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Finite zeros of positive linear continuous-time systems
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Abstract. The notion of finite zeros of continuous-time positive linear systems is introduced. It is shown that such zeros are real numbers.

It is also shown that a square positive strictly proper or proper system of uniform rank with observability matrix of full column rank has no

finite zeros. The problem of zeroing the system output for positive systems is defined. It is shown that a square positive strictly proper or

proper system of uniform rank with observability matrix of full column rank has no nontrivial output-zeroing inputs. The obtained results

remain valid for non-square positive systems with the first nonzero Markov parameter of full column rank.
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1. Introduction

In positive systems inputs, state variables and outputs take

merely non-negative values. Examples of positive systems can

be found in industrial processes involving chemical reactors,

distillation columns, storage systems, water and atmospher-

ic pollution models. A number of mathematical models with

positive linear behaviour can be found in management sci-

ence, economics, biology and medicine, social sciences, etc.

A number of topics in the area of positive systems is widely

discussed in the literature, in particular: positive realization

problems, state space properties (e.g. stability, controllabili-

ty, observability), behavioral approach, positive 2-D systems,

positive systems and related disciplines. An overview of the

state of the art in positive linear systems can be found in [1-3]

and the references therein. Some new results concerning sta-

bility of positive systems with delays and of positive fractional

order systems can be found in [4, 5].

Unfortunately, the notions of zeros and poles of positive

systems are not extensively discussed in the literature. The

notions of decoupling zeros of positive discrete-time systems

are introduced in [6] and the relationship between decoupling

zeros of standard and positive discrete-time systems are an-

alyzed. The presented approach is based on the notions of

reachability and observability for positive discrete-time sys-

tems and on a canonical decomposition of the pairs of matri-

ces (A, B) and (A, C) of a linear discrete-time positive sys-

tem. In [7] the output-zeroing problem and finite zeros in pos-

itive discrete-time linear systems are analyzed. It is shown that

the zeros are real nonnegative numbers. It is also shown that a

square positive strictly proper or proper discrete-time system

of uniform rank with observability matrix of full column rank

has no nontrivial output-zeroing inputs nor finite zeros.

In the present paper we extend the results obtained in [7] to

positive continuous-time systems. In particular, we introduce

the notion of finite zeros for continuous-time linear positive

systems. This notion is based on state-zero and input-zero di-

rections (comp. [8, 9]) and uses the additional assumption

concerning positivity of inputs and solutions generated by

such zeros. In this way, the finite zeros of positive systems

constitute a counterpart of the notion of invariant zeros for

standard continuous-time systems [9].

The paper is organized as follows. In Sec. 2 the basic defi-

nitions and theorems concerning positive systems are recalled

and the definition of the output-zeroing problem is introduced.

Moreover, some basic facts concerning invariant zeros of stan-

dard continuous-time systems that are necessary for further

discussion have been also recalled. The main results of the

paper are presented in Sec. 3. Section 4 contains simple nu-

merical examples and concluding remarks are given in Sec. 5.

2. Preliminary results

The set of all n × m complex (real) matrices is denoted

by Cn×m (Rn×m) respectively and by definition Cn×1 :=
Cn (Rn×1 := Rn). The set of all n × m real matrices with

nonnegative entries is denoted by Rn×m

+ and Rn×1
+ := Rn

+.

Consider a linear continuous – time system of the form

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
t ≥ 0, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rr are the state, in-

put and output vectors and A ∈ Rn×n, 0 6= B ∈ Rn×m,

0 6= C ∈ Rr×n, D ∈ Rr×m. Throughout the paper we

assume that the inputs u(t) are continuous vector-functions

of t, t ∈ [0, +∞). System (1) is called proper if D 6= 0;

otherwise the system is called strictly proper. The matrices

D, CB, CAB, ..., CAlB, ... are called the Markov parameters

of (1). By










C

CA

.

CAn−1











we denote the observability matrix for (1).
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Definition 1. [1, 2] The system (1) is called (internally) pos-

itive if and only if x(t) ∈ Rn
+ and y(t) ∈ Rr

+ for every initial

condition xo ∈ Rn
+ and any input vector-function u(t) ∈ Rm

+ ,

t ≥ 0.

Remark 1. Recall [1, 2] that a square matrix with real entries

is called the Metzler matrix if and only if all its off-diagonal

entries are nonnegative. Moreover, etA ∈ Rn×n

+ , t ≥ 0, if and

only if A ∈ Rn×n is a Metzler matrix.

Theorem 1. [1, 2] The system (1) is (internally) positive if

and only if A ∈ Rn×n is a Metzler matrix, B ∈ Rn×m

+ ,

C ∈ Rr×n

+ , D ∈ Rr×m

+ .

By analogy to the standard case, for positive continuous-

time systems we can consider the problem of zeroing the

system output (comp. [9–11]). To this end we will use the

following formulation of the output-zeroing problem for the

positive system (1). Find all pairs (xo, uo(t)) consisting of

an admissible initial state xo ∈ Rn
+ and an admissible input

uo(t) ∈ Rm
+ , t ≥ 0, such that the corresponding output is

identically zero, i.e., y(t) = 0 for all t ≥ 0. Any nontrivial

pair of this kind (i.e., such that xo 6= 0 or uo(t) is not identi-

cally zero) will be called the output-zeroing input. Of course,

by virtue of Theorem 1 and Remark 1, for the corresponding

solution

xo(t) = etAxo +

t
∫

0

e(t−τ)ABuo(τ)dτ (2)

of the state equation the condition xo(t) ∈ Rn
+ for all t ≥ 0

will be satisfied (i.e., xo(t) will be admissible). In each output-

zeroing input (xo, uo(t)), uo(t) should be understood as an

open-loop real-valued control signal which, when applied to

the positive system (1) exactly at the initial state x(0) = xo

yields the solution xo(t) of the form (2) and the system re-

sponse y(t) = 0 for all t ≥ 0. Naturally, the trivial pair

(xo = 0, uo(t) ≡ 0) also yields y(t) ≡ 0; this pair will be

called the trivial output-zeroing input.

Remark 2. In this remark we recall some basic facts con-

cerning zeros of the standard system (1). For such system,

the most commonly used notion of zeros are the Smith ze-

ros [8–10]. These zeros are defined on the basis of the Smith

canonical form of the system (Rosenbrock) matrix

P(s) =

[

sI − A −B

C D

]

. (3)

With the aid of elementary row and column operations (3) is

transformed to the Smith diagonal form. The product of diag-

onal polynomials is called the zero polynomial and its roots

are the Smith zeros of (1). The Smith zeros can be equiva-

lently defined as those points of the complex plane for which

the pencil (3) loses its normal (determinantal) rank.

In [12] it is shown that a more general concept of zeros

of (1) than the Smith zeros can be derived from the general-

ized eigenvalue problem for the matrix (3) when the latter is

written as

P(s) = sN − M, (4)

where

N =

[

I 0

0 0

]

, M =

[

A B

−C −D

]

.

In the generalized eigenvalue problem for (4) we are looking

for all complex numbers λ ∈ C such that λNw = Mw for some

vector 0 6= w ∈ Cn+m. Each λ ∈ C with the above prop-

erty is called the generalized eigenvalue of the pair (N, M)
and the corresponding to it vector w is called the generalized

eigenvector. It is clear that λ is a generalized eigenvalue of

(N, M) if and only if rank of λN−M is smaller than n + m.

The set of all generalized eigenvalues of (N, M) we denote as

σ(N, M) := {λ ∈ C : rank(λN− M) < n + m}. It is impor-

tant to note that the generalized eigenvalues of (N, M) are not

only those complex numbers λ for which rank of λN − M is

smaller than normal rank of sN−M. In general case, σ(N, M)
may be empty, finite or equal to the whole complex plane. The

last case takes place if for example n+r < n+m or, more gen-

erally, if rank of sN−M is smaller than min{n + r, n + m}.

Immediately from the definition of Smith zeros, it follows

that each Smith zero of (1) is also a generalized eigenvalue

of (N, M). In fact, if λ is a Smith zero of (1), then

rank(λN − M) < normal rank(sN − M) ≤

≤ min{n + r, n + m} ≤ n + m

and consequently, λ ∈ σ(N, M).
The definition of generalized eigenvalues for the pair

(N, M) can be expressed in the form:

a number λ ∈ C is a generalized eigenvalue of P(s) (4),

i.e., λ ∈ σ(N, M), if and only if there exists a nonzero vector
[

xo

g

]

∈ Cn+m such that P(λ)

[

xo

g

]

=

[

0

0

]

, i.e.,

λxo − Axo = Bg, Cxo + Dg = 0. (5)

As a zero of the standard system (1) we take any gener-

alized eigenvalue λ ∈ σ(N, M) which satisfies the following

two conditions:

a) λ generates a nontrivial solution of the state equation in

(1) (i.e., a solution which is not the identically zero solution),

b) this solution yields the identically zero system response,

i.e., y(t) = 0 for all t ≥ 0.

It is easy to note (see (5)) that if λ ∈ σ(N, M), then eλtxo

is a solution of the state equation in (1) which corresponds to

the initial condition xo and to the input eλtg. The term eλtxo

is called the solution of the state equation in (1) generated

by λ. Of course, λ, xo and g may in general case be com-

plex. Note that if λ, xo, g satisfy (5), then the triple λ, xo,

g consisted of complex conjugates also satisfies (5). On the

other hand, we are interested only in real initial conditions,

inputs and solutions. The latter we obtain (see [10]) by taking

Re xo as the initial condition and Re (eλtg), Re (eλtxo) as the

corresponding input and solution or Im xo as the initial con-

dition and Im (eλtg) , Im (eλtxo) as the corresponding input

and solution (Re and Im denote real and imaginary part of

a complex value).

As is shown in [12], the set of zeros of the standard system

(1) consists of all those generalized eigenvalues of (N, M) for
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which there exists a generalized eigenvector

[

xo

g

]

with the

property xo 6= 0. The elements of this set we call, in order to

distinguish from the Smith zeros, the invariant zeros of (1).

In this way we obtain the following definition [9, 10, 12]:

a number λ ∈ C is an invariant zero of the standard sys-

tem (1) if and only if there exist vectors 0 6= xo ∈ Cn and

g ∈ Cm such that the triple λ, xo, g satisfies (5).

As is known [9, 10], for the standard system (1) the set

of its invariant zeros is an extension of the set of Smith zeros

(i.e., each Smith zero is also an invariant zero).

Let λ ∈ C be an invariant zero of the standard sys-

tem (1), i.e., let a triple λ, xo 6= 0, g satisfy (5). Denote

λ = Reλ+ j Imλ, xo = Re xo + j Imxo, g = Re g+ j Im g. Then

(5) takes the form

Re λ Re xo − Im λ Im xo − A Re xo = B Re g,

Im λ Re xo + Re λ Im xo − A Im xo = B Im g
(6)

and
C Re xo + D Re g = 0,

C Im xo + D Im g = 0,
(7)

while the real valued initial conditions (xo), inputs (uo(t))
and solutions (xo(t)) generated by λ = σ+ jω are of the form

(comp. [9]):

xo = Re xo,

uo(t) = Re (eλtg) = eσt(Re g cosωt − Im g sin ωt),

xo(t) = Re (eλtxo) = eσt(Re xo cosωt − Im xo sin ωt)

(8)

and

xo = Im xo,

uo(t) = Im (eλtg) = eσt(Re g sinωt + Im g cosωt),

xo(t) = Im (eλtxo) = eσt(Re xo sin ωt + Im xo cosωt),

(9)

Remark 3. Note that if λ ∈ C such that Im λ 6= 0 is an invari-

ant zero of the standard system (1), i.e., a triple λ, xo 6= 0, g

satisfies (5), then Im g 6= 0 or Im xo 6= 0. In fact, suppose

that Im g = 0 and Im xo = 0. Then, from the second equal-

ity in (6), it follows that Im λ Re xo = 0, and consequently,

Re xo = 0. Hence, xo = 0, contrary to the assumption.

Remark 4. As is known [9], for the standard observable

(strictly proper or proper) system (1) the property of being

an invariant zero is equivalent to the property of generat-

ing output-zeroing inputs. More precisely, a triple λ ∈ C,

0 6= xo ∈ Cn, g ∈ Cm satisfies (5) if and only if the input

eλtg, t ≥ 0, and the initial condition xo 6= 0 yield y(t) = 0
for all t ≥ 0. Moreover, in the considered triple is g 6= 0 and

the solution corresponding to xo and eλtg has the form eλtxo.

3. Main results

For the positive system (1) we adopt the following definition

of zeros.

Definition 2. A number λ ∈ C is a finite zero of the strictly

proper or proper positive continuous-time system (1) if and

only if there exist vectors 0 6= xo ∈ Cn and g ∈ Cm such that

the triple λ, xo 6= 0, g satisfies (5) and λ generates an admis-

sible (i.e., nonnegative) real valued input and an admissible

(i.e., nonnegative) real valued solution of the state equation.

Theorem 2. If λ is a finite zero of the strictly proper or

proper positive continuous-time system (1) and λ, xo 6= 0, g

satisfy (5), then λ is a real number. Moreover, xo ∈ Rn
+ and

g ∈ Rm
+ .

Proof. For the proof of the first assertion of the theorem it is

enough to show that if λ ∈ C satisfies (5) and λ is such that

Im λ 6= 0, then the conditions of Definition 2 are not fulfilled,

i.e., λ does not generate admissible inputs and solutions.

Suppose first that a triple λ, xo 6= 0, g satisfies (5) and

Im λ 6= 0. We consider the following two disjoint cases: g = 0
and g 6= 0.

In the first case, i.e., g = 0, we have, by virtue of Remark

3, Im xo 6= 0. Let the j-th component (Im xo)j of the vector

Im xo be nonzero. Then the j-th component (xo(t))j of the

solution xo(t) in (8) takes, for t ≥ 0, the form

(xo(t))j = ceσt cos(ωt + α),

where

c =
√

(Re xo)2j + (Im xo)2j

and

sin α =
(Im xo)j

c
.

It means that this component changes sign and consequently,

xo(t) can not remain in Rn
+. The same reasoning applies to

xo(t) in (9), where the j-th component takes, for t ≥ 0, the

form (xo(t))j = ceσt sin(ωt + α) .

In the second case, i.e., g 6= 0, we have Re g 6= 0
or Im g 6= 0. Suppose that for the j-th component of g is

(Re g)j 6= 0 or (Im g)j 6= 0. Then the j-th component (uo(t))j

of the input uo(t) in (8) takes, for t ≥ 0, the form

(uo(t))j = deσt cos(ωt + β),

where

d =
√

(Re g)2j + (Im g)2j

and

sin β =
(Im g)j

d
.

It means that this component changes sign when t changes

and consequently, uo(t) can not remain in Rm
+ . In the same

way we analyze the j-th component of uo(t) in (9). Then, for

t ≥ 0, we have (uo(t))j = deσt sin(ωt + β) and uo(t) is not

contained in Rm
+ .

In this way we have shown that if λ ∈ C satisfies Defini-

tion 2, then Im λ = 0, i.e., λ is a real number.

The last assertion of the theorem follows directly from

the above and Definition 2. In fact, since λ is real, we take

as xo and g real vectors and consequently, uo(t) = eλtg and

xo(t) = eλtxo are real and, by Definition 2, they remain, for

all t ≥ 0, in Rm
+ and Rn

+ respectively. In particular, this holds

also for t = 0. Hence the theorem follows.

Bull. Pol. Ac.: Tech. 59(3) 2011 295
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From Definition 2 and Theorem 2 we obtain the follow-

ing equivalent characterization of finite zeros of the positive

system (1).

Theorem 3. A number λ is a finite zero of the strictly proper

or proper positive system (1) if and only if λ ∈ R and there

exist vectors 0 6= xo ∈ Rn
+ and g ∈ Rm

+ such that the triple

λ, xo, g satisfies (5).

Proof. If λ is a finite zero of the positive system (1), then

the assertion of the theorem follows directly from Theorem 2.

Conversely, if a triple λ ∈ R, 0 6= xo ∈ Rn
+, g ∈ Rm

+ satisfies

(5), then λ satisfies Definition 2. Hence the theorem follows.

In the remaining part of this section we consider a pos-

itive proper or strictly proper system (1) of uniform rank

which means that the system is square (the number of in-

puts equals the number of outputs, i.e., m = r) and the first

nonzero Markov parameter is nonsingular. For strictly prop-

er systems the first nonzero Markov parameter is denoted by

CAνB, where 0 ≤ ν ≤ n − 1.

3.1. Output-zeroing inputs in positive systems of uniform

rank.

Theorem 4. Suppose that in the positive proper system (1) of

uniform rank the observability matrix has full column rank.

Then the system has only the trivial output-zeroing input.

Proof. Let (xo, uo(t)) be a nontrivial output-zeroing input and

let xo(t) denote the corresponding solution of the state equa-

tion. At this assumption for each t ≥ 0 the following equalities

hold
ẋo(t) = Axo(t) + Buo(t), xo(0) = xo,

0 = Cxo(t) + Duo(t).
(10)

By virtue of Theorem 1 and the definition of the output-

zeroing problem for positive systems, we obtain from the sec-

ond equality in (10) the relation Duo(t) = −Cxo(t) and con-

sequently, Cxo(t) = 0 and Duo(t) = 0 for all t ≥ 0. The last

equality yields uo(t) ≡ 0 and consequently, xo(t) = etAxo.

Hence Cxo(t) = CetAxo = 0 for all t ≥ 0. Differentiat-

ing both sides of the equality CetAxo = 0 an appropriate

number of times and taking t = 0, we can write Cxo = 0,

CAxo = 0, ..., CAn−1xo = 0. In view of the assumption

concerning the observability matrix, we obtain xo = 0. This

contradicts the assumption that (xo, uo(t)) is non-trivial.

Theorem 5. Suppose that in a positive strictly proper sys-

tem (1) of uniform rank the observability matrix has the full

column rank n. Then the system has only the trivial output-

zeroing input.

Proof. It is enough to show that each output-zeroing input

is trivial. To this end, let (xo, uo(t)) be a nontrivial output-

zeroing input and let xo(t) denote the corresponding solution

of the state equation. At this assumption we have the following

equalities

ẋo(t) = Axo(t) + Buo(t), xo(0) = xo,

Cxo(t) = 0
(11)

which are valid for each t ≥ 0. From the second equality in

(11) and from (2) we obtain

CetAxo +

t
∫

0

Ce(t−τ)ABuo(τ)dτ = 0. (12)

Since both vectors on the left-hand side of (12) are nonnega-

tive, we have, for all t ≥ 0 and 0 ≤ τ ≤ t, the equalities

CetAxo = 0 and

t
∫

0

Ce(t−τ)ABuo(τ)dτ = 0. (13)

The first equality in (13) yields, via the observability as-

sumption, xo = 0. In the second equality in (13) the term

Ce(t−τ)ABuo(τ) is continuous and nonnegative in the interval

0 ≤ τ ≤ t. Hence, by virtue of
t

∫

0

Ce(t−τ)ABuo(τ)dτ = 0,

we obtain Ce(t−τ)ABuo(τ) = 0 for 0 ≤ τ ≤ t. Differentiating

n − 1 times both sides of the last equality with respect to t

we obtain the following sequence of equalities

Ce(t−τ)ABuo(τ) = 0,

CAe(t−τ)ABuo(τ) = 0,

.

.

CAn−1e(t−τ)ABuo(τ) = 0.

(14)

The assumption concerning observability yields now

e(t−τ)ABuo(τ) = 0 and consequently, Buo(τ) = 0 for all

0 ≤ τ ≤ t. Since the first nonzero Markov parameter CAνB

is nonsingular, the matrix B has full column rank. As a con-

sequence, we obtain uo(τ) = 0 for all 0 ≤ τ ≤ t. Finally,

since t can be fixed arbitrarily, we can write uo(t) = 0 for all

t ≥ 0.

In this way we have shown that (xo, uo(t)) is the trivial

output-zeroing input and the theorem is proved.

Remark 5. Theorems 4 and 5 remain valid for non-square

positive systems (1) when the assumption of uniform rank

is replaced by the assumption that the first nonzero Markov

parameter has full column rank. The proofs follow the same

lines.

3.2. Finite zeros in positive systems of uniform rank.

Theorem 6. Suppose that in the positive proper system (1)

of uniform rank the observability matrix has the full column

rank n. Then the system has no finite zeros.

Proof. We proceed the proof via reductio ad absurdum. To

this end, suppose that a number λ is a finite zero of the sys-

tem. Then, by virtue of Theorem 2 (or Theorem 3), λ is real

and 0 6= xo ∈ Rn
+, g ∈ Rm

+ . From the second equality in

(5) we have Cxo + Dg = 0 and, by virtue of Theorem 1,

we obtain Cxo = 0 and Dg = 0. Since, by assumption, D is

nonsingular, we obtain g = 0. Now, the condition (5) yields

the equalities λxo − Axo = 0, Cxo = 0. Pre-multiplying sub-

sequently the first equality by C, CA, ..., CAn−2 and taking

296 Bull. Pol. Ac.: Tech. 59(3) 2011
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into account the second equality, we get the following se-

quence of equalities Cxo = 0, CAxo = 0, ..., CAn−1xo = 0.

Since the observability matrix has full column rank, we ob-

tain xo = 0 which contradicts the assumption xo 6= 0 (comp.

Definition 2).

Theorem 7. Suppose that in a positive strictly proper sys-

tem (1) of uniform rank the observability matrix has the full

column rank n. Then the system has no finite zeros.

Proof. Suppose that Theorem 7 is not valid and let a number

λ be a finite zero of the system. Then, by virtue of Theorem 3,

λ is real and 0 6= xo ∈ Rn
+ and g ∈ Rm

+ . Of course, λ gen-

erates the nontrivial output-zeroing input (xo, uo(t)) where

xo = xo 6= 0 and uo(t) = eλtg. However, this contradicts

Theorem 5.

Corollary 1. Consider a SISO (single input, single output,

i.e., m = r = 1) strictly proper or proper positive system (1)

which is observable as a standard system. Then the positive

system has no finite zeros.

Remark 6. As is known [9], a standard strictly proper system

(1) of uniform rank with CAνB as the first nonzero Markov

parameter has n − m(ν + 1) invariant (Smith) zeros. In par-

ticular, a SISO strictly proper standard system has n−(ν+1)
invariant (Smith) zeros. For a proper standard system (1) of

uniform rank the number of invariant (Smith) zeros equals n
(the same holds for a SISO standard proper system) [9].

Remark 7. Note that Theorems 6 and 7 remain valid for non-

square positive systems (1) if the assumption of uniform rank

is replaced by the assumption that the first nonzero Markov

parameter has full column rank. The proofs follow the same

lines.

4. Examples

Example 1. Consider a positive SISO system (1) with the

matrices

A =







0 1 0

0 0 1

0 0 0






, b =







1

1

1






, c =

[

1 0 0
]

.

The assumptions of Corollary 1 are fulfilled and the system

has no finite zeros. On the other hand, the transfer function of

this system equals g(s) =
s2 + s + 1

s3
and the system, treated

as a standard one, has two invariant (Smith) zeros.

Example 2. Consider a positive system (1) with the matrices

A =







−1/3 0 2

0 −1/3 1

0 0 −1/3






, B =







1

1

0

1

0

0






,

C =
[

0 1 2
]

, D =
[

1 0
]

.

Equations (5) take the form

(

λ +
1

3

)

xo
1 − 2xo

3 − g1 − g2 = 0,

(

λ +
1

3

)

xo
2 − xo

3 − g1 = 0,

(

λ +
1

3

)

xo
3 = 0,

xo
2 + 2xo

3 + g1 = 0,

where

xo =







xo
1

xo
2

xo
3






, g =

[

g1

g2

]

.

It is easy to verify that for any given λ > −1/3 and xo
1 > 0

the triple

λ, xo =







xo
1

0

0






, g =





0
(

λ +
1

3

)

xo
1





satisfies Definition 2 (see also Theorem 3). This means that

any real number greater than −1/3 is a finite zero of the

system. Moreover, for any given xo
1 > 0, the triple

λ = −
1

3
, xo =







xo
1

0

0






, g =

[

0

0

]

also satisfies Definition 2 (or Theorem 3) (i.e., λ = −1/3 is

also a finite zero of the system).

On the other hand, the considered system, treated as a

standard one, is degenerate [9, 10] (i.e., each complex num-

ber is its invariant zero). Moreover, it has exactly two Smith

zeros (λ = −1/3 and λ = −4/3) and λ = −1/3 is simulta-

neously the output decoupling zero.

Example 3. Consider a positive system (1) with the matrices

A =











−1 0 0 1

0 −1 1 0

0 0 −1 0

1 0 0 −1











, B =











1

0

0

1

0

1

0

0











,

C =

[

1 0 0 0

0 0 0 1

]

.

Solving (5) it is easy to verify that for each λ > −1 and

xo
2 > 0 the triple

λ, xo =











0

xo
2

0

0











, g =

[

0

(λ + 1)xo
2

]
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satisfies Definition 2 (see also Theorem 3). For a given xo
2 > 0

the triple

λ = −1, xo =











0

xo
2

0

0











, g =

[

0

0

]

also satisfies Definition 2 (or Theorem 3). Hence each re-

al number λ ≥ −1 constitutes a finite zero of the positive

system.

The considered system, treated as a standard one, is degen-

erate (i.e., each complex number is its invariant zero). More-

over, λ = −1 is an output-decoupling zero of the system.

5. Conclusions

The notion of finite zeros for positive continuous-time linear

systems has been introduced (Definition 2). This notion uses

the assumption that finite zeros generate admissible (i.e., non-

negative) output-zeroing inputs and the corresponding solu-

tions. As a consequence, finite zeros of a positive continuous-

time system (if they exist) are real numbers, while the corre-

sponding state-zero and input-zero directions remain in Rn
+

and Rm
+ respectively (Theorems 2 and 3).

It has been shown that positive continuous-time strictly

proper or proper systems of uniform rank satisfying observ-

ability condition as standard systems do not possess nontriv-

ial output-zeroing inputs (Theorems 4 and 5) nor finite zeros

(Theorems 6 and 7). Theorems 4–7 remain valid for non-

square systems with the first nonzero Markov parameter of

full column rank (Remarks 5 and 7). The considerations have

been illustrated by simple numerical examples.

The obtained results clearly show that positivity con-

straints (Definition 1 and Theorem 1) imposed on continuous-

time linear systems result in limitations concerning internal

dynamics and location of zeros (comp. [6, 13, 14]).

An open problem is the state space (dynamical) character-

ization of poles in positive discrete-time and continuous-time

linear systems.
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