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Position weight matrix model as a tool
for the study of regulatory elements distribution

across the DNA sequence

ROMAN JAKSIK and JOANNA RZESZOWSKA-WOLNY

Ab initio methods of DNA regulatory sequence region prediction knownas transcription
factor binding sites (TFBS) are a very big challenge to modern bioinformatics. Although the
currently available methods are not perfect they are fairlyreliable and can be used to search for
new potential protein-DNA interaction sites. The biggest problem ofab initio approaches is the
very high false positive rate of predicted sites which results mainly from the fact that TFBS are
very short and highly degenerate. Because of that they can occur by chance every few hundred
bases making the task of computational prediction extremely difficult if one aims to reduce the
high false positive rate keeping highest possible sensitivity to predict biologically meaningful
sequence regions. In this work we present a new application that can be used to predict TFBS
regions in very large datasets based on position weight matrix models (PWM’s) using one of
the most popular prediction methods.

The presented application was used to predict the concentration of TFBS in a set of nearly
2.2 thousand unique sequences of human gene promoter regions. The study revealed that the
concentration of TFBS further than 1kbp from the transcription initiation site is constant but it
decreases rapidly while getting closer to the transcription initiation site. The decreasing TFBS
concentration in the vicinity of genes might result from evolutionary selection which keeps only
sites responsible for interactions with proteins being part of a specific regulatory mechanism
leading to cells survival.
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1. Introduction

Since the beginning of the Human Genome Project, which goal aimed to character-
ize the entire sequence of human DNA, the amount of methods used for pattern recog-
nition and prediction of functional DNA sequence elements grew rapidly. DNA stores
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an enormous amount of information used in the development and functioning of an en-
tire organism. It works as a database of schematics needed tocreate proteins and ways
of regulating their concentration in living cells. The sizeof such database ranges from
hundreds of thousands nucleotides in bacteria to even hundreds of billions in vertebrates
[1].

The exact knowledge about structure and role of each DNA fragment can bring huge
benefits in many fields of science, but although the DNA structure was discovered nearly
60 years ago and 99% of human DNA sequence is known since the year 2003 our knowl-
edge about its structure is still sparse.

One of the most interesting aspects of the genome is the self regulating process of
transcription which copies the information stored in a specific DNA fragment known as
gene to RNA molecule used in protein production process. Control of the gene expres-
sion processes involves highly sophisticated combinatorial interactions between proteins
known as transcription factors and regulatory sequences inthe genome represented by a
specific combination of nucleotides. Transcription factors (TF’s) are proteins, which by
binding to specific DNA sequences control the transcriptionof adjacent genes [2], [3].
This function can be performed alone or in a complex with other proteins, by promoting
or blocking the recruitment of RNA polymerase to specific genes [4]-[6].

Transcription factors are critical for the transcription process making sure that all of
the genes maintain appropriate expression level dependingon the changing requirements
of the organism. They are found in all living organisms and the number of them increases
with genome size - larger genomes tend to have more transcription factors per gene. It is
estimated that there are approximately 2600 different proteins in the human genome that
contain DNA-binding domains [7] and approximately 10% of genes in the genome code
for transcription factors allowing unique regulation of each gene in the human genome
[8].

DNA binding proteins interact with specific sequence patterns in promoter or en-
hancer regions of the DNA located in various parts of the genome. Enhancer regions
have been reported upstream and downstream of genes, in 5’-UTR’s, within introns, in
3’-UTR [9] and even within the coding sequence [10]. Depending on the transcription
factor, the transcription of the adjacent gene is either up-or down-regulated which is
done by the use of various regulation mechanisms [11]. Thesemechanisms include:

• stabilization or blocking the binding of RNA polymerase to DNA,

• histone acetyltransferase/deacetylase activity – weakens/strengthens the associ-
ation of DNA with histones which makes the DNA more or less accessible to
transcription and thereby controlling the amount of transcribed mRNA’s [12],

• recruitment of coactivator or corepressor proteins to the transcription factor DNA
complex [13].

The stabilization mechanisms and interaction sites can be quite different in various
organisms, cell lines and even within a single cell, furthermore regulatory elements don’t



POSITION WEIGHT MATRIX MODEL AS A TOOL FOR THE STUDY OF REGULATORY ELEMENTS
DISTRIBUTION ACROSS THE DNA SEQUENCE 493

just bind to one sequence but are capable of binding to closely related sequences, each
with a different strength of interaction. One of the examples is the TATA binding protein
(TBP) with TATATAA binding site [14]. It was proven that the TBP transcription factor
can also bind similar sequences such as TATATATA, TATAAATA or TATATAAA [15].
This makes the analysis process very difficult, since it is hard to determine if the regula-
tory motif variant is responsible for protein interactionsor occurs by chance and doesn’t
have any influence on the transcript stability regulation.

Chemically, transcription factors interact with their binding sites on the DNA by
using a combination of electrostatic and Van der Waals forces which explains why tran-
scription factors can bind not only to specific sequence fragments. However, not all bases
in the transcription factor binding site may actually interact with proteins, making some
of the interactions weaker than others. Because they can bind a set of related sequences
and these sequences tend to be short we can expect that potential binding sites can oc-
cur by chance with frequency depending on the specificity level requirements of a given
recognition motif. It is unlikely, that they can occur by chance in unwanted places, how-
ever if that happens other constraints, such as DNA accessibility in the cell or availability
of cofactors may also help dictate where a transcription factor will actually bind.

2. The basics of PWM

Since regulation elements such as transcription factors donot bind only to specific
sequence motifs but also to many similar sequences they cannot be presented as a simple
DNA sequence like for example recognition sites for restriction enzymes. Restriction
enzymes can cut the DNA in specific places determined by motifs such as GAATTC
for the enzyme EcoRI. Single nucleotide substitution in therecognition site causes the
enzyme to cut the sequence less by several orders of magnitude.

TFBS are much more tolerant to changes allowing multiple substitutions without los-
ing their functionality. This causes two main problems in the DNA binding sites analysis.
First is that we need to develop a representation motif basedon a set of experimentally
derived sequences that could be used to predict additional binding sites. Second problem
is to discover the location of specific sites in a given sequence with highest possible sen-
sitivity of the algorithm, to maximize the amount of detected functional sites, keeping
lowest possible specificity reducing the false-positive identification rate.

Most popular representation of TFBS involves position-weight matrices (PWM’s)
which are simple mathematical objects with limited variability used to capture the in-
formation about local sequence patterns characteristic ofa given function. PWM’s are
created based on finite number of experimentally derived motifs proven to be responsible
for certain process like TF binding.

As an example let’s consider one of the most popular TFBS known as TATA-box.
Fig. 1a shows 6 closely related motifs responsible for TBP (TATA-box binding protein)
interactions. PWM matrix is created by adding the occurrence number of each possible
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nucleotide at each position creating an n by m table (Fig. 1b)where n is the length of the
motifs and m is a constant number of unique bases in a nucleotide sequence.

Figure 1. A set of 6 experimentally derived TATA-box sequences (a) and respective PWM matrix (b).

Another form is to present the motif as a consensus sequence according to IUPAC
nucleotide code, omitting specificity of the probability matrix. In such form the con-
sidered TATA-box motif would be presented as: STATAWARRSSSS, whereS= G or
C; W = A or T; R = A or G. Sequence in such form could be then used to search for
new sites with specific number of allowed mismatches, although this approach has many
weaknesses as presented in [16].

PWM’s are the most common way to represent TFBS patterns. There are few ap-
proaches used to create PWM’s, from very simple ones like theone presented above
to more complex involving three weight computation scheme [17] or neural networks
[18], where the weights of created network correspond to theweights in the matrix. The
biggest challenge is still the way of discovering new sites,based on the created PWMs,
that would not only be statistically significant but also biologically meaningful.

One of the easiest methods is the one used by ConSite implementation [19]. Moving
by a single nucleotide along the target DNA sequence it calculates each time the occur-
rence score by summing the respective linear or log scaled values from the rows of PWM
for each nucleotide in the columns (Fig. 2).

Figure 2. Example of a simple PWM score calculation method for the TATA-box sequence motif.

The higher the score is the more conserved is the analyzed sequence but since motifs
can have various length and number of sequences used to create PWM can also change in
a large range making each motif unique, scores S are normalized, by simply calculating
the percentage of it comparing to the maximum possible scorevalue, according to [20]:
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Snorm =
S−Smin

Smax−Smin

·100 (1)

whereSmin andSmax are the smallest and highest possible scores that can be achieved
depending on the specificity of the PWM matrix.

The score calculated for each position in the target sequence is compared to the user
specified threshold (typically 80%) leaving only those sites which are characterized by
large score values. The biggest advantage of this method is its simplicity making genome
scale analysis of TFBS possible without the need of enormouscomputational resources.

Although the presented simple weight matrix model can work quite well for various
datasets, some mathematical problems have to be faced before calculating the final score
value. PWM’s are created based on a sequences of limited variability and because of that
we often do not observe each base at each position in the set ofanalyzed motifs resulting
in zeros present in the PWM. This causes obvious problems when transforming the table
to log scale. One possible solution is to transform the PWM scores according to notation
proposed in [21]:

Wb,i = log
Pm(b, i)
Pb(b)

(2)

wherePb(b) is the background probability of baseb (in most casesPb(b) = 0.25 for
b= 1, . . . ,4) andPm(b, i) is the corrected probability of occurrence for baseb at position
i in the motif of lengthm, and is calculated by:

Pm(b, i) =
N(b, i)

n
+ ε (3)

whereN(b, i) are the occurrence counts of baseb in positioni from the PWM matrix and
ε is a smoothing parameter (usuallyε = 0.01) which prevents the logarithm problem.

The score for each target site would be then given by a sum of all W(b, i) values for
each base in the analyzed sequence:

S=
n

∑
i=1

Wb,i . (4)

Another obvious problem arises when looking at Eq. (2).Pb(b) value is assigned
based on assumption that the DNA sequence is random with the probability of each
base occurrence equal to 0.25. This goes quite well when taking into account only
small sequence fragments but for the entire genome such assumption is obviously false.
Genomes of some species can show large global differences inG andC nucleotide con-
tent comparing toA andT like for example 72% ofG+C in the genome ofStreptomyces
coelicolor bacteria. Additionally, the differences can sometimes occur also locally. Ac-
cording to isochors genome organization theory there are large parts of DNA sequence
in most of the vertebrates that differ significantly inGC content from their surroundings
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[22]. It is obvious then thatGC rich regions will be overrepresented byGC-rich motifs
while AT-rich will not occur by chance as often.

Also, there is a problem concerning score threshold that oneshould use to predict
sites, keeping appropriate balance between precision and sensitivity when comparing
the prediction results to experimentally derived sites. Methods of assessing the statistical
significance of PWM matches can be a big challenge as well. Based on the distribution of
all possible distinct similarity scores some methods were proposed to calculate p-value
which describes the probability of a background model achieving a score higher or equal
to the observed value [23], [24].

Other more precise methods of TFBS discovery are presented in literature but be-
cause of much larger computational complexity they are mostly oriented towards small
dataset analysis. The methods include Bayesian networks [25], permuted Markov mod-
els [26] or non-parametric models [27] but not always were proven to show significant
improvements over the simple weight matrix models while requiring much more com-
putational resources or additional experimental data which are typically unavailable.

3. Global prediction of TFBS using NuceleaSeq application

Many implementations of TFBS search algorithms are available and some of the
example tools are: ConSite [19], TFBS [28], Paster [29], Match [30], rVista [31] and
Mapper [32] but they focus mostly on the analysis of relatively short specific sequence
fragments and therefore are not applicable to global genomeanalysis either because
of the complexity of the search algorithm which requires enormous computational re-
sources or because of the results presentation form. Because of that, a new implementa-
tion was made, being a part of NucleoSeq application, based on TFBS detection methods
presented in this article. The application is oriented mostly towards the analysis of ex-
tremely large data sets, either provided directly by the user or downloaded automatically
from the internet based on various gene accession numbers.

Unlike most of the mentioned applications NucleoSeq uses resources of a local com-
puter therefore it doesn’t depend on accessibility, stability and performance of remote
server. It is very easy to use and can provide results in a formof precise report of each
TFBS occurrence count or genomic location, for each individual sequence and also as
an overall summary for the entire sequence set. Such approach allows to create TFBS
distribution maps in a very rapid and easy way.

NucleoSeq can be freely downloaded from our website at:
www.bioinformatics.aei.polsl.pl.

The application was used to search for the occurrence of all 75 known human TFBS
derived from the Jaspar database [33] in a set of 21818 uniquegene promoter regions
defined as a sequence fragments 1 to 5000 base pairs (bp) upstream from the transcrip-
tion start site (TSS) of known human Reference Sequence transcripts derived from the
USCS hg19 assembly of the human genome. The same analysis wasperformed for a
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set of artificial sequences created based on the original USCS dataset by shuffling the
nucleotide order.

While calculating the TFBS occurrence 3 different approaches were used:

1. Simple score - which is a sum of respective PWM counts in linear scale normalized
according to equation (1).

2. Log-odd score - most popular approach described by equations (1)-(4) with sim-
plified background probabilities of each base occurrence equal to 0.25. item Log-
odd score with variable background calculated independently for each analyzed
5000 bp long sequence fragment based on its individual nucleotide composition

Similarity cutoff was set to 80% for all three methods.

Figure 3. Distribution of all human TFBS from the Jaspar database across 5kbp sequence regions upstream
from the transcription initiation site (moving average with 300bp window).

The overall amount of found motifs further than 1000bp from TSS is significantly
higher than in the same sequences with randomly displaced nucleotides and gets lower
while getting closer to the transcription start site (Fig. 3). Type of the selected method
doesn’t change significantly the shape of the distribution but as expected has a huge
impact on the overall level of detected sites and the difference between random set of
sequences. The overall amount of detected sites seems to be extremely high suggesting
that TFBS occur every few bases. In reality TFBS motifs have arelatively small vari-
ability which leads to a very high number of counts overlapping each other and forming
large TFBS clusters.

Method based on variable background probability scores shows much less sites, es-
pecially close to TSS, which results from large variations in G andC nucleotides count
between analyzed sequences. Additionally the averageGC percentage increases signif-
icantly in the vicinity of TSS which has a huge impact on TFBS concentration. This
shows that even selecting individual background for each sequence fails in such situ-
ations since within a single sequence the nucleotide distribution is highly inconsistent
with the average amount.
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4. Concluding remarks

The presented application was used to predict the concentration of TFBS in a set of
nearly 2.2 thousand unique sequences of human gene promoterregions leading to a dis-
covery that the concentration of TFBS further by 1kbp from the transcription initiation
site is constant and higher than expected but it decreases rapidly while getting closer
to the transcription initiation site. TFBS were expected toincrease in count in those re-
gions since they are known to be the basic mechanism of transcription initiation. The
decreasing TFBS concentration might result from evolutionary selection which keeps
only sites responsible for interactions with proteins being a part of a specific regulatory
mechanism.

Many scientists are sceptical to the computational methodsof TFBS discovery which
are in many cases inconsistent with experimental approaches like ChIP-Sequencing or
ChIP-on-chip microarrays. It is a big concern when dealing with individual genes reg-
ulated by specific TF since the actual binding of a protein depends not only on the nu-
cleotide order of specific DNA fragment but additionally on the accessibility of the site
and concentration of specific TF proteins. Many recognitionsites overlap each other
forcing TF to compete over the selected region favoring those proteins which are over
expressed due to various factors including cell type, developmental stage and environ-
mental conditions. Fig. 3 shows that when focusing on a global distribution analysis we
can assume that even if the rate of false positive or negativecounts is high resulting
from random motif occurrence they will be equally distributed across the sequences and
therefore the shape of the distribution would not be significantly affected.

Transcription factors are the main regulatory elements of complex information pro-
cessing mechanism present in the genome, conserved trough all living organisms, there-
fore methods ofab initio transcription factor binding sites (TFBS) prediction thatwould
be biologically meaningful are very important and set a verybig challenge to mod-
ern bioinformatics. Although the currently available algorithms are not perfect they are
fairly reliable and can be used to search for new potential DNA binding sites in genomes
of various organisms leading to discoveries of previously unknown regulatory interac-
tions. The biggest problem ofab initio approaches is the very high false positive rate of
predicted sites since many sequence regions are inaccessible to proteins and therefore
cannot interact with it. Another big challenge is to predictTFBS clusters as they often
interact with proteins cooperatively. In order to take the full advantage of genomic se-
quences and be able to determine the regulatory network features based on the sequence
alone there is still much to be done in the field of TFBS discovery. But even now large
scale computational methods can provide useful indicationfor further experimental work
which normally could not be performed in such extent becauseof enormous costs and
lack of fast and efficient experimental methods.
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