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SELECTED PROBLEMS OF ROBOT CONTROL

Closed-loop control algorithm for some class

of nonholonomic systems using polar representation
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Abstract. This paper is focused on the convergence problem defined for some class of a two input affine nonholonomic driftless system with
three-dimensional state. The problem is solved based on a polar transformation which is singular at the origin. The convergence is ensured
using static-state feedback. The necessary conditions for construction of the algorithm are formally discussed. The solution, in general, is
local, and the feasible domain is strictly related to the properties of the control system. In order to improve algorithm robustness a simple
hybrid algorithm is formulated. The general theory is illustrated by two particular systems and the results of numerical simulations are
provided.
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1. Introduction

Nonholonomic systems, namely the systems with noninte-
grable velocity constraints, constitute an important class of
dynamic control systems. It is known that they are of great
importance in many areas including applications in robotics.
According to the well-known Brockett’s theorem [1] there is
no possibility to use classical static state feedback in order
to stabilize them around an equilibrium point. Therefore the
control problem is challenging and have attracted many re-
searchers in the field of control theory for almost 30 years.

In general two main control approaches for asymptotic
stabilization have been proposed. The first one presented, for
example, in [2, 3] takes advantage of time-varying signals in
order to introduce persistent excitation to the closed-loop sys-
tem. The second one relies on non-smooth techniques includ-
ing non-smooth coordinate transformation (see for example
[4–6]) for which Brockett’s obstruction no longer exists. How-
ever, discontinuous (or even non-smooth) algorithms may not
ensure stability in the classical sense (related to the Lyapunov
theory) and, in general, they are not robust to some class
of disturbances [7, 8]. Discontinuous or even non smooth
“stabilizers” are often named as almost stabilizers, because
they guarantee convergence to the desired point but not sta-
bilization due to singularity at the point. Such a drawback
becomes one of the most important motivation for developing
alternative and smooth control approach taking advantage of
so-called transverse functions [9].

Another important techniques used to control the nonholo-
nomic systems are related to the open-loop strategies that are
focused on trajectory planning in the presence of phase con-
straints. These algorithms may take advantage of Lie algebra
[10, 11], harmonic inputs [12], differential flatness [13], New-
ton’s numerical computation approach [14] and many others.

In this paper we focus on the closed-loop control using

non-smooth transformation that takes advantage of the time-
invariant feedback. This approach was originally presented by
Astolfi [5] to develop asymptotically convergent controller.
The other solution was introduced by Aicardi and others [15]
to control unicycle-like robots. This proposition is based on
a polar representation that has a convenient interpretation with
respect to the given kinematics. In [16], where different con-
trol algorithms designed for two-wheeled robots were com-
pared experimentally, it is stated that the control in polar co-
ordinates gives possibility to achieve good transient behavior
when applied to the parking problem, but it is difficult to
extend it to other systems.

In spite of it an extension of this idea was proposed by
Pazderski and others for the first-order chained system and
the three link nonholonomic manipulator [17, 18]. The main
contribution of this paper is the formulation of a control al-
gorithm designed for quite general two input affine driftless
systems. For the best authors’ knowledge it is the only so-
lution that uses a polar transformation applicable to control
such the class of systems presented so far.

The paper is organized as follows. In Section 2 the con-
trol system is defined. Section 3 is focused on the non-smooth
coordinates polar transformation that gives a non-continuous
dynamic system. Next section is devoted to development of
the control closed loop-algorithm. Section 5 is dedicated to
application of the proposed theory to control selected systems.
In order to illustrate the controller performance extensive sim-
ulation results are given. Section 6 concludes the paper.

2. Control system description

Consider the following two-input driftless affine system with
three dimensional state x ∈ X ⊂ R3 defined by

Σ : ẋ = g1 (x)u1 + g2 (x)u2, (1)
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where u1 and u2 ∈ R denote control inputs, while g1 (x) and
g2 (x) ∈ R3 are basic vector fields given by

g1(x) := [g11(x) 0 0]
⊤

, g2(x) :=
[
g21(x) g∗2

⊤(x)
]⊤

, (2)

with g∗2(x) := [g22(x) g23(x)]⊤ ∈ R2 and g(·)(x) ∈ R being
real-valued functions. It is assumed that these vector fields
satisfy the following properties:

A1: ∀x ∈ X ‖g1(x (t))‖ , ‖g2(x (t))‖ < ∞, where ‖·‖ de-
notes Euclidean norm of a vector,

A2: ∀x ∈ X g2 (x) ∈ Cκ with κ = 1, 2, . . ., where Ck

stands for a space of continuous functions up to the kth

derivative inclusive,
A3: ∀x ∈ X |g11(x)|, ‖g∗2(x)‖ > M1 > 0,where M1 is a

small positive constant,

A4: ∀x ∈ X ∂g∗2
∂x1

6= 0,

A5: The following algebraic equation

arg
(
g∗2(x0)

)
− arg (g∗2(0)) = 0, (3)

where x0 := [x1 0 0]
⊤ ∈ X and arg (·) denotes operator

defined in Appendix by Eq. (78), is satisfied for unique
value of x1 = 0 in the neighborhood of zero.

Assumptions A1 and A2 are needed to ensure that the
system and derivative of g2 are well defined ∀x ∈ X , while
assumptions A3 and A4 can be interpreted as necessary con-
ditions for system Σ to be controllable. The last property, A5,
comes from the requirement of solution uniqueness and it is
explained more carefully in Sec. 4.

3. Discontinuous transformation

Taking advantage of the particular form of the vector field g1

one can easily decompose the system Σ into the following
two subsystems:

Σ1 : ẋ1 = g11 (x)u1 + g21 (x)u2, (4)

Σ2 : ẋ∗ = g∗2 (x)u2, (5)

where x∗ := [x2 x3]
⊤. Next, using polar representation de-

scribed in Appendix, one can chose

ρα := ‖x∗‖ (6)

and
α := argx∗ (7)

as the new state variables instead of x2 and x3. Taking time
derivative of (6), (7) and using (5) the following dynamics
can be derived

ρ̇α = ρβ cos (β − α)u2, (8)

and
α̇ =

ρβ

ρα

sin (β − α) u2, (9)

where
ρβ := ‖g∗2(x)‖ (10)

and
β := arg (g∗2(x)) ∈ Ω (11)

is the third transformed state. Considering time evolution of
β and referring to general result given in Appendix by Eq.
(79) one has

β̇ =
1

ρβ

ψ⊤ (β)Jġ∗2(x) =
1

ρβ

ψ⊤ (β)J
∂g∗2(x)

∂x
ẋ, (12)

where ψ (·) and J are defined in Appendix by Eqs. (75) and
(80), respectively. Expanding the last term of Eq. (12) as

∂g∗2(x)

∂x
ẋ =

∂g∗2(x)

∂x1
ẋ1 +

∂g∗2(x)

∂x∗
ẋ∗

and using relationships (4)-(5) one obtains

β̇ = h1 (g11(x)u1 + g21(x)u2) + h2u2

= h1g11(x)u1 + (h2 + h1g21(x))u2,
(13)

where

h1 :=
1

ρβ

ψ⊤ (β)J
∂g∗2(x)

∂x1
, (14)

h2 := ψ⊤ (β)J
∂g∗2(x)

∂x∗

g∗2(x)

ρβ

= ψ⊤ (β)J
∂g∗2(x)

∂x∗
ψ (β)

(15)
are auxiliary bounded functions for x ∈ X (it is guaranteed
by assumptions A1, A2 and A3).

Summarizing, applying change of coordinates given by
(6), (7) and (11) and taking into account the definition of the
system Σ yields in the following discontinuous system Σd:

Σd
1 : ρ̇α = ρβ cos(β − α)u2, (16)

Σd
2 : α̇ =

ρβ

ρα

sin(β − α)u2, (17)

Σd
3 : β̇ = h1g11(x)u1 + (h2 + h1g21(x)) u2. (18)

From (17) it can be seen that system Σd is intrinsically sin-
gular at ρα = 0 as a result of singularity of the polar rep-
resentation at zero (in that case value of angle α cannot be
longer determined). However, for ρα > 0 the system becomes
well-defined if assumptions A1, A2, A3 and A4 are satisfied.

4. Controller design

4.1. Control problem formulation. Now we formally define
the control convergence problem investigated in this paper.

Problem 1 [Convergence problem]. Assuming that x (0) ∈
X find bounded controls u1 and u2 such that for t > 0 tra-
jectory x (t) ∈ X uniformly converges to zero, namely

lim
t→∞

x (t) = 0. (19)

This problem is solved taking advantage of system Σd

which is discontinuous at the origin. As a result we refer to
the properties of polar representation given by (6), (7) and
(11). It is clear that map ρα : R

2 → R is a surjection which
preserves the origin, namely

(ρα = 0) ⇒ (x∗ = 0) . (20)
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a) b) c)

Fig. 1. Illustration of sets Ω and Ω′. Case A: Ω = (−π, π], Case B: β ⊖ β < π, Case C: β ⊖ β ≥ π

Moreover, for ρα ≡ 0 the following definition is consid-
ered: β0 := arg (g∗2(0)). Then taking into account the as-
sumption A5 at the neighborhood of zero (in order to guar-
antee uniqueness of the solution) implies that

(β = β0) ⇒ (x1 = 0) . (21)

Hence, taking advantage of implications (20) and (21) the
original control problem can be redefined with respect to the
discontinuous system Σd as follows:

lim
t→∞

ρα(t) = 0, lim
t→∞

β(t) = β0. (22)

Comparing evolution of α and β one should be aware
that Ω is a simply connected subset of (−π, π]. To be more
precisely, we define the following open set

Ω :=
{
β : β < β < β

}
(23)

with β < β being parameters defining boundary of the set.
Additionally, the following auxiliary set is introduced

Ω′ :=
{
β : β ⊕ π < β < β ⊕ π

}
− Ω ⊂ (−π, π] , (24)

where ⊕ is the modulo operator described in Appendix. Con-
sequently, one can take into account three particular cases that
are illustrated in Fig. 1.

To facilitate the design of the controller we introduce two
control subtasks described as follows.

1. Find bounded control input u2 such that
ρα (t) , ρ̇α (t) , α̇ (t) ∈ L∞, where L∞ stands for a
space of scalar functions of time f (t) ∈ R such that
supt |f (t)| < ∞, with |·| denoting absolute value of scalar
function f (t),

2. Assuming that α (0) ∈ Ω ∪ Ω′ find bounded control input
u1 such that

lim
t→∞

sin (β(t) − α(t)) = 0, (25)

and for limt→∞ ρα (t) = 0

lim
t→∞

β(t) = β0. (26)

4.2. Control solution. The well-known Brockett’s theory [1]
which investigates the necessary conditions for asymptotic sta-
bilization using static state feedback is formulated with respect
to continuous control systems. Since Σd at the origin is not
continuous Brockett’s theory is not applicable anymore. As

a result it is possible to use classic feedback to make an er-
ror trajectory convergent to the desired point. The algorithm
formulated in this paper is strongly based on this property.

Proposition 1 (First control task). The continuous control
law written as

u2 := −k2ρ
−1
β cosm(β − α) · ρα, (27)

where k2 > 0 and m := 2k + 1 with k = 0, 1, 2, . . . makes
system Σd

1 stable.

Proof 1. Let us define Lyapunov function candidate as V1 :=
1

2
ρ2

α. Applying control (27) to system Σd
1 (16) gives the fol-

lowing closed-loop dynamics

ρ̇α = −k2ρα cosm+1 (β − α) . (28)

Next, calculating time derivative of V1 and using (28) yields
in

V̇1 = ραρ̇α = −k2 cosm+1(β − α) · ρ2
α ≤ 0. (29)

Since V̇1 is semi-negative definite ∀t > 0, V1 (t) ≤ V1 (0) and
∀t > 0, ρα (t) ≤ ρα (0) thus ρα (t) ∈ L∞.

Now we investigate boundedness of the control signals.
From ρα (t) ∈ L∞ and ρβ > 0 (it follows from assumption
A3) and Eq. (27) implies that u2 (t) ∈ L∞. Using (27) in (17)
allows one to consider the following closed-loop dynamics

α̇ = −k2 sin (β − α) cosm (β − α) . (30)

Equation (30) implies that α̇ (t) ∈ L∞. Taking into account
that ρα ∈ L∞ it can be concluded from (28) that ρ̇α (t) ∈ L∞.

Proposition 2 (Second control task). Suppose that there ex-
ists a function γ : Ω ∪ Ω′ × Ω → R having the following
properties for any α ∈ Ω ∪ Ω′ and β ∈ Ω:

A6: γ(α, β) = 0 ⇒
{

α = β for α ∈ Ω

α = β ⊕ π for α ∈ Ω′
,

A7:

∣∣∣∣
∂γ(α, β)

∂α

∣∣∣∣ > M2 > 0,

∣∣∣∣
∂γ(α, β)

∂β

∣∣∣∣ > M3 > 0,

A8:

∣∣∣∣
sin(β (t) − α (t))

γ(α (t) , β (t))

∣∣∣∣ < ∞, limγ→0

∣∣∣∣
sin(β − α)

γ(α, β)

∣∣∣∣ >

M4 > 0,
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A9:

∣∣∣∣
∂γ(α, β)

∂α

∣∣∣∣ ,
∣∣∣∣
∂γ(α, β)

∂β

∣∣∣∣ < ∞,

A10:

∣∣∣∣
∂2γ(α, β)

∂α2

∣∣∣∣ ,
∣∣∣∣
∂2γ(α, β)

∂α∂β

∣∣∣∣ ,
∣∣∣∣
∂2γ(α, β)

∂β2

∣∣∣∣ < ∞,

A11: for Ω ⊂ (−π, π] and α ∈ ∂Ω γ (α, β) = ∞, where ∂Ω
denotes boundary of the set Ω.

Assuming that ρα (0) > 0 and α (0) ∈ Ω∪Ω′ control law
u1 (t) given by

u1 :=
1

h1g11

(
∂γ(α, β)

∂β

)−1

·
(
−k1γ(α, β) + k2 sin(β − α) cosm(β − α)

∂γ(α, β)

∂α

+
k2

c

sin(β − α)

γ(α, β)
γ(α, β0)

∂γ(α, β0)

∂α
cosm(β − α)

)

+
1

h1g11
(h2 + h1g21)k2

ρα

ρβ

cosm(β − α),

(31)

where k1, c > 0 are design parameters, applied to system Σd

ensures the boundedness of the control signals and conver-
gence (locally exponential convergence) of α and β according
to relationships (25) and (26).

Proof 2. Let

V2 :=
1

2
cγ2(α, β) +

1

2
γ2(α, β0) (32)

be a Lyapunov-like function candidate. Taking the time deriv-
ative of (32) one can obtain

V̇2 = cγ(α, β)

(
∂γ(α, β)

∂α
α̇ +

∂γ(α, β)

∂β
β̇

)

+γ(α, β0)
∂γ(α, β0)

∂α
α̇.

(33)

Next, substituting the control signals u1 and u2 given by (31)
and (27) into (18) gives

β̇ = (−k1γ(α, β) + k2 sin(β − α) cosm(β − α)

· ∂γ(α, β)

∂α
+

k2

c

sin(β − α)

γ(α, β)
γ(α, β0)

· ∂γ(α, β0)

∂α
cosm(β − α)

)(
∂γ(α, β)

∂β

)−1

.

(34)

Using (30) and (34) in (33) yields in

V̇2 = −ck1γ
2(α, β). (35)

Taking into account (35) it is clear that V̇2 is negative semi-
definite, hence V2 (t) ∈ L∞. As a result one has

γ(α (t) , β (t)) ∈ L∞. (36)

Referring to assumption A11 implies that α ∈ Ω∪Ω′, name-
ly α cannot escape from the set Ω or Ω′ during convergence
process (in opposite case γ(α, β) would become unbound-
ed and it is a contradiction). It implies that (α (0) ∈ Ω) ⇒
(∀t > 0 α (t) ∈ Ω) or (α (0) ∈ Ω′) ⇒ (∀t > 0 α (t) ∈ Ω′).

In order to show that γ asymptotically converges to ze-
ro uniformly boundedness of V̇2 has to be verified. The time
derivative of V̇2 is calculated as follows

V̈2 = −2ck1γ(α, β)

(
∂γ(α, β)

∂α
α̇ +

∂γ(α, β)

∂β
β̇

)
. (37)

The boundedness of α̇ was shown in the proof of the Propo-
sition 1. Considering result (36), assumptions A8 and A9 it
can be concluded from (34) that β̇ (t) ∈ L∞. Consequently
it can be shown that V̈2 is bounded which implies that V̇2 is
uniformly bounded. Referring to the Barbalat’s lemma [19]
one can write that

lim
t→∞

γ (α(t), β(t)) = 0. (38)

Then, taking into account assumption A8 it implies that rela-
tionship (25) is satisfied.

The boundedness of control input u1 can be proved based
on (31). Considering that ρβ > 0, using assumption A1
(ρβ (t) ∈ L∞) and noticing that h1 (t) , h2 (t) ∈ L∞ gives
directly that u1 (t) ∈ L∞.

Next we investigate the limit of β̇ utilizing the Barbalat’s
lemma once again. In order to simplify the calculations Eq.
(34) is rewritten using (28) as follows

β̇ =

(
−k1γ(α, β)−α̇

∂γ (α, β)

∂α
− α̇

c

γ (α, β0)

γ(α, β)

∂γ(α, β0)

∂α

)

·
(

∂γ(α, β)

∂β

)−1

.

(39)

Then calculating second order time derivative of β one has

β̈ =

(
−k1γ(α, β)

(
∂γ(α, β)

∂α
α̇ +

∂γ(α, β)

∂β
β̇

)

−α̈
∂γ(α, β)

∂α
− α̇

(
∂2γ(α, β)

∂α2
α̇ +

∂2γ(α, β)

∂α∂β
β̇

)

− α̈

c

γ(α, β0)

γ(α, β)

∂γ(α, β0)

∂α
− α̇

cγ(α, β)

∂γ(α, β0)

∂α

·
(

∂γ(α, β0)

∂α
α̇ −

(
∂γ(α, β)

∂α
α̇ +

∂γ(α, β)

∂β
β̇

)
γ(α, β0)

γ(α, β)

)

− α̇

c

γ(α, β0)

γ(α, β)

∂2γ(α, β0)

∂α2
α̇

)(
∂γ(α, β)

∂β

)−1

−
(

∂2γ(α, β)

∂α∂β
α̇ +

∂2γ(α, β)

∂2β
β̇

)

·
(

k1γ(α, β) +
∂γ(α, β)

∂α
α̇ +

α̇

c

γ(α, β0)

γ(α, β)

∂γ(α, β0)

∂α

)

·
(

∂γ(α, β)

∂β

)−2

.

(40)
Now we consider the boundedness of each term of Eq. (40).
Taking the time derivative of α̇ leads to

α̈ = k2(β̇ − α̇)
(
− cosm+1(β − α)

+m sin2(β − α) cosm−1(β − α)
)
.

(41)

Since α̇, β̇ ∈ L∞ one can easily show that α̈ (t) ∈ L∞.
Next, taking into account (30), (41) and utilizing assumption
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A8 it can be proved that the terms α̇/γ(α, β) and α̈/γ(α, β)
remain bounded. Noticing that norm of the first and second

order derivatives of γ are bounded and
∂γ

∂β
6= 0 (cf. assump-

tions A7, A9 and A10) it can be proved that each term in
Eq. (40) is bounded. As a consequence one has β̈ (t) ∈ L∞.
Considering that β̇ is uniformly bounded and

∣∣∣∣∣∣

∞∫

0

β̇ (t) dt

∣∣∣∣∣∣
=
∣∣∣ lim
t→∞

β(t) − β(0)
∣∣∣ < ∞

from the Barballat’s lemma it follows that

lim
t→∞

β̇ (t) = 0. (42)

Using (42) in (34) one has

lim
t→∞

(
−k1γ(α(t), β(t))+k2 sin(β(t)−α(t)) cosm(β(t)

−α(t))
∂γ(α(t), β(t))

∂α(t)
+

k2

c

sin(β(t) − α(t))

γ(α(t), β(t))

·γ(α(t), β0)
∂γ(α(t), β0)

∂α(t)
cosm(β(t) − α(t))

)

·
(

∂γ (α, β)

∂β

)−1

= 0.

(43)

Taking advantage of (38), (25) and assumption A7
one can prove that the only solution of Eq. (43) is
limt→∞ γ (α (t) , β0) = 0. Since limt→∞ γ (α(t), β(t)) =
γ (α, β0) = 0 utilizing assumption A6 one can conclude that
relationship (26) is satisfied.

Asymptotic convergence proved here does not give any
insight on the convergence rate. In order to describe the con-
troller performance locally one can consider linear approxi-
mation of the closed loop dynamics (30) and (34) in some
neighborhood of the desired point. Without lack of generality
it is assumed that α, β ∈ Ω which in view of (25) and (26)
implies that α and β converges to β0. Referring to calcula-
tions given in Appendix and relationships (82) and (93) the
following linear approximation near point such that α = β0

and β = β0 can be taken into account:
[

˙̃α
˙̃
β

]
=

[
k2 −k2

k1 + k2

(
1 + 1

c

)
−k1 − k2

]

︸ ︷︷ ︸
=:H

[
α̃

β̃

]
. (44)

It can be easily found that matrixH is Hurwitz-stable for any
k1, k2 and c > 0. As a result local convergence is exponential.
Moreover, calculating the characteristic polynomial of matrix
H gives

λ2 + k1λ +
k2
2

c
= 0, (45)

where λ ∈ C is a complex variable. Next, taking into account
the characteristic equation of second order linear system it
follows that

ω0 =
k2√

c
, ζ =

k1
√

c

2k2
, (46)

where ω0 and ζ denote frequency of undamped oscillation
and damping coefficient, respectively. This result gives possi-
bility to tune the algorithm (by selection of gains k1, k2 and
parameter c) in order to obtain local desired behavior of the
closed-loop dynamics.

Now we formulate the following final proposition.

Proposition 3 (First and second control tasks). Assuming
that x (0) ∈ X and applying control law defined by Eqs. (31)
and (27) to system Σ makes trajectory x (t) asymptotically
converge to zero, namely

lim
t→∞

x (t) = 0. (47)

Proof 3. Here we rely on proofs of the Propositions 1
and 2. The convergence result given by (38) implies that
limt→∞ |cos(β (t) − α (t))| = 1. Hence, there exists such
time instant τ > 0 that ∀t > τ cos(β (t) − α (t)) 6= 0. Then
one can state that ∀t > τ, ∀ρα (t) > 0, V̇1 < 0. Therefore
for t > τ function V̇1 becomes a negative definite quadrat-
ic form and ρα asymptotically converges to zero, namely
limt→∞ ρα (t) = 0. Summarizing, since ρα and β asymp-
totically tend to unique constant values, namely ρα → 0,
β → β0, from the properties of polar representation in view
of discussion given in section 4.1 relationship (47) is proved.

Referring to the controller design it is important to empha-
size that convergence problem is solved only locally, assuming
that initial state x(0) ∈ X and the following properties are
satisfied:

ρα (0) > 0 and α (0) ∈ Ω ∪ Ω′. (48)

It turns out that feasible set X is strictly related to properties
of vector field g2 of system Σ which determines the set Ω.
Therefore if x(0) /∈ X one should first bring x to feasible
set X using for example any open-loop control strategy. This
problem is not discussed in this paper and it is assumed that
x(0) ∈ X .

The controller proposed here does not ensure stabiliza-
tion since it is well defined only for ρα > 0. At x∗ = 0 the
control law becomes singular that is a clear drawback of the
proposed non-smooth map. Theoretically for x∗ (0) 6= 0 such
that x(0) ∈ X singular point is not achieved in finite time.
However, in practice, this problem can be always met. This
issue becomes even more critical if uncertainty of state deter-
mination is taken into account. In order to improve robustness
of the given controller requirement of asymptotic convergence
can be relaxed. Here we use simple solution based on switch-
ing technique.

Proposition 4 (Robust algorithm). Assuming that ρα ≥ ǫ,
where ǫ is arbitrary chosen constant use control solution giv-
en in Proposition 4.2. For ρα ≤ ǫ redefine control inputs as
follows

u1 := − k1

g11
x1, u2 := 0. (49)

Then trajectory x converges to the neighborhood of zero in
the sense given by

lim
t→∞

‖x∗ (t)‖ ≤ ǫ, (50)
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lim
t→∞

x1 (t) = 0. (51)

Proof 4. Assuming that ρα ≥ ǫ the algorithm defined by
Proposition 3 implies that ρα converges to the given neigh-
borhood of zero. Next, inside the neighborhood, namely for
ρα < ǫ, the applied control input becomes u2 := 0. Conse-
quently it implies that ρ̇α = 0 and ρα cannot go out from the
neighborhood. Then the closed-loop dynamics of system Σ1

becomes: ẋ1 = −k1x1 and it is clear that for any k1 > 0 the
system is asymptotically (exponentially) stable and trajectory
x1(t) satisfies (51).

In order to increase robustness of the controller even more
and to avoid chattering phenomena instead of simple switch-
ing one may take advantage of hysteresis. The other possibil-
ity is to define the feedback control law u2 also for ρα < ǫ.
This solution has been effectively used in [20] for particular
examples of control systems.

5. Examples of applications

In this section we illustrate the derived theory applying it to
control systems given by

ΣA : ξ̇ =




1

0

0


 u1 +




0

1

ξ1


u2 (52)

and

ΣB : ξ̇ =



1

0

0


 u1 +




0

1

ξ2
1


u2, (53)

where ξ := [ξ1 ξ2 ξ3]
⊤ ∈ R3. We assume that ξd :=

[ξd1 ξd2 ξd3]
⊤ ∈ R

3 denotes the desired state. Referring to
general form given by Eq. (1) the following term

x := ξ − ξd (54)

is considered as the state (configuration) error.

5.1. System A. System ΣA is commonly known as the first
order chained system [9]. Taking advantage of the coordi-
nate and input transformations some nonholonomic mechan-
ical systems such as unicycle, hoping robot and three link
manipulator with nonholonomic gears can be transformed to
it [9, 12, 20].

It can be verified that the system satisfies LARC (Lie Al-
gebra Rank Condition) [9] at any point ξ ∈ R3, hence it
is globally small-time controllable. It is worth to notice that
LARC is ensured taking into account two layers of the control
Lie algebra (including the first order Lie bracket).

Taking advantage of the change of coordinates given by
(54) and referring to notation used in Eq. (1) the vector fields
become

g1 := [1 0 0]
⊤

and g2 := [0 1 (x1 + ξd1)]
⊤

. (55)

One can easily verify that for these vector fields assumptions
A1-A4 are satisfied. Next, using the polar transformation one

can obtain the discontinuous system Σd defined by Eqs. (16)-
(18) with:

β = arctan (x1 + ξd1) ,

ρβ =

√
1 + (x1 + ξd1)

2
= cos−1(β)

(56)

and

h1 =
1

ρβ

[cosβ sin β]J

[
0

1

]
=

1

ρβ

cosβ = cos2 β, (57)

h2 = 0. (58)

The set Ω defined by Eq. (23) is given by:

Ω :=
(
−π

2
,
π

2

)
. (59)

Consequently it follows that Ω ∪ Ω′ = (−π, π] −
{
−π

2
,
π

2

}
.

From assumption A5 one has argg∗2
(
x0
)

= β(x1) =
arctan (x1 + ξd1). Then the following equation has to be con-
sidered:

arctan (x1 + ξd1) − β0 = 0 (60)

with β0 := arctan ξd1. The only solution of Eq. (60) is
x1 = 0.

In order to design the controller it is important to select
function γ properly to meet assumptions A8-A12. Here we
assume that

γ(α, β) := tanβ − tanα =
sin(β − α)

cosα cosβ
. (61)

It can be verified that conditions A8-A12 are satisfied for
α ∈ Ω ∪ Ω′ and β ∈ Ω.

Referring to the control law given by Eqs. (31) and (27)
and considering Eqs. (57), (58) one can calculate

u1 = −k1γ(α, β) − k2
cosm(β − α)

cos2 α

·
(

sin(β − α) +
1

c
cosα cosβγ (α, β0)

)
,

(62)

u2 = −k2 cosβ cosm(β − α) · ρα. (63)

It is important to note that initial conditions such that

x2 (0) = 0 is excluded since it implies that α (0) = ±π

2
/∈

Ω ∪ Ω′.

5.2. System B. System ΣB can be seen as some variation of
the first order chained system. However, its structural prop-
erties makes the control problem to be more demanding. In
particular, nonholonomy degree of this system is not constant
[21]. It can be checked that the LARC condition is satisfied at
any point ξ ∈ R3 different from zero taking into account two
layers of the vector fields generated by the control Lie algebra.
However, at ξ = 0, in order to satisfy the LARC condition,
the second order Lie bracket must be taken into account.

Using translation of coordinates given by (54) the vector
fields of system ΣB becomes (cf. definition 1)

g1 := [1 0 0]
⊤

and g2 :=
[
0 1 (x1 + ξd1)

2
]⊤

. (64)
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It is easy to verify that these vector fields satisfy assumptions
A1-A4. Taking advantage of the polar transformation one can
obtain the discontinuous system Σd (see Eqs. (16)-(18) with

β = arctan (x1 + ξd1)
2
,

ρβ =

√
1 + (x1 + ξd1)

4
= cos−1 β

(65)

and

h1 =
1

ρβ

[cosβ sinβ]J

[
0

2 (x1 + ξd1)

]
= 2 cos2 β

√
tan β

(66)
h2 = 0. (67)

The set Ω (see Eq. 23) is defined by

Ω :=
(
0,

π

2

)
. (68)

As a result one has Ω ∪ Ω′ =
(
−π,−π

2

)
∪
(
0,

π

2

)
. Taking

into account assumption A5 one has arg g∗2
(
x0
)

= β(x1) =

arctan (x1 + ξd1)
2. Then the following equation can be con-

sidered
arctan (x1 + ξd1)

2 − β0 = 0 (69)

with β0 := arctan ξ2
d1. Equation (69) is satisfied for x1 ∈

{0,−2ξd} which implies that the solution is not unique. We
investigate this problem in sequel. From definition (68) one
has conclude that β ∈ Ω ⇔ ∀t ≥ 0 (x1(t) + ξd1) 6= 0. In
order to meet this requirement initial value of x1 (0) has to
satisfy the following relationship

sgn (x1(0) + ξd1) = sgnξd1, (70)

where sgn (·) stands for the signum function. Then, it can be
shown that x1 satisfying (70) cannot achieve the value −2ξd1

since it implies that x1 (t) + ξd1 would become zero at some
time instant that leads to a contradiction.

In order to design the controller it is important to select
the function γ to meet assumptions A8-A12. Here we assume
that

γ(α, β) := cot(2β) − cot(2α)

= −2
sin (β − α) cos (β − α)

sin 2β sin 2α
.

(71)

It can be verified that it satisfies assumptions A8-A12.
Referring to control law given by Eqs. (31) and (27) in the

considered case and using Eqs. (66) and (67) one can write

u1 = − sin2 β√
tanβ

(−k1γ (α, β)

+2k2
sin (β − α) cosm (β − α)

sin2 2α

(
1+

1

c

γ (α, β0)

γ (α, β)

))
,

(72)

u2 = −k2 cosβ cosm(β − α) · ρα. (73)

Taking into account relationship (72) one can notice that ini-
tial error x(0) is significantly restricted. In particular the
control signal u1 is not defined for tan β < 0, β = 0 and
β 6= ±π/2 as well as sin 2α = 0.

5.3. Simulation results. In order to verify the proposed con-
trol law extensive simulations in Matlab/Simulink environ-
ment have been conducted with respect to systems ΣA and
ΣB . To facilitate the description simulation experiments for
systems A and B are denoted by Sim A and Sim B, respec-
tively.

For the first series of simulation experiments the controller
parameters (cf. Eqs. (62), (63), (72) and (73)) have been se-
lected as follows: k1 = 3, k2 = 1, m = 3 and c = 0.5 while
the desired configuration has been set as ξd = [3 2 4]

⊤. The
initial conditions have been chosen according to the following
list:

• Sim A1 and B1: ξ(0) = [1 4 6]
⊤,

• Sim A2 and B2: ξ(0) = [1 − 1 2]⊤.

Consequently, it can be easily verified that for Sim A1 and B1
α (0) ∈ Ω, while for Sim A2 and B2 α (0) ∈ Ω′. Moreover,
it can be shown that ξ1 (0) satisfies the requirement given by
(69) with respect to system ΣB .

The results of experiments Sim A1 and Sim B1 are illus-
trated in Figs. 2 and 3, respectively. Taking into account Figs.
2a, 2b, 3a and 3b one can observe that errors converge to ze-
ro asymptotically and trajectory ξ (t) approaches the desired
point ξd (the solution is unique). The control inputs presented
in Figs. 2c and 3c remain bounded and converge to zero. It
is worth to point out that the control signals do not show os-
cillatory behavior. Based on Figs. 2d and 3d one can observe
that the functions α(t) and β(t) for t ≥ 0 are in the set Ω
and converge to the unique point given by β0 ∈ Ω.

The results of simulations Sim A2 and B2 are presented
in Figs. 4 and 5. In general, the description of these results
correspond to the previous case, namely errors converge to
zero asymptotically and the control problem is designed cor-
rectly. The main difference is related to the evolution of the
functions α(t) and β(t). From Figs. 4d and 5d it can be
seen that for t ≥ 0 α(t) ∈ Ω′ while β(t) ∈ Ω which im-
plies that α(t) and β(t) converge to the different points such
that limt→∞ (α(t) ⊖ β(t)) = ±π. This observation clearly
corresponds to the theoretical considerations. A graphic in-
terpretation of the paths in the configuration space for Sim
A1, A2, B1 and B2 is given in Fig. 6. It can be seen that for
the selected parameters no oscillatory behavior is observed
independent on the initial conditions and the curvature of the
paths is clearly bounded.

Next we consider the controller performance with respect
to the change of parameters m and c.

The conditions of simulation Sim A3 are the same as for
Sim A1, however the parameter m has been changed to m = 1
or m = 9. From Figs. 7 and 8 it can be seen that for the high-
er value of m the convergence time increases slightly but the
parameter does not influence the transient states considerably.
As a result value of m is not critical (typically m = 1). How-
ever, analyzing the path given in Fig. 11a one can say that for
higher m the path becomes more smooth (in the sense that
the curvature becomes less).
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a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Errors: x1 (–), x2 (-.), x3 (- -)
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Fig. 2. Results of simulation Sim A1

a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Errors: x1 (–), x2 (-.), x3 (- -)
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Fig. 3. Results of simulation Sim B1
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a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Errors: x1 (–), x2 (-.), x3 (- -)
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Fig. 4. Results of simulation Sim A2

a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Errors: x1 (–), x2 (-.), x3 (- -)
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Fig. 5. Results of simulation Sim B2
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a) Sim A1 (black line) and A2 (gray line) b) Sim B1 (black line) and B2 (gray line)
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Fig. 6. Path ξ in the coordinate space for simulations Sim A1, A2, B1 and B2: ′
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′ – initial point, ′
◦
′ – desired point

a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Angles: α (–), β (-.)
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Fig. 7. Results of simulation Sim A3 for m = 1

a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Angles: α (–), β (-.)
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Fig. 8. Results of simulation Sim A3 for m = 9

The conditions of simulation Sim B3 correspond to the
ones used in the simulation Sim B1. The results of simula-
tions are illustrated for c = 0.05 and c = 1 in Figs. 9 and

10, respectively. Referring to relationship (46) it can be easily
found that for c = 0.05 and given gains k1 and k2 highly
oscillatory behavior appears (at least locally). It can be ob-
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served in Fig. 9 that errors converge to zero in an oscillatory
manner. Considering Fig. 9c a significant increase of the con-
trol input is presented at about 5th sec. when β becomes near

π/2 (i.e. near ∂Ω) as a result of an overshoot – cf. Fig. 9d. In
spite of it the control inputs are bounded during the converge
stage.

a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Errors: x1 (–), x2 (-.), x3 (- -)
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Fig. 9. Results of simulation Sim B3 for c = 0.05

a) Coordinates: ξ1 (–), ξ2 (-.), ξ3 (- -) b) Errors: x1 (–), x2 (-.), x3 (- -)
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Fig. 10. Results of simulation Sim B3 for c = 2
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a) Sim A3: gray line – m = 1, black line – m = 9 b) Sim B3: ξ1 (–), ξ2 (-.), ξ3 (- -)
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Fig. 11. Path ξ in the coordinate space for simulations Sim A3 and B3

a) Errors: x1 (–), x2 (-.), x3 (- -) b) Angles: α (–), β (-.)
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Fig. 12. Results of simulation Sim B1 for longer time horizon (original version of the algorithm)

a) Errors: x1 (–), x2 (-.), x3 (- -) b) Angles: α (–), β (-.)

0 10 20 30 40 50 60

1e−6

1e−4

1e−2

1

|x
1
|,|

x
2
|,|

x
3
|

time [s]

0 10 20 30 40 50 60
0

0.5

1

1.5

α
,β

[r
ad

]

time [s]

Fig. 13. Results of simulation Sim B1 for longer time horizon (hybrid version of the algorithm)

For higher value of parameter c, namely for c = 1, no
overshoot and no oscillatory behavior can be recorded – cf.
Fig. 10. However, for given k1 and k2 the convergence time
is increased as a result of higher damping coefficient ζ calcu-
lated for the linear approximation of the closed-loop system.
Therefore it can be concluded that by increasing the coef-

ficient c the convergent rate of error x1 becomes worse in
comparison with the convergent rate of errors x2 and x3. The
curves presented in Fig. 11a confirm conclusions formulat-
ed regarding the oscillatory behavior of the closed-loop sys-
tem, namely for c = 0.05 the curvature of the path changes
significantly (it is especially visible at the neighborhood of
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the desired point) while for c = 1 the path curvature is re-
duced.

In the last simulation robustness of the algorithm with re-
spect to numerical representation and its accuracy have been
examined. The conditions of the simulation correspond to
ones used for Sim B1, however time horizon has been ex-
tended to 60 s. According to results illustrated in Figs. 12a
and 12b high sensitivity of the controller is observed. Name-
ly, when ρ approaches zero calculation of angle α based on
relationship (7) becomes difficult since limitation of numerical
representation in Matlab (double precision is used) appears.
Hence, for t > 18 s destabilization effect is clearly visible
which confirms that the closed loop-system is not stable.

The modification of the algorithm based on introduction
of the dead zone given in the Proposition 4 gives possibility
to overcome this singularity problem. In Fig. 13 the results of
simulation assuming ǫ = 0.001 are presented. It can be seen
that in this case the behavior of the algorithm is improved
by using simple hybrid solution. After 10 s the switching can
be recorded and evolution of errors x2 and x3 is terminated,
while x1 tends to zero. In the case of additional disturbance
(for example in the form of a noise which is added to the
coordinates ξ) instead of typical switching one can use hys-
teresis.

6. Conclusions

The algorithm presented in this paper takes advantage of the
non-smooth polar coordinate transformation in order to over-
come the Brockett’s obstruction. By introducing singularity at
the origin the system can be controlled using the static-state
feedback such that the trajectory error converges to the desired
point. The presented solution can be classified as the closed-
loop planning (control) algorithm, however, it does not guar-
antee stability at the desired point. This drawback is clearly a
result of discontinuity. In order to overcome this issue simple
hybrid solution was considered in the paper.

The algorithm proposed in this paper basically extends the
result proposed by Aicardi et al. [15] and it summarizes and
generalizes the idea of the controllers proposed by Pazders-
ki and others [18, 17]. The simulation results presented here
show that the performance of the controller in the terms of
oscilatory behavior and the convergence rate is quite good.
It was shown that it can be effectively used also for more
complicated system with no constant nonholonomy degree,
however, the solution may be limited to specified subset of
the coordinate space. The indirect Lapunov method used here
allows one to obtain the basic principle how to tune the pro-
posed algorithm.

The future work can be devoted to extension of the al-
gorithm to the case of trajectory tracking. Some preliminary
results concerning unicycle-like robot are given in [22]. More-
over, it would be interesting to make quantitatively compar-
ison to similar control method based on vector fields orien-
tation (VFO) introduced by Michałek and Kozłowski [23].
The other problem is related to the extension of the present-
ed method to the system evolving in the higher dimensional

configuration space. The solution to that problem has been
investigated by Aicardi et al. in [24]. Still the open problem
is related to the possibility of adaptation of a polar description
for other systems with nonholonomic constraints, such as car-
like kinematics, vehicles with trailers, higher order chained
systems etc.

Appendix

Polar representation – general framework. Consider vec-
tor ξ := [ξ1 ξ2]

⊤ ∈ R2 with ξ1, ξ2 ∈ R. One can use polar
representation as follows:

ξ := ρϕψ (ϕ) , (74)

where

ψ (ϕ) :=

[
cosϕ

sin ϕ

]
, (75)

ρϕ := ‖ξ‖ ≥ 0, (76)

and

ϕ :=

{
arg ξ ∈ (−π, π] when ρϕ > 0

undetermined when ρϕ = 0
(77)

with
arg ξ := atan2(ξ2, ξ1). (78)

It is important to emphasize that for ‖ξ‖ = 0 function atan2
becomes undetermined and at this point unique value of ϕ
cannot be obtained.

Taking the time derivative of (78) one has

ϕ̇ =
1

ξ2
1 + ξ2

2

(
ξ1ξ̇2 − ξ2ξ̇1

)
=

1

ρ2
ϕ

ξ⊤Jξ̇ =
1

ρϕ

ψ⊤ (ϕ)Jξ̇,

(79)
with

J :=

[
0 1

−1 0

]
(80)

being the skew-symmetric matrix. Assuming that ξ̇ :=
ρδψ (δ), where δ := atan2(ξ̇2, ξ̇1) one obtains

ϕ̇ =
ρδ

ρϕ

ψ⊤ (ϕ)Jψ (δ) =
ρδ

ρϕ

sin (δ − ϕ) , (81)

where ρδ = ‖ξ̇‖ ≥ 0.

Linearization of closed-loop dynamics. We assume that the
closed loop-dynamics given by Eqs. (30) and (34) is con-
sidered at particular point such that β = β0 and α = β0.
Considering Taylor expansion the following variables are de-
fined: α̃ := α−β0 and β̃ := β−β0. The result of linearization
of (30) is clear and it can be written as follows:

˙̃α ≈ −k2

(
β̃ − α̃

)
. (82)

The dynamics described by Eq. (34) is highly nonlinear
and more complicated. Hence, particular terms is considered
separately in order to facilitate the calculations. To simplify
the notation Eq. (34) is rewritten as follows

β̇ = a (α, β)

(
∂γ (α, β)

∂β

)−1

, (83)
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where

a (α, β) = −k1γ(α, β) + k2 sin(β − α) cosm(β − α)
∂γ(α, β)

∂α

+
k2

c

sin(β − α)

γ(α, β)
γ(α, β0)

∂γ(α, β0)

∂α
cosm(β − α).

Considering linear approximation of β̇ the following relation-
ship can be obtained

β̇ ≈
(

∂a (α, β)

∂α
α̃ +

∂a (α, β)

∂β
β̃

)∣∣∣∣α=β0

β=β0

κ−1
β − a (α, β)|α=β0

β=β0

(
∂2γ (α, β)

∂β2
β̃ +

∂2γ (α, β)

∂α∂β
α̃

)

α=β0

β=β0

κ−2
β

=

(
∂a (α, β)

∂α
α̃ +

∂a (α, β)

∂β
β̃

)∣∣∣∣α=β0

β=β0

κ−1
β

(84)

with κβ := ∂γ(α,β)
∂β

∣∣∣α=β0

β=β0

. Taking into account result (84)

it follows that it is sufficient to consider terms of function
a (α, β). The term γ (α, β) can be expanded as follows:

γ (α, β) ≈ γ (β0, β0) + καα̃ + κββ̃ = καα̃ + κββ̃, (85)

where κα := ∂γ(α,β)
∂α

∣∣∣α=β0

β=β0

. Next, considering Taylor linear

approximation of sin (β − α) cosm (β − α) ∂γ(α,β)
∂α

at consid-
ered point one has:

sin (β − α) cosm (β − α)
∂γ (α, β)

∂α
≈

≈ κα (cos (β − α) cosm (β − α)

−m sin2 (β − α) cosm−1 (β − α)
)
∣∣∣∣∣α=β0

β=β0

(
β̃ − α̃

)

+ (sin (β − α) cosm (β − α))

∣∣∣∣∣α=β0

β=β0

(
∂2γ (α, β)

∂α∂β
β̃ +

∂2γ (α, β)

∂α2
α̃

)∣∣∣∣∣α=β0

β=β0

=
(
β̃ − α̃

)
κα.

(86)

Similarly approximation of
sin (β − α) γ (α, β0)

γ (α, β)
can be cal-

culated as follows:

sin (β − α)

γ (α, β)
γ (α, β0) ≈ − Z

γ2 (α, β)

∣∣∣∣∣α=β0

β=β0

α̃

+
cos (β−α) γ (α, β0) γ (α, β)−sin (β−α) γ (α, β0)κβ

γ2 (α, β)

∣∣∣∣∣α=β0

β=β0

· β̃ = (1 − κγκβ) β̃ − α̃
(87)

where
Z = cos (β − α) γ (α, β0) γ (α, β)

+ sin (β − α)
∂γ (α, β0)

∂α
γ (α, β) − sin (β − α) γ (α, β0) κα

with

κγ :=
sin (β − α)

γ (α, β)

∣∣∣∣∣α=β0

β=β0

. (88)

Combining (84), (82), (85) and (87) it follows that

β̇ ≈ − k1

κβ

(
καα̃ + κββ̃

)

+
k2κα

κβ

(
β̃ − α̃

)
+

k2κα

κβc

(
β̃ (1 − κγκβ) − α̃

)

= −κα

κβ

(
k1 + k2 +

k2

c

)
α̃

+

(
−k1 +

k2κα

κβ

(
1 +

1 − κγκβ

c

))
β̃.

(89)

Now we consider definition (88) more thoroughly in order to
find some relationships between κγ , κα and κβ . Assuming
that ∃tf > 0 such that α(tf ) = β0 and β(tf ) = β0 one can
rewrite (89) as follows

κγ := lim
t→tf

sin (β(t) − α(t))

γ (α(t), β(t))
. (90)

Applying de l’Hospital rule yields in

κγ = lim
t→tf

cos (β(t) − α(t))
(
β̇ − α̇

)

∂γ

∂α
α̇ +

∂γ

∂β
β̇

=
β̇(tf ) − α̇(tf )

καα̇(tf ) + κββ̇(tf )
.

(91)

Then in order to find the limit of (91) for any α̇ and β̇ partial
derivatives of γ should satisfy: κα = −κβ . Consequently, it
gives

κγ =
1

κβ

(92)

which allows one to simplify expression (89) as follows

β̇ ≈
(

k1 + k2 +
k2

c

)
α̃ + (−k1 − k2) β̃. (93)

Definition of modulo operators for angle variables. De-
scribing rotation on the plane one can use rotation matrix
R ∈ SE(2) which can be parametrized by angle ϕ ∈ S1.
Hence, a rotation about angle ϕ can be described as follows:

R |ϕ = R (ϕ) =
[

cos ϕ − sin ϕ
sin ϕ cos ϕ

]
. It turns out that every dis-

tinguished rotation on the plane can be realized assuming the
following parametrization of angle: ϕ ∈ (−π, π]. The given
parametrization should be taken into account more thorough-
ly with respect to superposition of rotations. Considering two
rotations about angles ϕ1 ∈ (−π, π] and ϕ2 ∈ (−π, π] one
has: R |ϕ1

R |ϕ2
= R (ϕ) = R (ϕ1 + ϕ2). As a result of

periodicity of sine and cosine functions the resultant angle of
rotation can be specified in the range (−π, π]. However, using
typical algebraic addition or subtraction ϕ1 ± ϕ2 may go out
from the assumed range. Instead of it one can use modulo
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operators ⊕ and ⊖ in order to interpret the results properly.
These operators are defined as follows:

∀ ϕ1, ϕ2 ∈ (−π, π] ϕ1 ⊕ ϕ2 :=





ϕ1 + ϕ2 for ϕ1 + ϕ2 ∈ (−π, π]

ϕ1 + ϕ2 + 2π for ϕ1 + ϕ2 < −π

ϕ1 + ϕ2 − 2π for ϕ1 + ϕ2 > π

(94)

and

∀ ϕ1, ϕ2 ∈ (−π, π] ϕ1 ⊖ ϕ2 :=





ϕ1 − ϕ2 for ϕ1 − ϕ2 ∈ (−π, π]

ϕ1 − ϕ2 + 2π for ϕ1 − ϕ2 < −π

ϕ1 − ϕ2 − 2π for ϕ1 − ϕ2 > π

.
(95)
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