
10.24425/acs.2024.149653
Archives of Control Sciences

Volume 34(LXX), 2024
No. 1, pages 83–89

The Floquet-Lyapunov transformation for fractional
discrete-time linear systems with periodic parameters

Tadeusz KACZOREKo and Andrzej RUSZEWSKIo

The Floquet-Lyapunov transformation is extended to fractional discrete-time linear systems
with periodic parameters. A procedure for computation of the transformation is proposed and
illustrated by a numerical example.
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1. Introduction

The fractional linear systems have been considered in many papers and books
and many well-known results for standard linear systems have been extended to
fractional linear systems [6–11]. The Floquet-Lyapunov transformation has been
analyzed in many books and papers [1–4]. The transformation for singular 2D lin-
ear systems has been extended in [5]. The Floquet approach has been extended to
discrete-time periodic systems in [12] and to hybrid periodic linear systems in [2].

In this paper the transformation will be extended to the fractional discrete-time
linear systems with periodic varying parameters.

The paper is organized as follows. In Section 2 the Floquet-Lyapunov transfor-
mation is recalled for standard linear discrete-time systems with periodic varying
parameters. The main result of the paper is presented in Section 3, where the
Floquet-Lyapunov transformation has been extended to fractional discrete-time
linear systems with periodic varying parameters. In Section 4 procedure and
illustrating example are given. Concluding remarks are given in Section 5.
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2. The Floquet-Lyapunow transformation of discrete-time linear systems

Consider the discrete-time linear system

𝑥𝑖+1 = 𝐴𝑖𝑥𝑖 , 𝑖 = 0, 1, . . . (1)

with periodic variable parameters

𝑥𝑖+𝐾 = 𝐴𝑖𝑥𝑖 , 𝑖 = 0, 1, . . . , (2)

where 𝑥𝑖 ∈ ℜ𝑛 is the state vector 𝐴𝑖 ∈ ℜ𝑛×𝑛 and 𝐾 > 0 is the period.

Theorem 1. For the system (1) there exists a nonsingular periodic matrix

𝑃𝑖+𝐾 = 𝑃𝑖 , 𝑃0 = 𝐼𝑛 , 𝑖 = 0, 1, . . . (3)

such that the change of variables

𝑥𝑖 = 𝑃𝑖𝑧𝑖 , 𝑧𝑖 ∈ ℜ𝑛, 𝑖 = 0, 1, . . . (4)

transforms the system (1) into the system

𝑧𝑖+1 = 𝐵𝑧𝑖 , 𝑖 = 0, 1, . . . , (5)

where 𝐵 ∈ ℜ𝑛×𝑛 is the constant matrix.

Proof is given in [2].
In the paper [12] two algorithms for computation of the transformation ma-

trix 𝑃𝑖 have been proposed.

3. The Floquet–Lyapunov transformation of fractional discrete-time
linear systems

Consider the fractional periodic discrete-time linear system

Δ𝛼𝑥𝑖+1 = 𝐴𝑖𝑥𝑖 , 𝐴𝑖+𝐾 = 𝐴𝑖 ∈ ℜ𝑛×𝑛, 0 < 𝛼 < 2, 𝑖 = 0, 1, . . . , (6)

where

Δ𝛼𝑥𝑖 =

𝑖∑︁
𝑗=0
𝑐 𝑗 (𝛼)𝑥𝑖− 𝑗 , (7)

𝑐 𝑗 (𝛼) = (−1) 𝑗
(
𝛼

𝑗

)
,

(
𝛼

𝑗

)
=


0 for 𝑗 < 0,
1 for 𝑗 = 0,
𝛼(𝛼 − 1) . . . (𝛼 − 𝑗 + 1)

𝑗!
for 𝑗 = 1, 2, . . .

(8)

𝑥𝑖 ∈ ℜ𝑛 is the state vector and 𝐾 > 0 is the period.
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Substituting (7) into (6) we obtain

𝑥𝑖+1 = 𝐴𝛼𝑖𝑥𝑖 +
𝑖+1∑︁
𝑗=2
𝑐 𝑗 (𝛼)𝑥𝑖− 𝑗+1 , (9)

where
𝐴𝛼𝑖 = 𝐴𝑖 + 𝐼𝑛𝛼, 𝑐 𝑗 (𝛼) = −𝑐 𝑗 (𝛼), 𝑗 = 1, 2, . . . (10)

Note that in this case the system (9) is periodic with the period 𝐾 . Using (9) for
𝑖 = 0, 1, . . . , 𝐾 − 1 we obtain

𝑥𝑖+1 = 𝐴𝑖𝑥𝑖 , 𝑖 = 0, 1, . . . , (11)

where

𝑥𝑖 =


𝑥𝑖0
𝑥𝑖1
...

𝑥𝑖,𝐾−1

 , 𝐴𝑖 =


𝐴𝛼0(𝑖) 0 0 . . . 0 0
𝑐2(𝛼) 𝐴𝛼1(𝑖) 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

𝑐𝐾 (𝛼) 𝑐𝐾−1(𝛼) 𝑐𝐾−2(𝛼) . . . 𝑐2(𝛼) 𝐴𝛼,𝐾−1(𝑖)

 . (12)

Note that det 𝐴𝑖 ≠ 0 if and only if det 𝐴𝛼 𝑗 (𝑖) ≠ 0 for 𝑖, 𝑗 = 0, 1, . . . , 𝐾 − 1.
To the periodic system (11) we may apply the approach presented in Section 2.

The problem under the considerations for the system (11) can be stated as follows.
Given the nonsingular periodic matrix 𝐴𝑖 and its period 𝐾 . Find a periodic

nonsingular matrices 𝑇𝑘 , 𝑘 = 0, 1, . . . , 𝐾 − 1 with the period 𝐾 of the transfor-
mation

𝑥𝑘 = 𝑇𝑘𝑥𝑘 , 𝑇𝑘+𝐾 = 𝑇𝑘 , 𝑘 = 0, 1, . . . , 𝐾 − 1 (13)

which transforms the system (11) into a linear system with constant matrix
𝐴 ∈ ℜ𝑛×𝑛

𝑥𝑘+1 = 𝐴𝑥𝑘 , 𝑘 = 0, 1, . . . , 𝐾 − 1. (14)

The solution of the problem is based on the following.

Lemma 1. The matrices 𝐴, 𝐴𝑘 and 𝑇𝑘 for 𝑘 = 0, 1, . . . , 𝐾 − 1 are related by

𝐴 = 𝑇−1
𝑘+1𝐴𝑘𝑇𝑘 , 𝑘 = 0, 1, . . . , 𝐾 − 1 (15)

and
𝑇−1

0 𝐴𝑇0 = 𝐴𝐾 , (16)

where
𝐴 = 𝐴𝐾−1𝐴𝐾−2 . . . 𝐴0 . (17)
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Proof. Using (13) and (14) we obtain

𝑥𝑘+1 = 𝑇−1
𝑘+1𝑥𝑘+1 = 𝑇−1

𝑘+1𝐴𝑘𝑥𝑘 = 𝑇
−1
𝑘+1𝐴𝑘𝑇𝑘𝑥𝑘 = 𝐴𝑥𝑘 (18)

and the relation (15).
Note that

𝑇−1
𝐾 𝐴𝐾−1𝑇𝐾𝑇

−1
𝐾 𝐴𝐾−2𝑇𝐾−1 . . . 𝑇

−1
1 𝐴0𝑇0 = 𝑇−1

0

(
𝐴𝐾−1𝐴𝐾−2 . . . 𝐴0𝑇0

)
= 𝑇−1

0 𝐴𝑇0 (19)

since 𝑇𝐾 = 𝑇0. □

Lemma 2. Let the scalar function 𝑓 (𝜆) be well-defined on the spectrum of the
matrix 𝐴 ∈ ℜ𝑛×𝑛, i.e. the values

𝑓 (𝑖) (𝜆𝑘 ) =
𝑑𝑖 𝑓 (𝜆)
𝑑𝜆𝑖

����
𝜆=𝜆𝑘

,

𝑖 = 0, 1, . . . , 𝑚𝑘−1, 𝑘 = 1, . . . , 𝑟
(
𝑟∑
𝑘=1

𝑚𝑘 = 𝑛

) (20)

are finite. Then the function 𝑓 (𝐴) of the matrix 𝐴 is given by [4]

𝑓 (𝐴) =
𝑟∑︁
𝑘=1

[
𝑍𝑘1 𝑓 (𝜆𝑘 ) + 𝑍𝑘2 𝑓

(1) (𝜆𝑘 ) + . . . + 𝑍𝑘𝑚𝑘 𝑓 (𝑚𝑘−1) (𝜆𝑘 )
]
, (21)

where

𝑍𝑘 𝑗 =

𝑚𝑘−1∑︁
𝑖= 𝑗−1

Ψ𝑘 (𝐴) (𝐴 − 𝐼𝑛𝜆𝑘 )𝑖
(𝑖 − 𝑗 + 1)!( 𝑗 − 1)!

𝑑 (𝑖− 𝑗+1)

𝑑𝜆(𝑖− 𝑗+1)

[
1

Ψ𝑘 (𝜆)

]
𝜆=𝜆𝑘

(22)

and the minimal polynomial of the matrix 𝐴 has the form

Ψ(𝜆) = (𝜆 − 𝜆1)𝑚1 (𝜆 − 𝜆2)𝑚2 . . . (𝜆 − 𝜆𝑟)𝑚𝑟 ,

Ψ𝑘 (𝜆) =
Ψ(𝜆)

(𝜆 − 𝜆𝑘 )𝑚𝑘
, 𝑘 = 1, . . . , 𝑟 .

(23)

In particular case when 𝑚1 = 𝑚2 = . . . = 𝑚𝑟 = 1 (𝑟 = 𝑛) we have

Ψ(𝜆) = (𝜆 − 𝜆1) (𝜆 − 𝜆2) . . . (𝜆 − 𝜆𝑛) (24)

and

𝑓 (𝐴) =
𝑛∑︁
𝑘=1

𝑍𝑘 𝑓 (𝜆𝑘 ), (25)
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where

𝑍𝑘 =

𝑛∏
𝑖=1
𝑖≠𝑘

(𝐴 − 𝐼𝑛𝜆𝑖)
𝜆𝑘 − 𝜆𝑖

, 𝑘 = 1, . . . , 𝑛. (26)

4. Procedure and example

To solve the problem under considerations using the method presented in
Section 3 the following procedure can be used.
Procedure:
given: the matrix 𝐴𝑖 defined by (12) and the positive number 𝐾 ,
find: the matrix 𝐴 defined by (15) and the matrices 𝑇𝑘 for 𝑘 = 0, 1, . . . , 𝐾 − 1.
Step 1. Assume 𝑇0 = 𝐼𝑛.

Step 2. For given 𝐴 and 𝐾 using the Lagrange-Sylvester formula (Lemma 2)
compute the matrix

𝐴 =

𝑛̄∑︁
𝑘=1

𝑍𝑘 𝑗
𝐾
√︁
𝜆𝑘 , (27)

where 𝑍𝑘 𝑗 has the form (22) in general case or (26) if the matrix 𝐴 has distinct
nonzero eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛̄.
Step 3. Using the formula (which follows from (15))

𝑇𝑘+1 = 𝐴𝑘𝑇𝑘𝐴
−1 (28)

compute the matrices 𝑇𝑘 for 𝑘 = 0, 1, . . . , 𝐾 − 1.
The procedure will be illustrated by the following example.

Example 1. Consider the fractional periodic discrete-time linear system (6) with

𝐴𝑖 =

[
2 − sin

𝜋

4
𝑖

]
, 𝛼 = 0.6 (29)

and the period 𝐾 = 4.
The matrix (10) has the form

𝐴𝛼𝑖 = 𝐴𝑖 + 𝐼𝑛𝛼 =

[
2.6 − sin

𝜋

4
𝑖

]
, 𝑖 = 0, 1, . . . , 3 (30)

and the matrix (12)

𝐴 =


𝐴𝛼0 0 0 0
𝑐2(𝛼) 𝐴𝛼1 0 0
𝑐3(𝛼) 𝑐2(𝛼) 𝐴𝛼2 0
𝑐4(𝛼) 𝑐3(𝛼) 𝑐2(𝛼) 𝐴𝛼3


=


2.6 0 0 0

0.12 1.893 0 0
0.056 0.12 1.6 0
0.034 0.056 0.12 1.893

 . (31)
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Using Procedure we obtain.
Step 1. Assume 𝑇0 = 𝐼𝑛.

Step 2. The characteristic (minimal) polynomial of the matrix (31) has the form

Ψ(𝜆) = det
[
𝐼𝑛𝜆 − 𝐴

]
= (𝜆 − 1.893)2(𝜆 − 1.6) (𝜆 − 2.6). (32)

Taking into account (22) and the eigenvalues 𝜆1 = 1.893, 𝜆2 = 1.6, 𝜆3 = 2.6 of
the matrix 𝐴 we obtain

𝑍11 =


−57.62 −34.28 −38.66 −36.49
−32.12 −56.11 −43.19 −41.02
−32.55 −42.67 −57.38 −42.85
−29.62 −39.21 −44.52 −57.63

 ,
𝑍12 =


−48.24 −6.679 6.948 0.0039
−33.24 −7.474 7.733 0.0044
−32.79 −9.281 11.67 0.0046
−30.08 −8.566 6.13 0.0061

 ,
𝑍21 =


510.2 736.8 759 747.5
697.1 670.9 776.6 762.9
713.8 746.1 739.7 772.8
708 737.1 758.2 678.6

 ,
𝑍31 =


−32.21 −66.88 −67.9 −67.35
−64.31 −55.56 −70.92 −69.98
−67.18 −68.48 −64.6 −71.7
−66.19 −66.92 −67.76 −55.51

 .
Using (27) we obtain

𝐴 = 𝑍11
4
√︁
𝜆1 + 𝑍12

4
√︁
𝜆1 + 𝑍21

4
√︁
𝜆2 + 𝑍31

4
√︁
𝜆3 =


408.8 695.7 730.2 712.4
625.7 609.4 741.7 721
640.8 691.2 696.3 727.9
642.2 687.9 721.6 625.2

 .
Step 3. Compute 𝑇1, 𝑇2, 𝑇3 using 𝑇𝑘+1 = 𝐴𝑘𝑇𝑘𝐴

−1

𝑇1 = 𝐴0𝑇0𝐴
−1 =


−0.0081 0.0013 0.0044 0.0027
0.0034 −0.018 0.0091 0.0062
0.0035 0.013 −0.024 0.0095
0.00063 0.0037 0.013 −0.017

 ,
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𝑇2 = 𝐴1𝑇1𝐴
−1 =


0.000056 0.000021 −0.000061 −0.000012
−0.000034 0.0003 −0.00018 −0.00008
−0.00004 −0.00032 0.00054 −0.0002
0.000027 0.000025 −0.00033 0.00029

 ,
𝑇3 = 𝐴2𝑇2𝐴

−1 =


−0.0000003 −0.00000056 0.00000088 −0.00000048
0.0000003 −0.000004 0.000003 0.00000071
0.0000005 0.0000059 −0.0000094 0.0000032

−0.00000055 −0.0000018 0.0000061 −0.000004

 .
5. Concluding remarks

The fractional discrete-time linear systems with periodic varying parameters
have been analyzed. The Floquet-Lyapunov transformation has been extended
to fractional linear discrete-time systems with periodic varying parameters. The
procedure and the example of fractional linear discrete-time system with periodic
varying parameters illustrating the method has been presented. An open problem
is an extension of these considerations to fractional different orders linear systems
with periodic coefficients.
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