10.24425/acs.2025.157147

Archives of Control Sciences
Volume 35(LXXI), 2025
No. 4, pages 771-792

Convolutional neural networks for froth imaging
in a flotation machine with electromagnetic
regrinding impeller

Szymon OGONOWSKI® and Pawet WOJTOWICZ

This study investigates a vision-based supervisory framework for a prototype flotation ma-
chine equipped with an in-line electromagnetic regrinding impeller, a configuration intended
to enhance mineral liberation and recovery for fine particles and tailings. Building on recent
advances in machine vision for process industries, convolutional neural networks (CNNs) were
trained to infer supervisory variables directly from froth images: (i) bubble population metrics
(bubble count/density) and (ii) overall concentrate yield. An image corpus of > 1000 froth
frames was collected across three trials under deliberately varied operating conditions (airflow,
electromagnetic mill frequency, and feed mass), yielding substantial covariate shift. The results
provide preliminary evidence that CNN-based froth imaging can supply actionable supervi-
sory signals in electromagnetic-assisted flotation. Future work will expand datasets, harden
illumination robustness, incorporate spatiotemporal modeling and sensor fusion, and evaluate
closed-loop control in prospective trials.

Key words: flotation, machine vision, electromagnetic mill, machine learning, supervisory
control, process automation, CNN

1. Introduction

Flotation is a fundamental mineral separation process that exploits physico-
chemical contrasts between valuable mineral surfaces and gangue. In industrial
practice, it is preceded by comminution — most critically grinding — which gov-
erns mineral liberation and establishes the particle size distribution (PSD) feeding
the cells. Because both under- and over-grinding impair attachment and transport
(through inadequate liberation in the former and excessive entrainment or slime
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coating in the latter), precise control of PSD is essential for stable operation and
product quality. Equally important is the rigorous dosing and control of reagents
(collectors, frothers, and modifiers) as well as air delivery and gas-liquid hy-
drodynamics (air rate, bubble size distribution, gas holdup, froth depth). Small
deviations in these variables alter bubble-particle collision, attachment, and froth
stability, leading to pronounced, nonlinear effects on recovery and concentrate
grade. Traditional control systems rely on sparse physical sensors and indirect
proxies, which provide limited visibility into the separation mechanisms that
ultimately manifest at the froth interface.

Recent advances in computer vision and machine learning have enabled a new
class of monitoring systems that extract quantitative descriptors from froth images
in real time. The visual state of the froth — bubble size and count, texture, color,
mobility, and stability — encodes the efficiency of bubble-particle interactions and
entrainment, making it a natural target for image-based assessment and control.

The motivation for this research arises from integrating electromagnetic re-
grinding technology with flotation. Electromagnetic mills enable simultaneous
liberation and selective breakage, improving selectivity and energy efficiency,
but they also couple grinding intensity to downstream flotation hydrodynamics
in ways that complicate supervision and control.

The aim of this paper is to propose and evaluate a vision-based supervisory
control framework that fuses real-time froth imaging with process control of a
flotation machine equipped with an electromagnetic impeller [17], with specific
models for predicting bubble population metrics and overall yield implemented
in TensorFlow (Python) [2].

2. Background and literature review

2.1. Fundamentals of froth flotation

Froth flotation separates hydrophobic valuable minerals from hydrophilic
gangue by dispersing air into a mineral pulp and promoting selective bubble-
particle attachment. At the micro-scale, the process is commonly decomposed
into three rate-determining steps: (i) collision between particles and bubbles,
(i1) attachment via thin-film drainage and rupture, and (iii) detachment under
hydrodynamic stresses; macroscopic performance emerges from the interplay of
these phenomena across the collection and froth zones of the cell [49].

In industrial circuits, flotation selectivity is highly sensitive to controllable op-
erating variables — including gas rate (air flow), bubble size distribution (BSD),
slurry level, frother/collector/modifier dosage, pulp pH and Eh, and impeller
speed — which jointly determine bubble surface area flux S, and froth stabil-
ity. Over broad regimes, flotation rate has been shown to scale approximately
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linearly with Sj, underscoring the centrality of gas dispersion control in plant
optimization [20,49].

A conventional flotation circuit comprises rougher, scavenger, and cleaner
stages arranged to maximize recovery at acceptable concentrate grade. Roughers
perform the initial separation at high mass pull; scavengers recover residual val-
ues from rougher tailings; cleaners upgrade the rougher/scavenger concentrates
to specification. Reagent suites and gas-liquid hydrodynamics are tuned at each
stage to balance recovery and selectivity, maintain stable recycle streams, and
accommodate feed variability [49]. These canonical flowsheets carry distinct
control implications for residence time distribution, froth transport, and entrain-
ment, which must be reflected in supervisory strategies [49].

Mechanical (tank) cells use a rotor-stator to suspend solids and disperse
air; principal handles include impeller speed, air rate, froth depth, and launder
configuration. Column cells separate collection and cleaning zones vertically
(counter-current flow with sparged fine bubbles and froth washing), frequently
achieving higher grades at lower entrainment for fine and ultrafine feeds [13].
Jameson cells produce intense aeration and very small bubbles in a plunging
downcomer, enabling high collision rates and short residence times; industrial
retrofits often report improvements in both recovery and circuit stability [24].
Comparative reviews outline mixing, carrying capacity, maximum gas rates, and
design features directly relevant to controller design (e.g., gas holdup dynamics,
froth residence time) [13, 24]. From a control perspective, these designs dif-
fer in input-output sensitivity, time constants, and disturbance propagation — for
example, columns exhibit strong interactions between wash water and froth sta-
bility, whereas mechanical cells tightly couple impeller speed, Sj, and short-term
mass-pull oscillations [13].

2.2. The role of particle size and liberation

Particle size distribution (PSD) and liberation — set upstream by crush-
ing/grinding and often refined by regrinding — critically condition flotation kinet-
ics and selectivity. Classic analyses show that (i) very coarse particles suffer low
collision/attachment probability and are prone to detachment, (ii) fines/ultrafines
(<~ 20-30 pm) exhibit slow kinetics and high water/gangue entrainment, and
(ii1) an intermediate PSD maximizes recovery for a given hydrophobicity and hy-
drodynamic regime [47]. The required hydrophobicity for floatability increases
toward the extremes of size, producing the characteristic recovery-size curve
that motivates PSD control for stable operation and predictable product qual-
ity [47,49].

Recent reviews revisit fine-particle flotation, surveying strategies such as
micro/nano-bubble generation, selective (polymeric) collectors, de-sliming, shear
conditioning, and the use of columns or Jameson cells to enhance fine-particle
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collection while mitigating entrainment [ 13, 14]. Emerging results on nanobubble-
assisted flotation indicate improved fine-particle attachment and froth stability,
though industrial-scale robustness and integration with control frameworks re-
main active research topics [8].

As ore grades decline and sustainability pressures rise, reprocessing of his-
torical and current tailings has gained momentum. Surveys across sulfide sys-
tems identify significant residual metal values — often in fine or poorly liberated
size fractions — and report that modern flotation, frequently in conjunction with
regrinding and advanced reagents, can economically recover secondary concen-
trates while reducing environmental liabilities [35, 49]. Control challenges in
tailings reprocessing include highly variable feed mineralogy, complex PSDs,
and froth regimes sensitive to minor dosage drifts; these favor robust, adaptive
supervisory control using inferential sensing and disturbance-rejection strate-
gies [35].

2.3. Froth phase, entrainment, and stability — variables of control interest

Beyond collection-zone kinetics, the froth phase strongly influences grade
via entrainment (water and fine gangue carry-over) and selective drainage. Froth
stability exhibits a non-monotonic relationship with performance: insufficient
stability leads to valuable particle drop-back; excessive stability traps gangue
and slows drainage. Practical control therefore targets an operating window of
“optimum stability”, manipulated by gas rate, frother type/dose, froth depth, wash
water (in columns), and launder design [13,49]. Quantitative visual descriptors —
froth velocity, bubble size/shape, and mobility — are increasingly used as proxies
for stability and mass pull in advanced control [3,43].

From the control point of view, two facts are of great importance. First,
flotation is a multivariable, nonlinear, and time-varying process with strong in-
teractions and disturbances in feed composition, PSD, and water chemistry [43].
Second, the froth surface encodes rich, causal information about separation mech-
anisms. Over three decades, machine-vision studies have shown that image fea-
tures — bubble size distributions, texture statistics, and froth velocity/mobility —
can serve as inferential sensors for mass pull, grade, and stability, enabling base-
layer stabilization and higher-level optimization when fused with conventional
measurements [3,43]. These insights motivate the development of deep-learning
models that map froth imagery to key supervisory variables such as bubble pop-
ulation metrics and yield within modern control architectures [3,43].

2.4. Implications for automation and vision-based supervision

Over the last five years, froth imaging has shifted from hand-crafted tex-
ture/shape descriptors to end-to-end deep learning that infers supervisory vari-
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ables (mass pull, grade, air recovery, stability regimes) directly from images or
short video clips. Recent reviews synthesize this transition, documenting convo-
lutional and spatiotemporal networks, transfer learning, and multi-task objectives
that jointly estimate bubble size/velocity and metallurgical targets [9,39]. Em-
pirical studies show that pre-trained CNNs can accurately regress bubble size
and froth surface velocity from plant images [25], while improved U-Net/PIV
hybrids and attention mechanisms track froth motion fields for stability estima-
tion and regime identification [10]. For property prediction, hybrid architectures
(e.g., CNN-LSTM) have been used to forecast ash content/grade from froth video
sequences, handling non-stationarity via temporal context [16,31]. Parallel work
tackles robust bubble sizing without explicit segmentation using learned descrip-
tors to cope with occlusions and glare [48]. A broader automation review positions
these vision models within intelligent flotation — linking sensors, soft sensors,
and control action pathways [9, 10, 16,25,31,39,42,48].

Modern frameworks increasingly treat froth imaging as an inferential sensor
within multivariable control: deep ensembles classify operating regimes (e.g.,
under-/over-aerated, unstable froth), estimate bubble population metrics, and pro-
vide calibrated confidence to downstream controllers [51]. Vision-derived fea-
tures (froth speed, directionality, coarseness, bubble size distribution) are fused
with conventional tags (air rate, froth depth, cell level) for set-point optimiza-
tion and disturbance rejection, improving stability under feed PSD and chemistry
shifts [3,43,51]. Several mature systems demonstrate 24/7 plant-scale reliability:

* Metso VisioFroth™ /FrothSense™ / FrothSense+ — long-running industrial
platforms that compute froth speed/velocity, direction, bubble size and
stability from camera feeds; FrothSense+ adds neural-network analytics,
multi-region analysis and froth height measurement, and can close the loop
via Froth Speed Control™ [33].

* FloVis (AMEplus/KGHM) — a computer-vision system deployed in copper
plants for regime recognition and supervisory control; it extracts bubble
size/shape/color and mobility features and links them to control actions
under variable feed conditions [4, 15].

* FLSmidth Smart Vision Systems — froth cameras leveraging deep neural
networks to optimize reagent and air control; offered within broader APC
suites and retrofit packages for improved froth-level control and stabil-
ity [12].

* ABB Ability™ Expert Optimizer — APC/MPC platform that integrates
vision-based froth metrics and traditional measurements to adjust froth
levels, air flows, and reagents for stabilization and recovery/grade targets,
building on earlier MPC deployments in zinc and copper circuits [1].
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* Mintek FloCam — a low-cost froth camera that estimates froth velocity and
height and supports froth-stability-based control (air profiling); used both
for operator visualization and automatic stabilization strategies [34].

Historically, industrial datasets from VisioFroth/FrothSense deployments have
underpinned air recovery estimation and links between froth transport/velocity
and metallurgical outcomes — relationships now being revisited with deep models
and uncertainty quantification [3,9, 30].

2.5. Deep learning and CNN for vision systems

Modern machine learning (ML) encompasses algorithms that learn predictive
mappings from data rather than relying on hand-crafted rules. Within ML, deep
learning (DL) denotes representation-learning with multilayer neural networks
that can hierarchically extract features of increasing abstraction directly from
raw signals such as images, audio, or text [19,29]. In computer vision, DL —
especially convolutional neural networks (CNNs) — has supplanted manually
engineered features by learning task-aligned visual descriptors end-to-end. This
shift has enabled dramatic gains across classification, detection, segmentation,
tracking, and metric regression tasks, and it has catalyzed the deployment of
vision as a reliable sensor in monitoring, diagnostics, and control pipelines.

In supervised learning, a model fy: RUPWXCH 5 R™ parameterized by 6
maps an image x to a target y (class labels or continuous variables). Training seeks
parameters that minimize the empirical risk over a dataset {(x;, y;)} {i = 1}11.1 E

N
minJ(0) = % zl] [ (fo (1) . yi) +19(60),

where [ is a task-appropriate loss (e.g., cross-entropy for classification;
l1/1,/Huber for regression) and Q is a regularizer (e.g., weight decay). Parame-
ters are optimized by stochastic gradient descent (SGD) or adaptive variants (e.g.,
Adam), with updates of the form 6 < 6 — nVyl computed on mini-batches [19].
Generalization is promoted via data augmentation, architectural priors, regular-
ization (dropout, weight decay), and transfer learning from large-scale pretraining
corpora (e.g., ImageNet).

CNNs embed two key priors for images — local connectivity and translation
equivariance — through convolutional layers whose learned kernels are shared
spatially. A canonical CNN stacks blocks of convolution + nonlinearity (e.g.,
ReLLU/SiLU) and spatial downsampling (strided conv or pooling) to progressively
enlarge the receptive field while compressing spatial resolution. High-level fea-
tures are aggregated by global average pooling and fed to task heads (softmax for
classification; linear layers for regression). Architectural refinements such as VGG
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(deep, homogeneous stacks), ResNet (residual/skip connections enabling very
deep networks), and EfficientNet (compound scaling of depth/width/resolution
with depthwise-separable convolutions) have delivered strong accuracy — effi-
ciency trade-offs suitable for industrial deployments [23,45,46]. CNNs achieve
state-of-the-art performance across vision benchmarks and underpin many pro-
duction systems (e.g., AlexNet’s breakthrough on ImageNet; subsequent residual
and efficient models) [23,28].

Effective training requires careful dataset design (balanced classes, repre-
sentative operating regimes), split hygiene (avoiding temporal or spatial leak-
age), and augmentation tailored to physical invariances (e.g., small rotations,
brightness/contrast jitter) [44]. Transfer learning — initializing from ImageNet-
pretrained weights and fine-tuning on the target domain — yields faster conver-
gence and improved generalization in small- to medium-scale industrial datasets.
For noisy labels and heavy-tailed errors, robust regressors (e.g., Huber loss) help
stabilize learning. Uncertainty estimation (e.g., Gaussian output heads with neg-
ative log-likelihood; calibration metrics such as ECE) is increasingly reported to
qualify predictions for downstream decision-making [22]. When dynamics matter
(videos), temporal extensions — frame-wise encoders with feature pooling, tem-
poral 1-D convolutions, ConvLSTM/GRU layers, or 3-D CNNs — capture motion
cues that correlate with process states [11].

In process industries, cameras now function as soft sensors, providing high-
bandwidth, spatially resolved information that complements sparse physical mea-
surements. Vision-derived descriptors — texture statistics, bubble size/shape dis-
tributions, froth velocity/mobility — can be mapped to hidden process variables
(mass pull, product grade, stability regimes) and integrated into monitoring, fault
detection, and supervisory control layers [3,43]. Recent work increasingly re-
places hand-crafted features with CNNs that infer key performance indicators
directly from images or short clips, enabling robust inferential sensing and open-
ing pathways to closed-loop control when fused with conventional tags within
MPC or rule-based frameworks. In domains beyond mineral processing, vision-
based feedback has matured in robotics and manufacturing inspection, where
CNN s provide perception modules for visual servoing, adaptive quality control,
and anomaly detection — illustrating the broader feasibility of using learned vision
models in control applications [19,29].

In summary, deep learning — and CNNs in particular — offers a principled,
data-driven route to transform raw images into actionable process variables.
The combination of inductive biases (convolution and weight sharing), scalable
architectures (ResNet/EfficientNet), and sound training practices (transfer learn-
ing, augmentation, calibrated uncertainty) makes CNNs a compelling choice for
vision-enabled supervision and control, especially where conventional sensors
provide limited observability of key mechanisms.
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3. Flotation machine with EM regrinding impeller

This paper reports experiments on a flotation machine equipped with an in-line
regrinding impeller that “activates” particles immediately upstream of bubble-
particle contacting, with the goal of enhancing liberation and improving overall
recovery. The apparatus is explicitly targeted at fine particles and tailings, where
conventional circuits often struggle. While the hydrodynamics and mechanical
design of this prototype are still being optimized, work is proceeding in parallel
on the automation layer. In contrast to the encouraging body of results available
for vision-assisted monitoring and control in classic tank and column cells, the
present study is preliminary and focuses on establishing whether a vision-based
supervisory control paradigm is feasible for this class of machine.

3.1. Design of the FM

A flotation machine integrated with an electromagnetic mill (EMM) [50] en-
ables a coupled comminution-flotation operation, in which particle liberation and
surface conditioning proceed concurrently within a single apparatus. The EMM
serves as the comminution module: instead of mechanically driving the grinding
chamber, a rotating electromagnetic field directly accelerates ferromagnetic rods
that act as grinding media. The working chamber itself is stationary and consists
of a non-ferromagnetic tube encircled by six electromagnets that generate the
rotating field [50]. When energized, the field induces controlled motion of the
rods, producing intensive, stochastic interactions — impact, abrasion, and shear
— with the feed material. This contact mechanics yields efficient size reduction
and enhanced liberation, while avoiding the mechanical losses associated with
moving-vessel mills.

From a design standpoint, electromagnetic and geometric parameters (coil
configuration, field amplitude and frequency, rod geometry, and chamber di-
mensions) are selected to maximize magnetic driving forces on the media while
minimizing electrical energy consumption [36]. The direct actuation of the grind-
ing media, the absence of rotating mechanical assemblies, and the ability to tune
field parameters provide a compact, responsive platform that can be integrated
upstream of or coupled with flotation, facilitating tight control of particle size dis-
tribution and surface properties prior to bubble—particle attachment. A schematic
diagram of the flotation machine is presented in Fig. 1a, while Fig. 1b illustrates
the semi-industrial installation of the flotation machine prototype with direct con-
trol system elements (e.g. pulp level sensors, discharge valve) and vision system
elements (camera, LED lights) above the tank.

The feed material (1), along with process water and flotation reagents, is
introduced into the slurry tank (2), from which it is subsequently pumped under
con-trolled pressure into the working chamber of the electromagnetic mill (4),
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Figure 1: Schematic diagram of the system (a) and semi-industrial installation with the prototype
of the flotation machine (b)

where particle size reduction is performed. Concurrently, air (5) is injected into
the slurry stream, and the generated air bubbles are dispersed by the motion of
the grinding media within the active zone of the mill. The resultant dispersion,
comprising ground mineral particles and entrained air bubbles (6), is directed
through the outlet manifold (7) into the flotation tank (8), wherein phase separation
between valuable minerals and gangue occurs.

The froth product (9), enriched with hydrophobic mineral particles, is col-
lected via the overflow sill (10) and extracted through an overflow nozzle (11),
while the remaining chamber product (12) is discharged through an outlet noz-
zle (13) regulated by a control valve (14). In certain applications, such as cop-
per ore flotation, the froth product represents the final output of the integrated
grinding-flotation process.

The flow rate of the flotation slurry is managed by adjusting the slurry pump (3)
in combination with the control valve (14), with real-time monitoring provided by
a slurry level sensor (15). The chamber product is conveyed to a secondary slurry
tank (18) and subsequently pumped (19) to a hydrocyclone (20) for classification
or thickening. Within the hydrocyclone, the slurry is separated into an overflow
fraction (21) and an underflow fraction (22), which is collected in a dedicated
tank (23). Based on its particle size distribution and mineralogical content, the
underflow may either be rejected as tailings (24) or, if sufficiently coarse and
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mineral-rich, recycled (26) to the grinding circuit via a pump (25) for further
comminution and beneficiation.

3.2. Control system with IoT-based component

The flotation process is governed by a multilayered control system imple-
mented through Programmable Logic Controllers (PLC) and Supervisory Control
and Data Acquisition (SCADA) systems [38]. The PLC-based direct control layer
enables direct regulation of key operational parameters, including the flow rates
of the preprocessed feed, air, and chemical reagents, as well as the flotation pulp
level within the flotation tank. The SCADA layer facilitates real-time visualiza-
tion of process variables, integrates data from diverse monitoring, measurement,
and control subsystems, and provides comprehensive database functionalities. Its
user interface additionally supports manual set-point adjustments, the scheduling
of experiments, and the execution of automatic supervisory algorithms.

In Figure 2, a schematic of the flotation-machine installation is presented with
measurements, control loops, and final control elements indicated, where: TLI1
denotes the level measurement in the flotation tank; TLI2, the level measurement
in the feed tank; TFI1, the feed-flow measurement to the mill; TFI2, the air-flow
measurement to the mill; TTI1 and TTI2, the winding-temperature measurements
of the mill; TTI3, the temperature measurement of the material entering the mill;
TTI4, the temperature measurement at the mill outlet. The loop FCI1 regulates
the feed flow to the mill based on TFI1, with the manipulated variable being

- 3ir == feed, concentrate, tailings D[ ﬂ

Figure 2: Direct control structure
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the pump inverter frequency; FC2 regulates the air flow to the mill based on
TFI2, with the manipulated variable being the opening degree of the solenoid
valve; LC1 regulates the liquid level in the flotation tank based on TLI1, with the
manipulated variable being the throttle angle of the discharge (waste) valve. The
figure also identifies the actuators and the type of conveyed medium. Within the
SCADA application, the operator may select a manual-control mode for factorial
experiments or a standard PID controller whose parameters are editable directly
from the SCADA interface. Each control loop can be switched independently
between manual and automatic operation. Owing to the specific geometry of the
flotation-machine tank (visible in Figure 1), the LC1 level-control loop addition-
ally allows selection of a gain-scheduling mode in which the controller settings
are adjusted automatically as a function of the current level measurement. These
settings were determined in prior experiments on the basis of an identified non-
linear tank model. Dedicated inverters are responsible for the operation of all
pumps as well as the electromagnetic mill itself. In addition to standard moni-
toring functions, the SCADA system is designed to enable the development and
online testing of supervisory and optimization control algorithms [36,37].

To enhance the system’s monitoring capabilities, an Internet of Things (IoT)-
based vision module was integrated [5, 18]. This module consists of a high-speed
LUCID Triton camera [32], a Raspberry Pi 4 computational unit [40], and a
Google Coral Artificial Neural Network (ANN) accelerator [21]. The vision
system enables continuous acquisition of froth images at rates up to 220 frames
per second under varying technological conditions for subsequent analysis and
machine learning (ML) applications (see Fig. 3).

() (b)

Figure 3: Vision system elements mounted above the flotation machine tank (a) and exemplary
images of flotation froth registered during experiments (b)
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4. Materials and methods

4.1. Machine learning

Froth-image-based estimation of flotation variables was formulated as a su-
pervised regression task. Given an RGB image of the froth surface x € R{H*WxC},
a neural network fy was trained to predict one or more continuous targets ye R™
(e.g., bubble population metrics and instantaneous yield), such that y = fy(x; 6).
When targets were physically coupled (for example, bubble statistics and mass
pull), a multi-task formulation with a shared visual backbone and task-specific
heads was adopted to improve sample efficiency and generalization [7,41].

Froth images were acquired by a fixed industrial camera observing the lip
zone under controlled illumination. Ground-truth labels consisted of (i) bubble
count density, derived from a reference vision pipeline, and (i1) concentrate yield,
obtained from laboratory or plant assays. Because image timestamps and plant
tags were not perfectly synchronized, time series were aligned using the lag that
maximized cross-correlation between froth-motion proxies and mass pull within
a bounded window, thereby reducing label latency [3,43].

Images were cropped to a froth region of interest, resized, and per-channel
normalized using training-set statistics. To improve robustness to variability
in lighting, surface texture, and camera pose, bounded photometric and geo-
metric augmentations (random cropping, small rotations, horizontal flips, con-
trast/brightness jitter, and additive noise) were applied, with ranges selected to
preserve the physical meaning of bubble scale and morphology [44].

Convolutional encoders with ImageNet pretraining — specifically ResNet and
EfficientNet backbones — were employed, followed by global average pooling and
shallow regression heads [23,46]. For temporal cues, two strategies were exam-
ined: (a) temporal pooling of per-frame embeddings and (b) lightweight sequence
modeling (temporal 1-D convolution or GRU) atop framewise features [11]. Pre-
training was used to mitigate overfitting and to improve convergence on modest
industrial datasets [19].

For scalar regression, the Huber loss Ls was minimized to reduce sensitivity
to label noise:

1 - —~
_56-9% ly =<6,
Ls (y,y) = 1 .
o |y—y|—§5 , otherwise.

In multi-task settings with targets y(®), the objective was defined as the sum
of per-task losses with uncertainty-based weights 1, = 1/0',3 learned during
training [26]. Parameters were optimized using Adam with cosine learning-rate
decay and L, regularization [27].
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Data were split by production run/campaign to prevent temporal leakage, pro-
ducing train/validation/test partitions; generalization was further assessed with
grouped (k)-fold cross-validation at the campaign level. Primary metrics included
RMSE, MAE, and the coefficient of determination RZ. Spearman’s p and normal-
ized RMSE (relative to the operating range) were additionally reported. Where
probabilistic heads were used, negative log-likelihood and Expected Calibration
Error were computed [22].

All experiments were conducted in Python using TensorFlow/Keras for mod-
eling [2], NumPy and Pandas for data handling, scikit-learn for splitting and met-
rics, OpenCV for image preprocessing, and Matplotlib for visualization. Training
and inference were executed on NVIDIA GPUs via the CUDA toolkit, reflecting
prevailing best practices for industrial machine-learning workflows.

4.2. Experiments design

All images analyzed in this study were acquired during pilot-scale flotation
trials conducted within the CuBR IV Project, Phase I: Technical feasibility study
for the recovery of valuable components from flotation tailings using combined
beneficiation methods. The primary objective was to assess the feasibility of
conducting flotation in the proposed prototype apparatus, with particular empha-
sis on the formation and persistence of bubble—mineral aggregates [49]. Tests
were performed as batch flotation in the dispersion chamber only. Given the lim-
ited prior operational experience with this device and the ongoing engineering
work required to enable continuous operation, the campaign was intentionally ex-
ploratory in nature. Experimental runs were designed as periodic trials with con-
trolled parameter variations and included both a fine feed fraction (< 0.020 mm)
and a coarse fraction (> 0.100 mm). The fine-fraction tests targeted the effi-
ciency of separating ultrafine particles by exploiting air dispersion and stabilizing
durable bubble-mineral attachments in the manufactured prototype, consistent
with known constraints and strategies for fine-particle flotation [47]. The coarse-
fraction tests focused on verifying the device’s capacity for regrinding to achieve
liberation, followed by effective flotation of the released minerals [49].

Reagent practice followed industry conventions with adjustments for the batch
configuration. A mixed xanthate collector — industrial blend of ethyl and isobutyl
sodium xanthogenate with Hostaflot (sodium salt of diethyldithiophosphoric acid)
at a mass ratio of 7:3 — was employed as the collector suite, and Nasfroth 245B
served as the frother. Owing to the batch mode of operation, frother dosages per
unit dry mass of tailings were higher than those typically applied in pneumo-
mechanical machines. Collector dosage was systematically varied across runs
to quantify its effect on separation performance in the new device [6]. On the
equipment side, the principal manipulated variables were the air dosage and the
electromagnet (mill) operating frequency.
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Across the experimental matrix, the following process variables were deliber-
ately changed: (1) feed characteristics, including particle-size class (fine/coarse),
pulp density, and batch volume; (ii) reagent dosages normalized to feed volume or
dry mass; (iii) air delivery, encompassing both injection location and volumetric
flow rate; and (iv) electromagnetic mill operating frequency.

In summary, the experimental campaign intentionally perturbed operating
conditions and, unavoidably, influenced froth characteristics as the team itera-
tively learned how to stabilize the process across combinations of feed proper-
ties, reagent dosages, feed flowrate, and air flowrate. Consequently, the dataset
comprises numerous short sequences of images captured under quasi-steady con-
ditions interspersed with transitions, yielding substantial variability in froth ap-
pearance (e.g., bubble size distributions, color/brightness), which is advantageous
for training robust visual features. However, the number of images obtained from
extended, fully stable operating points is comparatively limited, which constrains
the statistical power for evaluating model performance under steady-state regimes.

5. Model design, training and results

An image corpus exceeding one thousand froth frames was assembled across
three experimental trials, each comprising multiple concentrates and deliberately
varied operating conditions (airflow, electromagnetic regrinding frequency, and
feed mass). Natural covariate shift was thus introduced by design. Each image
was accompanied by reference annotations from a vision system (bubble count,
density, displacement magnitude/angle, mean RGB) and, at batch level, laboratory
yield. Because the dataset was small by deep-learning standards, transfer learning,
augmentation, and leakage-aware validation were emphasized [23, 44].

Hold-out splits (approximately 80/20 within trial) were performed and merged
to form global train/test sets while preserving campaign boundaries; grouped k-
fold cross-validation provided variance estimates. Early stopping on validation
loss (with a fixed patience) was employed. Unless otherwise stated, Adam with
an initial learning rate of 3 x 10~#, mini-batches constrained by GPU memory,
cosine decay, and weight decay 10™* were used [27].

5.1. CNN architecture design and ablation outcomes

Initially, a baseline model was constructed to serve as a reference point.
Such a model facilitates understanding of the fundamental characteristics of
the task and provides a starting point for subsequent experiments and model
improvements. The initial architecture comprised six hidden layers, including
two convolutional layers and two interleaved pooling layers, followed by two fully
connected layers. All layers employed the Rectified Linear Unit (ReLLU) activation
function. Parameter optimization was performed using the Adam algorithm with
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its default learning rate. The model accepts as input an image with a resolution
of 365 x 310 pixels and produces a single scalar output corresponding to the
predicted number of air bubbles in the image. The described neural network
architecture is shown in Figure 4.

64@179x152

Figure 4: General structure of the baseline model

The final architecture was selected through an ablation-driven process that
began with progressively deeper CNN baselines trained from scratch and pro-
ceeded to pretrained encoders. Initial baselines with one convolutional block were
found to overfit severely, exhibiting low training error and high test error, whereas
two-block configurations provided the best trade-off among scratch models; fur-
ther depth degraded generalization due to over-parameterization. On this basis,
transfer learning was introduced, and pretrained ResNet/EfficientNet backbones
with global average pooling and a shallow regression head were adopted, as these
models consistently improved test RMSE and training stability relative to scratch
networks [23,46].

Alternative input pathways were then examined. A second image branch car-
rying handcrafted, preprocessed inputs (binary thresholding or Scharr edge maps)
was evaluated to encourage explicit sensitivity to bubble boundaries. This design
did not yield generalization gains and, in several cases, reduced robustness, which
was attributed to the brittleness of such transforms under varying illumination
and froth brightness [44]. Consequently, the dual-branch image pathway was
discarded in favor of a single, learned feature extractor.

Auxiliary non-visual inputs were also considered. A compact multilayer per-
ceptron (MLP) branch for control tags (airflow and electromagnetic-mill fre-
quency) was concatenated with visual embeddings. While average gains were
modest, occasional benefits were observed in low-contrast regimes; therefore,
the tag branch was retained as an optional module for scenarios where auxiliary
measurements are available, while the default configuration remained vision-only
to maximize portability.
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Error analyses identified a failure mode on very bright froth images, consis-
tent with diminished contrast and reduced detectability of bubble boundaries [3].
To mitigate this, augmentation ranges for brightness and contrast were widened
(within physically plausible limits), and the final model selection emphasized
architectures whose validation performance degraded least under such perturba-
tions. Taken together, these results led to a final design comprising a pretrained
EfficientNet/ResNet backbone, global average pooling, and a lightweight regres-
sion head (with dropout for regularization), optionally fused with a small tag-MLP
when control signals are present. This design was preferred for its balance of gen-
eralization, robustness to illumination changes, and computational efficiency on
GPU hardware. Inference latency was shown to scale with model depth and input
resolution. Substantial speedups were obtained on GPUs relative to CPUs, partic-
ularly for deeper or multi-input models. Practical acceleration options included
moderate down-scaling of inputs, the use of depthwise-separable backbones (e.g.,
EfficientNet-B0), and standard compression techniques (pruning/quantization)
for deployment [46].

5.2. Task A — Bubble count prediction

Prediction of the number of bubbles per image was pursued as a proxy for
the underlying bubble population. Progressive CNN baselines with one to three
convolutional blocks were evaluated and compared against off-line analyses pro-
duced by the AMEplus FloVis system [4]. The FloVis bubble counts served as
a reference benchmark during training and evaluation. It should be emphasized
that FloVis employs entirely different, hand-crafted image-analysis procedures
for froth characterization and does not rely on machine-learning methods.

Figure 5: Four examples of froth images: raw (left side) and after FloVis system analysis for
bubbles recognition (right side), showcasing differences of froth structure, brightness and color
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It was found that shallow models trained from scratch tended to overfit —
exhibiting low training error but high test error — indicating insufficient in-
ductive bias for the available data volume. Among the scratch configurations,
two-block CNNs offered the best trade-off, whereas deeper stacks degraded due
to over-parameterization. In contrast, transfer-learned backbones improved test
RMSE and stability. Adding a second input branch with handcrafted preprocess-
ing (thresholded or Scharr-filtered images) did not improve generalization, which
was attributed to brittleness under varying froth brightness [44] (compare with
Fig. 3b). Incorporation of auxiliary control tags (airflow and electromagnetic-mill
frequency) yielded only modest average gains, though occasional benefits were
observed in regimes with weak visual contrast. The poorest performance arose
for very bright froth images from a specific trial and concentrate, consistent with
diminished contrast and reduced detectability of bubble boundaries [3]. However,
results obtained in this task support the feasibility of vision-based inference for
bubble population metrics even in the preliminary phase of the new flotation
machine development. Figure 6 represent exemplary results of the bubbles count

Predict=815, True=818 Predict=155, True=151 Predict=1048, True=1111

Predict=2283, True=2316 Predict=565, True=563

R

Figure 6: Examples of froth images with detection results comparison
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prediction in the froth image compared to the “true” results obtained with FloVis
system. The presented set showcase the best results with detection error < 0.5%
and the worst cases with detection error > 6%.

5.3. Task B - Yield prediction

Two formulations were investigated for yield prediction. First, classification
into three yield bands (< 10%, 10-20%, > 20%) yielded seemingly perfect
accuracy on both training and test sets; however, this outcome was invalidated
by temporal redundancy — near-duplicate frames within a run — revealing split
leakage [19]. Second, numeric regression was attempted; because a single batch
yield corresponded to many frames, small per-batch perturbations were injected
during training to prevent degenerate memorization. The best regressor achieved
an RMSE of approximately 0.76 on a held-out test split but showed degraded
performance on entirely unseen runs, indicating sensitivity to distribution shift
and underscoring the need for more diverse data and stricter leakage controls [41].

5.4. Summary of the results

Across three trials and > 1000 froth images with deliberate covariate shift,
the ablation study converged on a transfer-learned CNN (EfficientNet/ResNet
backbone with global average pooling and a lightweight regression head) as
the most reliable architecture, outperforming shallow scratch models that overfit
and deeper scratch models that under-generalized. Hand-crafted preprocessed in-
puts (thresholding/Scharr) did not confer benefits and reduced robustness under
brightness variation, whereas standard augmentation and leakage-aware valida-
tion proved essential for stability on this small industrial dataset. For Task A
(bubble count), the final model achieved improved test RMSE and qualitative
robustness, with the principal failure mode arising on very bright froth images
where bubble boundaries were weakly contrasted. For Task B (yield), band-wise
classification appeared perfect but was invalidated by temporal leakage, while
numeric regression attained RMSE =~ 0.76 on held-out splits yet degraded on
unseen campaigns, indicating sensitivity to distribution shift and the need for
broader data and stricter split hygiene. Runtime profiling confirmed that GPU
inference scaled favorably with model complexity, enabling practical deployment
envelopes, and the chosen optimizer and schedule (Adam with cosine decay
and weight decay) supported stable convergence across experiments. Overall,
the results support the feasibility of vision-based inference for bubble population
metrics and provide preliminary evidence for yield prediction in flotation machine
with electromagnetic regrinding impeller, while highlighting data diversity, il-
lumination robustness, and leakage control as the critical levers for continued
improvement.
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6. Conclusions and future work

The study undertaken should be regarded as preliminary, as it has been con-
ducted in parallel with ongoing optimization of both the mechanics and hydro-
dynamics of a prototype flotation machine (integrated with an in-line regrinding
impeller) and with the development of an accompanying supervisory control
layer. Within this evolving context, convolutional neural networks were shown
to provide plausible image-based estimates of bubble population metrics and,
to a more limited extent, of concentrate yield. Transfer learning, augmentation,
and uncertainty-aware multi-task training were found to be beneficial under the
constraints of a modest dataset; however, susceptibility to temporal leakage and
distribution shift was observed, particularly for yield prediction, where perfor-
mance deteriorated on previously unseen operating campaigns.

These observations suggest several directions for continued research. First,
expansion of the dataset across more operating regimes, illumination conditions,
and ore types is required to reduce variance and to harden models against dis-
tribution shift. Second, improvements to the prototype machine — including air
dispersion, froth management, and regrinding intensity — are being pursued, as
these mechanical refinements directly influence froth morphology and thus the
observability of process states in images. Third, migration from static image re-
gression to spatiotemporal modeling and sensor fusion (combining vision with
control tags and flow/chemistry measurements within a state-space framework)
is expected to improve identifiability and stability, enabling closed-loop applica-
tions. Finally, rigorous leakage-aware evaluation protocols and prospective trials
on unseen campaigns are planned to establish external validity, while real-time
deployment studies will be undertaken to quantify the value of vision-based su-
pervisory signals within advanced process control. In sum, although encouraging
evidence of feasibility has been obtained, substantial work remains before reli-
able, plant-hardened, vision-based supervision can be asserted for this specific
class of flotation machinery.
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