring-
er-Verlag, 5‒32 (2001).

	[43]	 A. Saniuk, M. Jasiulewicz-Kaczmarek, A. Samolejova, S. Saniuk, 
and R. Lenort, “Environmental favorable foundries through 
maintenance activities”, METALURGIJA 54(4), 725‒728 (2015).

	[44]	 M. Sabaghi, C. Mascle, and P. Baptiste, “Evaluation of products 
at design phase for an efficient disassembly at end-of-life”, Jour-
nal of Cleaner Production 116, 177‒186 (2016).

	[45]	 Chemical Compatibility Chart Plastics., http://www.terrauniver-
sal.com/appendi-cies/plastics_material_compatibility.php/, (ac-
cess: 14.04.2016).

	[46]	 MATERIALS – Plastics Eco-3e, http://eco3e.eu/en/base/plas-
tics/, (access:10.01.2019).

	[47]	 Ecodesign Guide of WEEE Compliance Schemes, http://eco3e.
eu/en/, (access:10.01.2019).

http://www.czasopisma.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Osowski%2C+S.
http://www.czasopisma.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Siwek%2C+K.
https://doi.org/10.24425/bpasts.2019.129650
http://www.czasopisma.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Siwek%2C+Krzysztof
https://doi.org/10.1515/mms-2017-0015
http://www.czasopisma.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Bartkiewicz%2C+Lidia
https://doi.org/10.1515/aep-2017-0030
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Ji%2C+X.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Cai%2C+C.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Noroozi%2C+F.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Anbarjafari%2C+G.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Zhang%2C+Z.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Xia%2C+G.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Xie%2C+X.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Zhu%2C+Q.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Osowski%2C+S.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=Siwek%2C+K.
http://journals.pan.pl/dlibra/results?action=AdvancedSearchAction&type=-3&search_attid1=3&search_value1=M%C3%BCller%2C+K.%5C-R.
http://www.terrauniversal.com/appendi-cies/plastics_material_compatibility.php/
http://www.terrauniversal.com/appendi-cies/plastics_material_compatibility.php/

