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Position weight matrix model as a tool
for the study of regulatory elements distribution
across the DNA sequence
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Ab initio methods of DNA regulatory sequence region prediction knasrranscription
factor binding sites (TFBS) are a very big challenge to mod®oinformatics. Although the
currently available methods are not perfect they are fag@lipble and can be used to search for
new potential protein-DNA interaction sites. The biggesiyem ofab initio approaches is the
very high false positive rate of predicted sites which ressaainly from the fact that TFBS are
very short and highly degenerate. Because of that they caur by chance every few hundred
bases making the task of computational prediction extrgwtifficult if one aims to reduce the
high false positive rate keeping highest possible seiisitig predict biologically meaningful
sequence regions. In this work we present a new applicat@incgn be used to predict TFBS
regions in very large datasets based on position weightixmatdels (PWM's) using one of
the most popular prediction methods.

The presented application was used to predict the contientiaf TFBS in a set of nearly
2.2 thousand unique sequences of human gene promoter sedioa study revealed that the
concentration of TFBS further than 1kbp from the trans@iptnitiation site is constant but it
decreases rapidly while getting closer to the transcripitiitiation site. The decreasing TFBS
concentration in the vicinity of genes might result fromletimnary selection which keeps only
sites responsible for interactions with proteins being p&& specific regulatory mechanism
leading to cells survival.

Key words: transcription factors, TFBS, regulation of gene expressregulatory se-
guence elements, DNA, position-weight matrix, PWM

1. Introduction

Since the beginning of the Human Genome Project, which goadito character-
ize the entire sequence of human DNA, the amount of methael$ fas pattern recog-
nition and prediction of functional DNA sequence elementsagrapidly. DNA stores
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an enormous amount of information used in the developmeshfuarctioning of an en-
tire organism. It works as a database of schematics needwddte proteins and ways
of regulating their concentration in living cells. The siziesuch database ranges from
hundreds of thousands nucleotides in bacteria to even adadif billions in vertebrates
[1].

The exact knowledge about structure and role of each DNAvfead can bring huge
benefits in many fields of science, but although the DNA stimgctvas discovered nearly
60 years ago and 99% of human DNA sequence is known since @n@§63 our knowl-
edge about its structure is still sparse.

One of the most interesting aspects of the genome is theegplfating process of
transcription which copies the information stored in a #iieDNA fragment known as
gene to RNA molecule used in protein production processtrGbof the gene expres-
sion processes involves highly sophisticated combirgltorieractions between proteins
known as transcription factors and regulatory sequenctgigenome represented by a
specific combination of nucleotides. Transcription fastQrF’'s) are proteins, which by
binding to specific DNA sequences control the transcriptbadjacent genes [2], [3].
This function can be performed alone or in a complex with ogheteins, by promoting
or blocking the recruitment of RNA polymerase to specificege]-[6].

Transcription factors are critical for the transcriptiotogess making sure that all of
the genes maintain appropriate expression level depewditite changing requirements
of the organism. They are found in all living organisms arelrtbmber of them increases
with genome size - larger genomes tend to have more tratiseriiactors per gene. Itis
estimated that there are approximately 2600 differentgmetin the human genome that
contain DNA-binding domains [7] and approximately 10% ofigg in the genome code
for transcription factors allowing unique regulation otbayene in the human genome
[8].

DNA binding proteins interact with specific sequence pagdn promoter or en-
hancer regions of the DNA located in various parts of the gemdEnhancer regions
have been reported upstream and downstream of genes, ilM'sPwithin introns, in
3-UTR [9] and even within the coding sequence [10]. Deprgdin the transcription
factor, the transcription of the adjacent gene is eitherarpdown-regulated which is
done by the use of various regulation mechanisms [11]. Timesganisms include:

e stabilization or blocking the binding of RNA polymerase tbiB,

¢ histone acetyltransferase/deacetylase activity — wedkangthens the associ-
ation of DNA with histones which makes the DNA more or lesseasible to
transcription and thereby controlling the amount of traied mMRNA's [12],

e recruitment of coactivator or corepressor proteins to taescription factor DNA
complex [13].

The stabilization mechanisms and interaction sites carulie different in various
organisms, cell lines and even within a single cell, funthere regulatory elements don't
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just bind to one sequence but are capable of binding to gloekdted sequences, each
with a different strength of interaction. One of the examspethe TATA binding protein
(TBP) with TATATAA binding site [14]. It was proven that theBP transcription factor
can also bind similar sequences such as TATATATA, TATAAATATATATAAA [15].
This makes the analysis process very difficult, since it sl ha determine if the regula-
tory motif variant is responsible for protein interactiasoccurs by chance and doesn’t
have any influence on the transcript stability regulation.

Chemically, transcription factors interact with their @img sites on the DNA by
using a combination of electrostatic and Van der Waals fovdaich explains why tran-
scription factors can bind not only to specific sequencenfiexgts. However, not all bases
in the transcription factor binding site may actually imtetrwith proteins, making some
of the interactions weaker than others. Because they cahdbdet of related sequences
and these sequences tend to be short we can expect thatigddienting sites can oc-
cur by chance with frequency depending on the specificitgl lquirements of a given
recognition motif. It is unlikely, that they can occur by dea in unwanted places, how-
ever if that happens other constraints, such as DNA acdkysitthe cell or availability
of cofactors may also help dictate where a transcriptiotofaeill actually bind.

2. The basics of PWM

Since regulation elements such as transcription factonsotid®ind only to specific
sequence motifs but also to many similar sequences theypthamresented as a simple
DNA sequence like for example recognition sites for restic enzymes. Restriction
enzymes can cut the DNA in specific places determined by sstith as GAATTC
for the enzyme EcoRI. Single nucleotide substitution inrgognition site causes the
enzyme to cut the sequence less by several orders of magnitud

TFBS are much more tolerant to changes allowing multiplessutions without los-
ing their functionality. This causes two main problems ia BNA binding sites analysis.
First is that we need to develop a representation motif basealset of experimentally
derived sequences that could be used to predict additiamdihlg sites. Second problem
is to discover the location of specific sites in a given seqeewth highest possible sen-
sitivity of the algorithm, to maximize the amount of detetfenctional sites, keeping
lowest possible specificity reducing the false-positiveniification rate.

Most popular representation of TFBS involves positiongheimatrices (PWM's)
which are simple mathematical objects with limited vaiiggbiused to capture the in-
formation about local sequence patterns characterist& given function. PWM'’s are
created based on finite number of experimentally derivedfsqaioven to be responsible
for certain process like TF binding.

As an example let's consider one of the most popular TFBS knasvTATA-box.
Fig. 1a shows 6 closely related motifs responsible for TB®A&Fbox binding protein)
interactions. PWM matrix is created by adding the occuremamber of each possible
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nucleotide at each position creating an n by m table (Figwti®re n is the length of the
motifs and m is a constant number of unique bases in a nutéestiquence.

(@) graTaasaaccee (D) 1 2 3 4 5 6 7 8 9 10 11 12 13
CTATAAAAGGCCC A0 0 6 0 6 5 6 3 10 0 0 0
GTATAAAGGGGCG cl2 00000000 2 2 4 2
GTATATAAGCGCG G4 0 0 0 0 00 3 5 4 4 2 4
CTATAAAGGGGCC TI0 6 06 01 0 0 0 0 0 0 0
GTATAAAGGCGGG

Figure 1. A set of 6 experimentally derived TATA-box sequesi(a) and respective PWM matrix (b).

Another form is to present the motif as a consensus sequ&cceding to IUPAC
nucleotide code, omitting specificity of the probability tnva In such form the con-
sidered TATA-box motif would be presented as: STATAWARRSS®hereS= G or
C;W=AorT; R=AorG. Sequence in such form could be then used to search for
new sites with specific number of allowed mismatches, atihdbis approach has many
weaknesses as presented in [16].

PWM'’s are the most common way to represent TFBS patterngeTdre few ap-
proaches used to create PWM’s, from very simple ones likeotiee presented above
to more complex involving three weight computation schedig pr neural networks
[18], where the weights of created network correspond tavikights in the matrix. The
biggest challenge is still the way of discovering new sitesed on the created PWMs,
that would not only be statistically significant but alsolbgically meaningful.

One of the easiest methods is the one used by ConSite implatioen19]. Moving
by a single nucleotide along the target DNA sequence it talesi each time the occur-
rence score by summing the respective linear or log scaledv&om the rows of PWM
for each nucleotide in the columns (Fig. 2).

Cl| 2 0 0 0 0 0 0 0 0 2 2 4 2
G| 4 0 0 0 0 0 0 3 5 4 4 2 4
T o 6 0 6 0 1 o 0 0 0 0O 0 o0

DNA G T A TATATGGTCCGGATT CT CAG
Nbi) 4 6 6 6 6 1 6 0 5 4 2 S= iN(b.i) =54
i=1

Figure 2. Example of a simple PWM score calculation methodHe TATA-box sequence motif.

The higher the score is the more conserved is the analyze@seg but since motifs
can have various length and number of sequences used te B\ can also change in
a large range making each motif unique, scores S are noedaliy simply calculating
the percentage of it comparing to the maximum possible sa@ite, according to [20]:
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S_S.
Som= ——"n_ 100 1)
Sﬂa)FSnin

where Spin and Syax are the smallest and highest possible scores that can bevedhi
depending on the specificity of the PWM matrix.

The score calculated for each position in the target seguisreompared to the user
specified threshold (typically 80%) leaving only thosessitéhich are characterized by
large score values. The biggest advantage of this methtsdsisriplicity making genome
scale analysis of TFBS possible without the need of enorroongputational resources.

Although the presented simple weight matrix model can watikegwell for various
datasets, some mathematical problems have to be facee ladoulating the final score
value. PWM’s are created based on a sequences of limiteghilitsi and because of that
we often do not observe each base at each position in the @aealyzed motifs resulting
in zeros present in the PWM. This causes obvious problems twhesforming the table
to log scale. One possible solution is to transform the PWddescaccording to notation
proposed in [21]:

P(b, 1)

2
Po(D) ?
whereP,(b) is the background probability of bage(in most case$},(b) = 0.25 for

b=1,...,4) andPy(b,i) is the corrected probability of occurrence for bas# position
i in the motif of lengthm, and is calculated by:

Pm(b,i) = w +€ (3)

W, = log

whereN(b, i) are the occurrence counts of bdsa positioni from the PWM matrix and
€ is a smoothing parameter (usuadly= 0.01) which prevents the logarithm problem.

The score for each target site would be then given by a sun @{bli) values for
each base in the analyzed sequence:

S= _iwm . (4)

Another obvious problem arises when looking at Eq. )b) value is assigned
based on assumption that the DNA sequence is random withrtdieplity of each
base occurrence equal to 0.25. This goes quite well whemgaikito account only
small sequence fragments but for the entire genome suchmasisa is obviously false.
Genomes of some species can show large global differencg@aidC nucleotide con-
tent comparing té\ andT like for example 72% oG+ C in the genome oBtreptomyces
coelicolor bacteria. Additionally, the differences can sometimesioatso locally. Ac-
cording to isochors genome organization theory there age lparts of DNA sequence
in most of the vertebrates that differ significantly®C content from their surroundings
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[22]. It is obvious then thaGC rich regions will be overrepresented BC-rich motifs
while AT-rich will not occur by chance as often.

Also, there is a problem concerning score threshold thatsbioeld use to predict
sites, keeping appropriate balance between precision emgltigity when comparing
the prediction results to experimentally derived sitestiidds of assessing the statistical
significance of PWM matches can be a big challenge as weledas the distribution of
all possible distinct similarity scores some methods weop@sed to calculate p-value
which describes the probability of a background model adhiga score higher or equal
to the observed value [23], [24].

Other more precise methods of TFBS discovery are presenthigriature but be-
cause of much larger computational complexity they are Inosiented towards small
dataset analysis. The methods include Bayesian netwoBksg@rmuted Markov mod-
els [26] or non-parametric models [27] but not always weraen to show significant
improvements over the simple weight matrix models whileuregg much more com-
putational resources or additional experimental data lwvare typically unavailable.

3. Global prediction of TFBS using NuceleaSeq application

Many implementations of TFBS search algorithms are avi@lalnd some of the
example tools are: ConSite [19], TFBS [28], Paster [29], ¢¥dB0], rVista [31] and
Mapper [32] but they focus mostly on the analysis of reldgiahort specific sequence
fragments and therefore are not applicable to global genamadysis either because
of the complexity of the search algorithm which requiresremmis computational re-
sources or because of the results presentation form. Becdtisat, a new implementa-
tion was made, being a part of NucleoSeq application, basdd8S detection methods
presented in this article. The application is oriented hgdstvards the analysis of ex-
tremely large data sets, either provided directly by the asdownloaded automatically
from the internet based on various gene accession numbers.

Unlike most of the mentioned applications NucleoSeq usssurees of a local com-
puter therefore it doesn’t depend on accessibility, stgtaind performance of remote
server. It is very easy to use and can provide results in a @rpmecise report of each
TFBS occurrence count or genomic location, for each indi@idsequence and also as
an overall summary for the entire sequence set. Such apgpaimws to create TFBS
distribution maps in a very rapid and easy way.

NucleoSeq can be freely downloaded from our website at:
www. bi oi nf ormati cs. aei . pol sl . pl.

The application was used to search for the occurrence obdhdwn human TFBS
derived from the Jaspar database [33] in a set of 21818 umjgne promoter regions
defined as a sequence fragments 1 to 5000 base pairs (bparpgom the transcrip-
tion start site (TSS) of known human Reference Sequencsdriais derived from the
USCS hg19 assembly of the human genome. The same analysigeviasmed for a
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set of artificial sequences created based on the originalSJ&aset by shuffling the
nucleotide order.

While calculating the TFBS occurrence 3 different appreschere used:

1. Simple score - which is a sum of respective PWM counts gglirscale normalized
according to equation (1).

2. Log-odd score - most popular approach described by emsafil)-(4) with sim-
plified background probabilities of each base occurrencaleq 0.25. item Log-
odd score with variable background calculated indepehdénmt each analyzed
5000 bp long sequence fragment based on its individual atidkecomposition

Similarity cutoff was set to 80% for all three methods.

Simple score 80% cutoff Log-odd score 80% cutoff Log-odd score 80% cutoff variable background
34 34

33 33
14 g "'\ —

32 = Original 32

shufiied

31 R — 31
13

30 % 20
12 29 29
-5000 -4000 -3000 -2000 -1000 O -5000 -4000 -3000 -2000 -1000 O -5000 -4000 -3000 -2000 -1000 O
Position relative to TSS [bp]

-
[8,]

Percentage of sequences with
TSS in particular position

Figure 3. Distribution of all human TFBS from the Jaspar Hat® across 5kbp sequence regions upstream
from the transcription initiation site (moving average m&0bp window).

The overall amount of found motifs further than 1000bp fro®STis significantly
higher than in the same sequences with randomly displaceldatides and gets lower
while getting closer to the transcription start site (Fiyy. B/pe of the selected method
doesn’t change significantly the shape of the distributiah ds expected has a huge
impact on the overall level of detected sites and the diffeeebetween random set of
sequences. The overall amount of detected sites seems kirémely high suggesting
that TFBS occur every few bases. In reality TFBS motifs havelatively small vari-
ability which leads to a very high number of counts overlagpéach other and forming
large TFBS clusters.

Method based on variable background probability scorewsimouch less sites, es-
pecially close to TSS, which results from large variatiam§&iandC nucleotides count
between analyzed sequences. Additionally the ave@gpercentage increases signif-
icantly in the vicinity of TSS which has a huge impact on TFBfi@entration. This
shows that even selecting individual background for eacjuesgce fails in such situ-
ations since within a single sequence the nucleotide biigtan is highly inconsistent
with the average amount.
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4. Concluding remarks

The presented application was used to predict the contientraf TFBS in a set of
nearly 2.2 thousand unique sequences of human gene promagiens leading to a dis-
covery that the concentration of TFBS further by 1kbp from ttanscription initiation
site is constant and higher than expected but it decreapetiyravhile getting closer
to the transcription initiation site. TFBS were expectedhttrease in count in those re-
gions since they are known to be the basic mechanism of tiptiso initiation. The
decreasing TFBS concentration might result from evolatigrselection which keeps
only sites responsible for interactions with proteins bearpart of a specific regulatory
mechanism.

Many scientists are sceptical to the computational methd@&EBS discovery which
are in many cases inconsistent with experimental apprsalgtes ChIP-Sequencing or
ChIP-on-chip microarrays. It is a big concern when dealiridp wdividual genes reg-
ulated by specific TF since the actual binding of a proteiredep not only on the nu-
cleotide order of specific DNA fragment but additionally & taccessibility of the site
and concentration of specific TF proteins. Many recognisiies overlap each other
forcing TF to compete over the selected region favoring éhlm®teins which are over
expressed due to various factors including cell type, dgrakntal stage and environ-
mental conditions. Fig. 3 shows that when focusing on a gldis&ibution analysis we
can assume that even if the rate of false positive or negatuats is high resulting
from random motif occurrence they will be equally distribditacross the sequences and
therefore the shape of the distribution would not be sigaifity affected.

Transcription factors are the main regulatory elementofflex information pro-
cessing mechanism present in the genome, conserved triyliging organisms, there-
fore methods oéb initio transcription factor binding sites (TFBS) prediction thetuld
be biologically meaningful are very important and set a MVeiy challenge to mod-
ern bioinformatics. Although the currently available aitjoms are not perfect they are
fairly reliable and can be used to search for new potentiahDMding sites in genomes
of various organisms leading to discoveries of previousiignown regulatory interac-
tions. The biggest problem ab initio approaches is the very high false positive rate of
predicted sites since many sequence regions are inadeessiproteins and therefore
cannot interact with it. Another big challenge is to pre@&BS clusters as they often
interact with proteins cooperatively. In order to take thk ddvantage of genomic se-
guences and be able to determine the regulatory netwonkréssabased on the sequence
alone there is still much to be done in the field of TFBS discpvBut even now large
scale computational methods can provide useful indicdtiofurther experimental work
which normally could not be performed in such extent becafissnormous costs and
lack of fast and efficient experimental methods.
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