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Abstract. Independent Subspace Analysis (ISA) consists in separating sets (subspaces) of dependent sources, with different sets being

independent of each other. While a few algorithms have been proposed to solve this problem, they are all completely general in the sense

that they do not make any assumptions on the intra-subspace dependency. In this paper, we address the ISA problem in the specific context

of Separation of Synchronous Sources (SSS), i.e., we aim to solve the ISA problem when the intra-subspace dependency is known to be

perfect phase synchrony between all sources in that subspace. We compare multiple algorithmic solutions for this problem, by analyzing

their performance on an MEG-like dataset.
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1. Introduction

In the human brain, it has been shown that synchrony [1]

is associated with important phenomena. For example, there

is evidence that autism, Parkinson’s, and Alzheimer’s disease

are associated with a decrease in the synchrony of some brain

regions, whereas some types of epilepsy are associated with

an anomalous increase in synchrony [2].

It is also known that electrophysiological brain signals,

such as electroencephalogram (EEG) or magnetoencephalo-

gram (MEG) signals, are not a direct measurement of the

activity of individual brain regions, but rather the result of a

superposition of those regions’ activities [3]. Due to the low

frequencies involved (below 1 kHz), the approximation of a

linear and instantaneous mixing process is valid [4].

Since synchrony is an important phenomenon in the hu-

man brain, and measurements are the result of a mixing

process, we argue that it is important to perform Blind Source

Separation (BSS) on these types of measurements, to be able

to extract relevant networks of synchronous activity. If, as a

first approximation, one considers those different networks

to be independent, then finding the original networks can

be cast as an Independent Subspace Analysis (ISA) task,

where each one of the mutually independent subspaces has

a specific type of internal dependency, namely, phase syn-

chrony.

The goal of this paper is to compare the performance

of various algorithms on a partial ISA task (defined in Sub-

sec. 2.3) when the subspaces are composed of synchronous

sources. Some of these algorithms are dedicated ISA algo-

rithms, while others are Independent Component Analysis

(ICA) algorithms which we nevertheless apply to the partial

ISA task. These algorithms are compared on data which is

created to mimic brain MEG recordings.

This paper is organized as follows. In Sec. 2 we provide

an overview of the BSS problem, with specific focus on the

ICA and ISA problems; the models of these problems are de-

tailed there. In Sec. 3 we provide an overview of some of the

algorithms available to perform ISA. Section 4 compares the

performance of these algorithms on a set of MEG-like. These

results are discussed in Sec. 5, and conclusions are drawn in

Sec. 6.

2. Methodology

2.1. Blind Source Separation (BSS). One important sub-

class of signal processing problems is the topic of blind source

separation (BSS). In BSS, one has access to a set of signals

called measurements y(t), which are the result of a super-

position of another set of signals s(t), which are called the

sources, and which are not directly observable. The goal of

BSS is to recover the sources using only the measurements.

Let s(t) denote a vector of N sources, s(t) ≡
(s1(t), . . . , sN (t))T. Suppose that these sources undergo a lin-

ear and instantaneous mixing process, described by a P -by-N
mixing matrix M, resulting in P mixed signals contained in

the vector y(t) = Ms(t), y(t) ≡ (y1(t), . . . , yP (t))T. The

goal of (linear and instantaneous) BSS is therefore to recover

the original sources s using only the observed mixtures y. In

this paper, we will limit ourselves to the case where P = N ,

i.e., the case where the number of sources is equal to the

number of observed signals1.

In general, the BSS problem is ill-posed, in the sense that

it has an infinity of solutions. To solve this problem, one must

∗e-mail: malmeida@lx.it.pt
1The case P > N is called the overdetermined case and can be solved using techniques similar to the ones described here by reducing the problem to an

equivalent problem with a square mixing matrix [5]. The case P < N is called the underdetermined case and is, in general, harder to solve [5].
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assume extra conditions on the sources s, the mixing matrix

M, or both. One possibility is to assume that, for each time

instant t, the vector s(t) is an i.i.d. realization of a random vec-

tor whose components are statistically independent. This is the

fundamental assumption of Independent Component Analysis

(ICA) [5, 6]. Other possibilities include assuming that the

mixing matrix and the sources are non-negative, which is

known as Non-negative Matrix Factorization (NMF) [7, 8],

or assuming that the sources have perfect phase synchrony,

which leads to Separation of Synchronous Sources [9].

2.2. Independent Component Analysis (ICA). In ICA, the

goal is to find a demixing matrix W such that the estimated

sources, given by x ≡ Wy = WMs, are equal to the original

sources, which are assumed to be mutually independent. If no

other information besides independency is used, some inde-

terminancies are unavoidable: the estimated sources are equal

to the original sources only up to permutation and arbitrary

scaling. Equivalently, the gain matrix, defined as G ≡ WM,

must be a permutation of the rows of a diagonal matrix.

In an informal way, one can say that the ICA problem

is identifiable in the following sense: under mild assump-

tions, if y = Ms and one finds a matrix W such that all

components of x = Wy are independent, then x = s up to

permutation and arbitrary scaling [5]. Unfortunately, indepen-

dence is not easy to measure from a finite sample; therefore,

most ICA algorithms replace that criterion with other contrast

functions, such as entropy, kurtosis or lagged correlations. A

good overview of ICA algorithms and theory can be found in

[5, 6].

2.3. Independent Subspace Analysis (ISA). Independent

Subspace Analysis (ISA) is a generalization of ICA, where

one has independent random vectors instead of independent

random (scalar) variables. Thus, when all the random vectors

are uni-dimensional, ISA reduces to ICA.

Since ISA follows a different model than ICA, we likewise

introduce new notation: let

s ≡





s1

s2

...

sK




, where sk ≡





sk
1

...

sk
Nk



 .

Note that s is a random vector composed of K random sub-

vectors sk, k = 1, . . . ,K . The size of subvector sk is Nk.

The crucial assumption in ISA is that any two random sub-

vectors are independent, i.e., sk and sl are independent for

any k 6= l. Naturally, one must have N1 + . . . + Nk = N .

Because realizations of the random subvector sk span an Nk

dimensional subspace, in the following for brevity sk is called

the k-th subspace of s.

A naı̈ve approach to perform ISA would be to minimize

the mutual information between the various subspaces:

min I(ŝ1, . . . , ŝK)

where ŝk is the estimate of the k-th subspace. This is a valid

approach which has seen some use; however, in general, this

approach is a combinatorial optimization problem [10], since

one does not know which of the estimated sources should be

grouped together [11, 12]. One must then either test all pos-

sible groupings, which grow very quickly with K and rapidly

become intractable, or solve a discrete optimization problem

by following, e.g., a greedy approach. Nevertheless, this ap-

proach is very prone to local minima.

Furthermore, the aforementioned approach involves the

computation of the entropy of random vectors of dimension

Nk, for k = 1, . . . ,K . This computation is non-trivial for

Nk ≥ 2 [13], further increasing the computational complexity

of this approach. Nevertheless, this approach has been tackled,

e.g., by estimating the entropy of multi-dimensional compo-

nents using minimum spanning trees [12], or using variational

Bayes approaches [11].

In this paper we divide ISA into three successive parts,

and consider only the first one, similarly to what other groups

have done [14–16]. Thus, the goal is to solve an easier prob-

lem than the full ISA problem; we call this easier problem

“partial ISA”. This partial problem is not combinatorial.

2.4. Partial ISA and full ISA. The ISA procedure can be

split into three parts. The first part could be called inter-

subspace separation, and is the primary focus of this study.

The goal of this first part is to obtain a demixing matrix

Winter, such that the gain matrix, WinterM, is a permuta-

tion of a block diagonal matrix with blocks corresponding to

the subspaces.

For example, suppose that there are three subspaces

(K = 3), the first of which has three components (N1 = 3)

while the second and third subspaces have two components

(N2 = N3 = 2). In this case, the goal is to find a matrix

Winter of the form Winter ≡ PBinter where P is a permu-

tation matrix and Binter is such that

BinterM =




U1 03×2 03×2

02×3 U2 02×2

02×3 02×2 U3



 .

Here, 0m×n is the m-by-n zero matrix, U1 is a 3-by-3 invert-

ible matrix, and U2 and U3 are 2-by-2 invertible matrices. In

this case, each entry of the random vector xinter ≡ Wintery

is a linear combination of sources from one subspace on-

ly. The second part (which is not studied in this paper) is

called permutation compensation or subspace detection. The

goal is to group the entries of the random vector xinter

so that the first N1 entries of xinter are linear combina-

tions of sources from the first subspace, the next N2 en-

tries are linear combinations of sources from the second

subspace, and so on. This can be achieved by multiply-

ing xinter by a suitable permutation matrix, Q. In gener-

al, this step involves the use of a measure of dependen-

cy or independency, and therefore will depend on the spe-

cific type of dependencies between sources in each sub-

space.
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After the subspace detection is completed, one can define

y1 ≡ Q(1:N1 , :)xinter (1)

y2 ≡ Q(N1+1:N1+N2 , :)xinter (2)

... (3)

yk ≡ Q(N−Nk+1:N , :)xinter , (4)

where Q(a:b , :) is a matrix composed of the rows a to b of

matrix Q.

The third and last part (which is also not studied here) is

called intra-subspace separation, and involves finding square

matrices Wk (of size Nk by Nk) such that sk = Wkyk .

There are K such matrices to be found, and each can be es-

timated separately once the inter-subspace separation and the

subspace detection have been performed.

Unfortunately, the available literature is not quite clear on

what the term “Independent Subspace Analysis” means. Some

authors (cf., [17, 18]) define “ISA” as the task of performing

all three steps, while others (cf., [15, 16]) define the same

term as solving the first or the first two steps only. To prevent

confusion, throughout this paper we will define “Full ISA” as

the task of performing all three steps, and “Partial ISA” as the

task of performing the first step alone.

ISA (full and partial) has seen increasing interest from the

scientific community in recent years. It is known by different

names, including “Independent Subspace Analysis” [12, 14,

15, 19], “Subspace Independent Component Analysis” [16],

among others. Relevant theoretical results have been published

about this topic, such as sufficient conditions on the distrib-

ution of the sources for full ISA to be achievable through

maximization of kurtosis [18] or minimization of mutual in-

formation [17]. Under these conditions, then, simple ICA al-

gorithms which maximize kurtosis (such as some variants

of FastICA) or minimize mutual information (such as Info-

max) can be safely used to perform the full ISA task, even

though the assumption of independence of the sources is vi-

olated. On the other hand, dedicated algorithms for partial

ISA have also been proposed; see, e.g., [15] and [16]. Tech-

niques for subspace detection have also been presented re-

cently [14].

2.5. Phase synchrony. Motivated by studies of the human

brain, where synchrony plays an important role, we assume

here that the ISA subspaces are composed of synchronous

sources. The external measurements such as EEG or MEG

are the result of superpositions of brain regions’ activities,

and due to the low frequencies involved, the mixing process

can be assumed to be linear and instantaneous.

We can thus safely assume that the sources follow the

ISA model and, in addition, they are assumed to have per-

fect phase synchrony within each subspace, as measured by

the Phase Locking Factor (PLF) [9]; in other words, within

each subspace all pairwise PLFs are 1. Such signals follow

a specific model: it can be shown that the sources of each

subspace k are of the form [25]

sk
i (t) ≡ ak

i (t)cos(αk
i (t)), where αk

i (t) ≡ φk
i + ψk(t), (5)

where ak
i (t) are non-negative amplitudes, and αk

i (t) is called

the phase of source sk
i . Informally, in each subspace the

phase difference between any two sources is constant, i.e.,

αk
i (t) − αk

j (t) = φk
i − φk

j = const. [9, 25]. For this reason,

ψk(t) is sometimes called the common oscillation of subspace

k (although it does not have to be an oscillatory signal), and

φk
i is called the phase lag of source sk

i .

3. Algorithms

3.1. ICA algorithms. We now give a brief overview of the

specific ICA algorithms used in this study. Note that ICA al-

gorithms have not been designed to be used for ISA tasks,

therefore it is not necessarily expected that they perform ide-

ally. The Infomax algorithm [5] can be derived as the max-

imum likelihood estimator (MLE) of W, if the observations

y follow the ICA model y = Ms, with s having indepen-

dent components. The optimization of the likelihood function

is usually done with gradient steps. In our experiments, we

use the implementation of Infomax in the MISEP package2

[20] which not only estimates the demixing matrix W but

is also adaptive in the probability density functions of the

sources, thus avoiding the usual parametrization between sub-

and super-gaussian densities [5].

The FastICA algorithm [5] can also be derived as an MLE,

just like Infomax; however, the optimization is done using

fixed-point iterations instead of gradient steps. FastICA is ac-

tually a family of algorithms: one can separate the sources us-

ing as contrast function the kurtosis of the estimated sources

or their entropy, among other possibilities. We use the authors’

implementation of FastICA3; the symmetric version with the

cubic nonlinearity is used.

The Second Order Blind Identification (SOBI) algorithm

and the Temporal Decorrelation SEParation (TDSEP) algo-

rithms [21] are somewhat different from the previous two.

They are based on the following principle: if the estimated

sources x are independent from time-lagged versions of each

other, then the correlation matrix C(τ) ≡ E[x(t)x(t − τ)T],
where E is the expectation value operator, should be diagonal

for any value of the time lag τ . SOBI and TDSEP choose a

set of M lags τ1, . . . , τM and find W such that the correla-

tion matrices C(τ1), . . . ,C(τM ) are as diagonal as possible.

If the data does not follow the ICA model exactly due to, e.g.,

noise, it is in general impossible to exactly diagonalize these

matrices, and algorithms for approximate joint diagonaliza-

tion must be employed.4For more details of these algorithms,

see [5, 6].

3.2. ISA algorithms. We now briefly discuss the ISA algo-

rithms used in this study. FastISA [15] assumes that the di-

2Available from http://www.lx.it.pt/lbalmeida/ica/mitoolbox.html
3Available from http://research.ics.tkk.fi/ica/fastica/
4We use the TDSEP implementation in [21].
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mensions of the subspaces are known. It is an algorithm which

searches for a matrix W such that the norms of the projec-

tions of x onto each of the K subspaces are independent.

This can be viewed as FastICA applied to a scalar function

(the norm) of the vector variables xk . The goal of FastISA is

to perform Partial ISA only.

In [16], it was argued that the kurtosis of a scalar random

variable can be generalized to random vectors. The authors

prove that, if the dimensions of all subspaces are equal and

known (i.e., if N1 = . . . = NK and K is known), then one of

the stationary points of vkurt(x1) + . . . + vkurt(xK), where

vkurt is the vector kurtosis function in [16], corresponds to a

solution of Partial ISA.

The third algorithm we use is sJADE, a generalization of

JADE [5] based on joint block diagonalization [14]. Unlike

the previous two algorithms, sJADE does not assume that the

subspace sizes are known.

While these three algorithms only perform Partial ISA,

algorithms for subsequent subspace detection have been pro-

posed recently as well [14].

4. Experimental results

4.1. MEG-like data. The choice of the data to use in this

study is non-trivial. On one hand, knowledge of the true

sources in real EEG and MEG requires simultaneous data

from outside the scalp (EEG or MEG, which correspond to

the mixed signals y) and from inside the scalp (intra-cranial

recordings, which are more directly related to the sources s).

Aquisition of intra-cranial recordings is, obviously, a very in-

vasive procedure which is seldom available. When they are

not available, results can only be assessed qualitatively by hu-

man experts, who can tell whether the extracted sources are

meaningful or not. On the other hand, synthetic data is too

simple to assess the usefulness of these algorithms in real

data.

In order to retain the advantages of using simulated and

real data, we use MEG-like data,generated from actual MEG

recordings. These data were originally used in [22]; they con-

sist of data from 122 MEG channels, each with 17730 time

samples. The sampling frequency is 297 Hz, and the data had

already been subjected to a low-pass filtering with cutoff at

90 Hz. We begin by selecting 4 of the 122 channels random-

ly. Those 4 channels are bandpass filtered in the band [23,

24] Hz. The resulting filtered data is then downsampled with

a factor of
⌊

0.25
B

⌋
, where B = 14/297 is the passband width

in relative frequency units. This downsampling is performed

to make the size of the data manageable by some of the more

computationally intensive algorithms. We then compute the

Hilbert Transform [23] of those 4 channels and use it to ob-

tain the corresponding analytic signals, ûi(t), i = 1, . . . , 4.

Note that ûi(t) are complex-valued signals.

Since the 4 MEG channels are not independent, we

split the observation period into two parts, one with t =
1, . . . , 17730

2 , and one with t = 17730
2 +1, . . . , 17730. The first

half is used to generate data for the first subspace, whereas

the second half is used for the second subspace.

The common oscillation of the first subspace is taken as

ψ1(t) ≡ ei angle(bu1(t)). The phase lags φ1
1 and φ1

2 are drawn

from a Uniform(0,2π) distribution. The amplitudes are sim-

ply taken as the amplitudes of the first and second analytic

signals: a1
1,2(t) ≡ |û1,2(t)|. Recall that, for the first subspace,

only the first half of the observation period is used.

The second subspace is generated in a similar manner,

with the following differences: the common oscillation is now

generated from the third MEG channel, ψ2(t) ≡ ei angle(bu3(t));

the amplitudes are now taken as the amplitudes of the third

and fourth analytic signals, a2
1,2(t) ≡ |û3,4(t)|; and, as men-

tioned earlier, the second half of the observation period is

used instead of the first half.

Furthermore, to ensure that the mixing process is physi-

ologically plausible, we use the EEGIFT [24] package with

its example dataset and default options to estimate 20 inde-

pendent components on a dataset of 64 EEG recordings. We

select a random 4-by-4 submatrix from the 20-by-64 mixing

matrix estimated by EEGIFT and use it to mix the MEG-like

sources described in the previous paragraphs.

The above process generates a set of 4 sources, in which

sources 1 and 2 form a subspace and sources 3 and 4 form

another subspace. An example of such sources is shown in

Fig. 1. We call this a “2+2” structure. We used an analo-

gous procedure to generate two other datasets: one in a “3+3”

structure, i.e., a set of 6 sources where sources 1, 2, and 3

form one subspace, as do sources 4, 5, and 6; and one in a

“2+2+2” structure, i.e., a set of 6 sources where sources 1 and

2 form one subspace, sources 3 and 4 form another subspace,

and sources 5 and 6 form yet another subspace.

Fig. 1. Excerpt of one dataset with 2+2 structure. The figure shows

the first 1000 time points of the four sources

By choosing randomly which MEG channels are used to

generate the sources and which sub-matrix from the 20-by-

64 mixing matrix estimated by EEGIFT is used to mix the

sources, we can generate different sets of data. We generate

500 datasets of each of the structures mentioned in the pre-

vious paragraph and run the six algorithms mentioned above

on them.

4.2. Results. The results of these experiments are summa-

rized in Figs. 2, 3, and 4. We use the Subspace Amari Per-

formance Index (SAPI; see, e.g., [18]) to measure the quality

of the inter-subspace separation. This quantity is zero if and
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only if the gain matrix WM is a permutation of a block diag-

onal matrix, with block sizes corresponding to the subspace

dimensions. Otherwise, it is positive, with greater values of

the SAPI corresponding to worse separations.

Fig. 2. [2+2] Values of the subspace Amari Performance Index

(SAPI) for the six algorithms applied to the 500 datasets with 2+2

structure. The box plots represent the following quantiles: 0 (bottom

whisker), 0.25 (bottom edge of the box), 0.5 (solid line within the

box), 0.75 (top edge of the box) and 1 (top whisker). If some val-

ues of the SAPI would make the whiskers longer than 1.5 times the

height of the corresponding box, they are considered outliers, are

represented as individual “+” symbols. They are not considered in

the box plots. Magenta boxes correspond to ICA algorithms whereas

blue boxes correspond to ISA algorithms

Fig. 3. [2+2+2] Values of the subspace Amari Performance Index

(SAPI) for the six algorithms on the 500 datasets with 2+2+2 struc-

ture. The box plots represent similar quantities as Fig. 2

The main conclusion is very interesting, albeit unexpect-

ed: the best overall algorithm for this type of data appears to

be FastICA, an algorithm which was not taylored for tackling

subspaces. The performance depends on the random elements

(phase lags, choice of MEG channels, choice of submatrix),

but the typical SAPI value for FastICA is of the order of 0.1

to 0.2 for the 2+2 and 3+3 cases, which correspond to good

separations. The 2+2+2 case worsens the results on all algo-

rithms, but FastICA’s results of 0.18 to 0.3 are still acceptable.

Fig. 4. [3+3] Values of the subspace Amari Performance Index

(SAPI) for the six algorithms on the 500 datasets with 3+3 structure.

The box plots represent similar quantities as Fig. 2

5. Discussion

The algorithms used here require some parameter choices.

We found that the results shown here are relatively robust to

such choices: for example, FastICA can be used with several

non-linearities, all of which yield similar results. It can also

be used in a symmetric or deflation mode, and again, both

yield similar results. The choice of lags in TDSEP is the only

somewhat critical parameter; however, since we downsample

the data according to the sampling frequency and the filter

bandwidth, we simply used all lags from 0 to 8. The reader is

referred to the references given in Sec. 3 for more information

on the effect of these parameters and on how they should be

chosen.

The results shown here allow an important conclusion for

the goal of performing full ISA when each subspace is com-

posed of synchronous sources. FastICA yields good results

despite being an ICA algorithm and not an ISA algorithm.

Algorithms for the intra-subspace separation already exist for

this type of sources [9, 25]; thus, the full ISA task can, in

theory, be satisfactorily performed if one devises a proper

subspace detection procedure. Note, however, that this may

depend strongly on the type of dependency in each subspace,

since other authors have found rather different results on other

types of data [14].

In practice, some questions still need to be addressed. The

most important of these is the performance of these methods

on actual EEG/MEG data. The MEG-like data used here al-

lows a quantitative measurement of the quality of the separa-

tion; such measurement is not available on real EEG or MEG.

On the other hand, natural EEG/MEG data contain disturb-

ing properties (such as artifacts) which were simplified in the

present data generation.

Another relevant issue is the performance when the num-

ber of sources and measurements is large (more than 100 as

in EEG/MEG): in this case, one can compress the data onto a

Bull. Pol. Ac.: Tech. 60(3) 2012 459
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smaller dimension using, e.g., Principal Component Analysis

[5], but the effective number of sources will still likely be

larger than 6. Unfortunately, due to time limitations, we could

not run simulations for larger numbers of sources in time

for this submission. Finally, the choice of the frequency band

to analyze is not innocuous, since different frequency bands

contain information about different brain phenomena [26].

6. Conclusions

We have studied the performance of several algorithms for

the separation of subspaces of synchronous sources, using

MEG-like data to assess the quality of the separation. We

have found that FastICA yields the best results on this type of

data, despite the fact that it is an ICA algorithm and not an

ISA algorithm. Nevertheless, sJADE (in general) or FastISA

(if the subspace dimensions are known in advance) also seem

to be able to deal reasonably well with the problem of partial

ISA.

Acknowledgements. This work was supported by FCT

project PEst-OE/EEI/LA0008/2011, under internal project

DECA-Bio, and by the Academy of Finland through its Cen-

tres of Excellence Program 2012–2017.

REFERENCES

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: a

Universal Concept in Nonlinear Sciences, Cambridge Nonlin-

ear Science Series, Cambridge University Press, Cambridge,

2001.

[2] P.J. Uhlhaas and W. Singer, “Neural synchrony in brain disor-

ders: relevance for cognitive dysfunctions and pathophysiolo-

gy”, Neuron 52, 155–168 (2006).

[3] P.L. Nunez, R. Srinivasan, A.F. Westdorp, R.S. Wijesinghe,

D.M. Tucker, R.B. Silberstein, and P.J. Cadusch, “EEG co-

herency I: statistics, reference electrode, volume conduction,

laplacians, cortical imaging, and interpretation at multiple

scales”, Electroencephalography and Clinical Neurophysiol-

ogy 103, 499–515 (1997).
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