An analytical method for solving the two-phase inverse Stefan problem

E. HETMANIOK, D. SŁOTA*, R. WITULA, and A. ZIELONKA

Institute of Mathematics, Silesian University of Technology, 23 Kaszubska St., 44-100 Gliwice, Poland

Abstract. In the paper we present an application of the homotopy analysis method for solving the two-phase inverse Stefan problem. In the proposed approach a series is created, having elements which satisfy some differential equation following from the investigated problem. We reveal in the paper that if this series is convergent then its sum determines the solution of the original equation. A sufficient condition for this convergence is formulated. Moreover, the estimation of the error of the approximate solution, obtained by taking the partial sum of the considered series, is given. Additionally, we present an example illustrating an application of the described method.

Key words: inverse Stefan problem, homotopy analysis method, heat transfer, solidification.

1. Introduction

Solidification of pure metals is customarily modeled by means of the Stefan problem [1, 2]. This problem consists in simultaneous determination of the temperature distribution in the investigated region and of the location of the interface dividing the region into two subregions taken by the liquid phase and solid phase. In the inverse Stefan problem one usually assumes that the additional information, compensating the lack of input data, is given by the knowledge of the location of the interface, its velocity in the normal direction or temperature at selected points of the region. Solving the inverse problem, discussed in this paper, lies in determination of the temperature distribution in considered region, as well as in determination of the temperature and the heat flux on one of boundaries of the region. Supplementary information of this inverse problem is given by the location of interface, therefore the considered problem is called the design problem.

It is possible to find an exact analytical solution of the inverse Stefan problem only in few simple cases. Therefore for solving problems of that type the numerical methods of different kinds are the most often used [3–15]. Application of analytical or analytic-numerical methods is rather insignificant. In particular, in papers [16, 17] an application of the homotopy perturbation method for solving the one- and two-phase inverse Stefan problem is presented. Whereas, the use of the Adomian decomposition method and variational iteration method for solving the same problem is discussed in papers [18, 19].

The homotopy analysis method has been developed in the 90’s, its author is Shijun Liao [20–23] and it belongs to the group of analytical methods. This method has found an application for solving many problems formulated with the aid of ordinary and partial differential equations [24–27], including the heat conduction problems [28–31], fractional differential equations [32, 33] (for some other applications of the fractional calculus see for example [34–36]), integral equations [37–39], integro-differential equations [40, 41] and others. A particular case of the homotopy analysis method is the homotopy perturbation method [16, 17, 42].

By using the considered method we create a series, elements of which fulfill some differential equation resulting from the investigated problem. Obtained equation is easier to solve in comparison with the original one. We reveal in the paper that if this series is convergent then its sum determines the solution of discussed equation. Sufficient condition of this convergence is formulated in this paper as well as the estimation of error of approximate solution received by taking only the partial sum of considered series. We also give some example illustrating the application of described approach.

2. Statement of the problem

Let us consider two regions: D_1 denoting the region taken by the liquid phase and D_2 describing the region taken by the solid phase (see Fig. 1):

$$D_1 = \{(x, t); \; x \in [0, \xi(t)], \; t \in [0, t^*]\},$$
$$D_2 = \{(x, t); \; x \in [\xi(t), d], \; t \in [0, t^*]\}$$

and their boundaries:

$$\Gamma_1 = \{(x, 0); \; x \in (0, s), \; s = \xi(0)\},$$
$$\Gamma_2 = \{(x, 0); \; x \in (s, d), \; s = \xi(0)\},$$
$$\Gamma_3 = \{(0, t); \; t \in [0, t^*]\},$$
$$\Gamma_4 = \{(d, t); \; t \in [0, t^*]\},$$
$$\Gamma_5 = \{(x, t); \; t \in [0, t^*], \; x = \xi(t)\},$$

where function $x = \xi(t)$ defines the location of interface.

*e-mail: damian.slota@polsl.pl
The two-phase Stefan problem [1, 2] consists in determining the location of a moving interface described by means of function \(x = \xi(t) \) and in determining functions \(u_1 \) and \(u_2 \), defined in domains \(D_1 \) and \(D_2 \), respectively, which fulfill the heat conduction equations \((k = 1, 2)\):

\[
\frac{\partial u_k(x, t)}{\partial t} = a_k \frac{\partial^2 u_k(x, t)}{\partial x^2} \quad \text{in} \ D_k, \tag{1}
\]

where \(a_k \) denotes the thermal diffusivity in liquid phase \((k = 1)\) and solid phase \((k = 2)\), whereas \(t \) and \(x \) refer to the time and spatial location, respectively. On boundaries \(\Gamma_1 \) and \(\Gamma_2 \) the sought functions fulfill the initial conditions

\[
\begin{align*}
u_1(x, 0) &= \varphi_1(x) \quad \text{on} \quad \Gamma_1, \tag{2} \\
u_2(x, 0) &= \varphi_2(x) \quad \text{on} \quad \Gamma_2, \tag{3} \\
\xi(0) &= s. \tag{4}
\end{align*}
\]

On boundary \(\Gamma_3 \) function \(\nu_1 \) satisfies the Dirichlet boundary condition

\[
u_1(0, t) = \theta_1(t). \tag{5}\]

Next, on boundary \(\Gamma_4 \) function \(\nu_2 \) fulfills the Dirichlet or Neumann boundary conditions

\[
u_2(d, t) = \theta(t), \quad -\lambda_k \frac{\partial \nu_2(d, t)}{\partial x} = q(t), \tag{6}
\]

where \(\lambda_k \) denotes the thermal conductivity in liquid phase \((k = 1)\) and solid phase \((k = 2)\). Finally, on the moving interface \((\Gamma_5)\) the sought functions fulfill the condition of temperature continuity and the Stefan condition

\[
u_1(\xi(t), t) = \nu_2(\xi(t), t) = u^*, \tag{8}
\]

\[
\kappa \frac{d\xi(t)}{dt} = \lambda_2 \left. \frac{\partial \nu_2(x, \xi(t), t)}{\partial x} \right|_{x=\xi(t)} - \lambda_1 \left. \frac{\partial \nu_1(x, \xi(t), t)}{\partial x} \right|_{x=\xi(t)}, \tag{9}
\]

where \(u^* \) is the phase change temperature and \(\kappa \) denotes the latent heat of fusion per unit volume.

Solving of the discussed inverse Stefan problem lies in finding the functions \(\nu_1 \) and \(\nu_2 \) describing the temperature distribution in domains \(D_1 \) and \(D_2 \) as well as the functions \(\theta \) and \(q \) defining the temperature and the heat flux, respectively, on boundary \(\Gamma_4 \) such that they will satisfy Eqs. (1) with conditions (2)-(9). All the other functions (\(\varphi_k, \theta_1, \xi \)) and parameters \((a_k, \lambda_k, \kappa, u^*, s)\) are known.

3. Homotopy analysis method

For solving the investigated problem we intend to apply the homotopy analysis method. By using this method we are able to solve the operator equation

\[
N(v(z)) = 0, \quad z \in \Omega, \tag{10}
\]

where \(N \) denotes the operator (in particular it can be the non-linear operator), whereas \(v \) describes the unknown function. At the beginning we need to determine the operator \(H \) in the form

\[
H(\Phi, p) = (1 - p)L(\Phi(z; p) - v_0(z)) - p h N(\Phi(z; p)), \tag{11}
\]

where \(p \in [0, 1] \) is the embedding parameter, \(h \neq 0 \) denotes the convergence control parameter, \(v_0 \) describes the initial approximation of solution of problem (10) and \(L \) is the auxiliary linear operator with property \(L(0) = 0 \).

By considering equation \(H(\Phi, p) = 0 \) we obtain the so called zero-order deformation equation

\[
(1 - p)L(\Phi(z; p) - v_0(z)) = p h N(\Phi(z; p)). \tag{12}
\]

For \(p = 0 \) we have \(L(\Phi(z; 0) - u_0(z)) = 0 \), from which we get \(\Phi(z; 0) = v_0(z) \). Next, since for \(p = 1 \) we have \(N(\Phi(z; 1)) = 0 \), therefore \(\Phi(z; 1) = v(z) \), where \(v \) is the sought solution of Eq. (10). In this way the change of parameter \(p \) from zero to one corresponds with the change of problem from the trivial form to the originally given form (which means the change of solution from \(v_0 \) to \(v \)).

On the way of expanding the function \(\Phi \) into the Maclaurin series with respect to the parameter \(p \) we receive

\[
\Phi(z; p) = \Phi(z; 0) + \sum_{m=1}^{\infty} \frac{1}{m!} \left. \frac{\partial^m \Phi(z; p)}{\partial p^m} \right|_{p=0} p^m. \tag{13}
\]

Introducing the notation

\[
v_m(z) = \left. \frac{1}{m!} \frac{\partial^m \Phi(z; p)}{\partial p^m} \right|_{p=0}, \quad m = 1, 2, 3, \ldots, \tag{14}
\]

the previous relation can be described in the following way

\[
\Phi(z; p) = v_0(z) + \sum_{m=1}^{\infty} v_m(z)p^m. \tag{15}
\]

If the above series is convergent in the appropriate region, then for \(p = 1 \) we obtain the desired solution

\[
v(z) = \sum_{m=0}^{\infty} v_m(z). \tag{16}
\]

In order to determine the function \(v_m \) we differentiate \(m \) times the left and the right side of the relation (12) with respect to parameter \(p \). Obtained result is divided by \(m! \) and next, by substituting \(p = 0 \), we get the so called \(m \)-th-order deformation equation \((m > 0)\):

\[
L(v_m(z) - \chi_m v_{m-1}(z)) = h R_m(\nabla_{m-1}z), \tag{17}
\]

where \(\nabla_{m-1} = \{v_0(z), v_1(z), \ldots, v_{m-1}(z)\} \),

\[
\chi_m = \begin{cases}
0 & m \leq 1, \\
1 & m > 1
\end{cases} \tag{18}
\]
An analytical method for solving the two-phase inverse Stefan problem

and

\[R_m(\mathbf{r}_{m-1}, z) = \frac{1}{(m-1)!} \left(\frac{\partial^{m-1}}{\partial p^{m-1}} N \left(\sum_{i=0}^{\infty} v_i(z) p^i \right) \right)_{p=0}. \]

If we are not able to determine the sum of series in (16), then as the approximate solution of considered equation we can accept the partial sum of this series

\[\tilde{v}_n(z) = \sum_{m=0}^{n} v_m(z). \]

By selecting properly the convergence control parameter \(h \) we can influence the region of convergence of the series in (15) as well as the rapidness of this convergence [23, 43–45]. One of the methods enabling to choose the value of convergence control parameter is the so-called “optimization method” [23, 46, 47]. In this method we define the squared residual of the governing equation

\[E_n(h) = \int_{\Omega} \left(N[\tilde{v}_n(z)] \right)^2 dz. \]

The optimal value of the convergence control parameter is determined by minimizing the above squared residual. The effective region of the convergence control parameter is defined in the following way

\[R_h = \{ h : \lim_{n \to \infty} E_n(h) = 0 \}. \]

If we take the value of convergence control parameter different than the optimal value but still belonging to the effective region, we obtain the convergent series as well, however rapidness of this convergence will be smaller.

Another way for determining the value of convergence control parameter is the so-called \(h \)-curve which is obtained by investigating the behavior of a certain quantity of the solution as a function of parameter \(h \) [21, 45]. This method enables to determine the effective region of the convergence control parameter, whereas it makes no possibility to calculate the value ensuring the fastest convergence [23].

4. Solution of the problem

Let us proceed now to the application of the homotopy analysis method for solving the above formulated two-phase inverse Stefan problem. In this case the operators \(N_k \) and \(L_k \), for \(k = 1, 2 \), can be defined as follows

\[N_k(v) = \frac{\partial v}{\partial t} - a_k \frac{\partial^2 v}{\partial x^2} \]

and

\[L_k(v) = \frac{\partial^2 v}{\partial x^2}. \]

For the investigated problem we have (under assumption that the series is convergent) for \(k = 1, 2 \):

\[R_{k,m}(\mathbf{r}_{k,m-1}, x, t) = \frac{1}{(m-1)!} \left(\frac{\partial^{m-1}}{\partial p^{m-1}} N_k \left(\sum_{i=0}^{\infty} u_{k,i}(x, t) p^i \right) \right)_{p=0} = \frac{1}{(m-1)!} N_k \left((m-1)! u_{k,m-1}(x, t) + \sum_{i=m}^{\infty} u_{k,i}(x, t) w_k(i)p^{i-m+1} \right)_{p=0} = N_k(u_{k,m-1}(x, t)), \]

\[\text{for } m = 1, 2, \ldots, \text{where } w_k(i) \in \mathbb{N} \text{ for } i = m, m + 1, \ldots. \]

In this way for \(m = 1 \) we get the system of two partial differential equations (\(k = 1, 2 \)):

\[\frac{\partial^2 u_{k,1}(x, t)}{\partial x^2} = h \left(\frac{\partial u_{k,0}(x, t)}{\partial t} - a_k \frac{\partial^2 u_{k,0}(x, t)}{\partial x^2} \right), \]

whereas for \(m \geq 2 \) we receive the following systems (\(k = 1, 2 \)):

\[\frac{\partial^2 u_{k,m}(x, t)}{\partial x^2} = \frac{\partial^2 u_{k,m-1}(x, t)}{\partial x^2} + h \left(\frac{\partial u_{k,m-1}(x, t)}{\partial t} - a_k \frac{\partial^2 u_{k,m-1}(x, t)}{\partial x^2} \right). \]

For uniqueness of solution the above systems of partial differential equations suppose to be completed by additional conditions. For this purpose we use conditions (5), (8) and (9). Thus, the first of above systems is completed by conditions of the form

\[u_{1,0}(0, t) + u_{1,1}(0, t) = \theta_1(t), \]

\[u_{1,0}(\lambda_1 \xi(t), t) + u_{1,1}(\lambda_1 \xi(t), t) = u^*, \]

\[u_{2,0}(\lambda_2 \xi(t), t) + u_{2,1}(\lambda_2 \xi(t), t) = u^*, \]

\[-\lambda_1 \frac{\partial (u_{1,0} + u_{1,1})(\xi(t), t)}{\partial x} + \lambda_2 (\frac{\partial u_{1,0} + \frac{\partial u_{2,1}}{\partial t})(\xi(t), t)} = \kappa \frac{d \xi(t)}{dt}, \]

whereas for the remaining systems (\(m \geq 2 \)) we define the following conditions

\[u_{1,m}(0, t) = 0, \]

\[u_{1,m}(\xi(t), t) = 0, \]

\[u_{2,m}(\xi(t), t) = 0, \]

\[-\lambda_1 \frac{\partial u_{1,m}(\xi(t), t)}{\partial x} + \lambda_2 \frac{\partial u_{2,m}(\xi(t), t)}{\partial x} = 0. \]

The above conditions ensure that any approximate solution (20) satisfies the assumed boundary conditions. As the initial approximation we can take the functions defining the initial conditions (\(k = 1, 2 \)):

\[u_{k,0}(x, t) = \varphi_k(x). \]
Thus the problem has been reduced to the sequence of systems of differential Eqs. (26) and (27) with conditions (28)–(31) and (32)–(35), respectively. The obtained systems of equations are easier to solve in comparison with the original system of partial differential equations.

Now we proceed to present the theorem ensuring that the sums of determined series represent the solutions of considered equations.

Theorem 1. Let functions \(u_{k,m}, k = 1, 2, m \geq 1 \), be determined from the systems of Eqs. (26) and (27) with conditions (28)–(31) and (32)–(35), respectively. If the series \(\sum_{m=0}^\infty u_{k,m} \), for \(k = 1, 2 \), are convergent then their sums designate the solutions of considered equations.

Proof. Let the series \(\sum_{m=0}^\infty u_{k,m} \), for \(k = 1, 2 \), be convergent and let

\[
s_k(x, t) = \sum_{m=0}^\infty u_{k,m}(x, t).
\]

From the necessary condition for the series convergence we get that for any \(x \in [a, b] \) and \(t \in [0, t^*] \):

\[
\lim_{n \to \infty} u_{k,m}(x, t) = 0, \quad k = 1, 2.
\]

According to the method we have (for \(k = 1, 2 \)):

\[
L_k \left(u_{k,m}(x, t) - \chi_m u_{k,m-1}(x, t) \right) = h R_{k,m} (\pi_{k,m-1}(x, t)),
\]

which implies

\[
\lim_{n \to \infty} \sum_{m=1}^n L_k \left(u_{k,m}(x, t) - \chi_m u_{k,m-1}(x, t) \right) = 0,
\]

where we have used the continuity of operator \(L_k \). Since \(h \neq 0 \), therefore for \(k = 1, 2 \), we have

\[
\lim_{n \to \infty} \sum_{m=1}^\infty R_{k,m} (\pi_{k,m-1}, x, t) = 0.
\]

Next, by using relation (25) we get

\[
0 = \sum_{m=1}^\infty R_{k,m} (\pi_{k,m-1}, x, t) = \sum_{m=1}^\infty N_k (u_{k,m-1}(x, t)) = N_k \left(\sum_{m=1}^\infty u_{k,m-1}(x, t) \right) = N_k (s_k(x, t)).
\]

The following theorem describes the sufficient condition for convergence of series \(\sum_{m=0}^\infty u_{k,m} \) for \(k = 1, 2 \).

Theorem 2. Let functions \(u_{k,m}, k = 1, 2, m \geq 1 \), be determined from the systems of Eqs. (26) and (27) with conditions (28)–(31) and (32)–(35), respectively. If parameter \(h \) is selected in such a way that there exist the constants \(\gamma_n \in (0, 1) \) and \(m_0 \in \mathbb{N} \) such that for each \(m \geq m_0 \) and \(k = 1, 2 \) the following inequality

\[
\| u_{k,m+1} \| \leq \gamma_h \| u_{k,m} \| \quad (37)
\]

is satisfied, then the series \(\sum_{m=0}^\infty u_{k,m} \) are uniformly convergent.

Proof. Let \(S_{k,n} \), for \(k = 1, 2 \), denote the partial sums of considered series

\[
S_{k,n}(x, t) = \sum_{m=0}^n u_{k,m}(x, t).
\]

We intend to show that for any \(x \in [a, b] \) and \(t \in [0, t^*] \) the sequences \(\{ S_{k,n}(x, t) \} \) are Cauchy sequences. For this purpose let us begin by estimating the following norm (for \(k = 1, 2 \)):

\[
\| S_{k,n}(x, t) - S_{k,n-1}(x, t) \|
\]

\[
= \| u_{k,n}(x, t) \| \leq \gamma_h \| u_{k,n-1} \| \leq \cdots \leq \gamma_h^{n-m_0} \| u_{k,m_0} \|
\]

if only \(n \geq m_0 \). Now for any \(n, m \in \mathbb{N}, n \geq m \geq m_0, \) and \(k = 1, 2 \), we have

\[
\| S_{k,n}(x, t) - S_{k,m}(x, t) \| \leq \| S_{k,n}(x, t) - S_{k,n-1}(x, t) \| + \cdots + \| S_{k,m+1}(x, t) - S_{k,m}(x, t) \|
\]

\[
\leq \gamma_h^{n-m_0} \| u_{k,m_0} \| + \cdots + \gamma_h^{m+1-m_0} \| u_{k,m_0} \|
\]

\[
= \gamma_h^{m+1-m_0} \left(\gamma_h^{n-m_0} + \cdots + \gamma_h \right) \| u_{k,m_0} \|
\]

\[
= \gamma_h^{m+1-m_0} \frac{1 - \gamma_h}{1 - \gamma_h} \| u_{k,m_0} \|.
\]

Since \(\gamma_h \in (0, 1) \), therefore we deduce that sequences \(\{ S_{k,n}(x, t) \} \) are Cauchy sequences. Using the completeness of space \(\mathbb{R} \) we conclude that these sequences are convergent, which implies the convergence of discussed series.

In the last theorem we give the estimation of error of approximate solution obtained by taking the partial sums of the series.

Theorem 3. If assumptions of Theorem 2 are satisfied and additionally \(n \in \mathbb{N} \) and \(n \geq m_0 \), then for \(k = 1, 2 \) we get the following estimation of error of approximate solution

\[
\| u_k - \tilde{u}_{k,n} \| \leq \gamma_h^{n+1-m_0} \| u_{k,m_0} \|. \quad (38)
\]

Proof. Let \(n \in \mathbb{N} \) and \(n \geq m_0 \). Then for every \(x \in [a, b] \) and \(t \in [0, t^*] \) we get

\[
\| u_k(x, t) - \tilde{u}_{k,n}(x, t) \| = \left\| \sum_{m=n+1}^\infty u_{k,m}(x, t) \right\|
\]

\[
\leq \sum_{m=n+1}^\infty \| u_{k,m}(x, t) \| \leq \sum_{m=n+1}^\infty \gamma_h^{m-m_0} \| u_{k,m_0} \|
\]

\[
= \gamma_h^{n+1-m_0} \| u_{k,m_0} \|.
\]
5. Example

The theoretical considerations introduced in the previous sections will be illustrated now with example. In the discussed example we take the following values of parameters: \(s = 3/2, \ d = 3, \ a_1 = 5/2, \ a_2 = 5/4, \ l_1 = 6, \ l_2 = 2, \ k = 8/10, \ t^* = 1. \) Location of the interface is described with the aid of function \(\xi(t) = (t + 3)/2. \) Initial and boundary conditions are defined by means of functions

\[
\varphi_1(x) = \exp\left(\frac{3 - 2x}{10}\right),
\]

\[
\varphi_2(x) = \exp\left(\frac{3 - 2x}{5}\right),
\]

\[
\theta_1(t) = \exp\left(\frac{t + 3}{10}\right).
\]

For such initial data the exact solution of the problem is given by functions

\[
u_{1,e}(x, t) = \exp\left(\frac{t - 2x + 3}{10}\right),
\]

\[
u_{2,e}(x, t) = \exp\left(\frac{t - 2x + 3}{5}\right).
\]

As the initial approximations we take

\[
u_{1,0}(x, t) = \exp\left(\frac{3 - 2x}{10}\right),
\]

\[
u_{2,0}(x, t) = \exp\left(\frac{3 - 2x}{5}\right).
\]

In our case we can calculate the squared residual (21) for each of equations (1). In this way we obtain the vector \(E_n(h) = [E_{1,n}(h), E_{2,n}(h)]. \) Therefore it is natural to determine the optimal value of the convergence control parameter \(h \) as the element for which we get the minimal value of the norm of squared residual \(E_n \):

\[h_{opt} := \arg\min ||E_n(h)||.\]

In the considered case the numerically computed optimal value of the convergence control parameter is equal to 0.4053849 (\(h = 0.4053849 \)). Logarithm of the norm of squared residual \(E_3 \) is displayed in Fig. 2. Whereas, Fig. 3 presents the \(h \)-curves of \(u_{2,e}(\xi(0), 0) \) and \(u_{2,e}(\xi(1), 0). \) On the basis of this plot we conclude that as the effective region of the convergence control parameter we can take the interval \((0, 0.6)]\). The same interval we receive for the other \(h \)-curves.

In the example we were not able to find the sums of obtained series, therefore we present in Table 1 the absolute errors (\(\Delta \)) and the relative percentage errors (\(\delta \)) of approximating the exact solutions \(u_{k,e} \) by functions \(\hat{u}_{k,n} \) for \(k = 1, 2. \) The errors of reconstruction of the temperature distribution \(\theta \) and the heat flux \(q \) are collected in Table 2. As indicated by the example, if we have properly selected value of the convergence control parameter \(h \), then, if it is impossible to predict a general form of function \(u_{k,m} \) or calculate the sum of series in (16), it is sufficient to make use of the sum of several first functions \(u_{k,m} \) to provide a very good approximation of the sought solution. As revealed by the obtained results, together with an increase of the number of components in sum (20) the errors quickly decrease. In the presented example calculation of ten components ensures the absolute error at the level of \(10^{-6} \) and the relative error at the level of \(10^{-4}\% \) in case of the temperature and, respectively, \(10^{-5} \) and \(10^{-3}\% \) in case of the heat flux.

A plot of the reconstruction of initial conditions is displayed in Fig. 4. Next, Fig. 5 shows the plots of reconstruction errors for the missing boundary conditions (temperature \(\theta \) and heat flux \(q \)). With regard to taken conditions (28)–(31) and (32)–(35) for systems of equations (26) and (27), the remaining conditions of the original problem are fulfilled exactly by each approximate solution.
Errors of reconstruction of the temperature distributions (Δ – absolute error, δ – percentage relative error)

<table>
<thead>
<tr>
<th>n</th>
<th>Δ(\tilde{u}_1,n)</th>
<th>δ(\tilde{u}_1,n) [%]</th>
<th>Δ(\tilde{u}_2,n)</th>
<th>δ(\tilde{u}_2,n) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.40741 \cdot 10^{-2}</td>
<td>1.16758</td>
<td>0.11313</td>
<td>14.25655</td>
</tr>
<tr>
<td>2</td>
<td>1.60406 \cdot 10^{-3}</td>
<td>0.13307</td>
<td>7.36977 \cdot 10^{-3}</td>
<td>0.92875</td>
</tr>
<tr>
<td>3</td>
<td>2.32495 \cdot 10^{-4}</td>
<td>1.92876 \cdot 10^{-2}</td>
<td>4.52834 \cdot 10^{-3}</td>
<td>0.57067</td>
</tr>
<tr>
<td>4</td>
<td>4.26256 \cdot 10^{-5}</td>
<td>3.53619 \cdot 10^{-3}</td>
<td>8.66183 \cdot 10^{-4}</td>
<td>0.10916</td>
</tr>
<tr>
<td>5</td>
<td>9.62538 \cdot 10^{-6}</td>
<td>7.98515 \cdot 10^{-4}</td>
<td>5.22107 \cdot 10^{-4}</td>
<td>6.57969 \cdot 10^{-2}</td>
</tr>
<tr>
<td>6</td>
<td>2.59488 \cdot 10^{-6}</td>
<td>2.15269 \cdot 10^{-4}</td>
<td>1.78633 \cdot 10^{-4}</td>
<td>2.25116 \cdot 10^{-2}</td>
</tr>
<tr>
<td>7</td>
<td>8.13814 \cdot 10^{-7}</td>
<td>6.75134 \cdot 10^{-5}</td>
<td>8.12032 \cdot 10^{-5}</td>
<td>1.02334 \cdot 10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>2.91079 \cdot 10^{-7}</td>
<td>2.41477 \cdot 10^{-5}</td>
<td>3.01164 \cdot 10^{-5}</td>
<td>3.79533 \cdot 10^{-3}</td>
</tr>
<tr>
<td>9</td>
<td>1.16923 \cdot 10^{-7}</td>
<td>9.69984 \cdot 10^{-6}</td>
<td>1.29549 \cdot 10^{-5}</td>
<td>1.63260 \cdot 10^{-3}</td>
</tr>
<tr>
<td>10</td>
<td>5.21075 \cdot 10^{-8}</td>
<td>4.32280 \cdot 10^{-6}</td>
<td>4.82479 \cdot 10^{-6}</td>
<td>6.08029 \cdot 10^{-4}</td>
</tr>
</tbody>
</table>

Errors of reconstruction of the boundary conditions (Δ – absolute error, δ – percentage relative error)

<table>
<thead>
<tr>
<th>n</th>
<th>Δ(\tilde{\theta}_n)</th>
<th>δ(\tilde{\theta}_n) [%]</th>
<th>Δ(\tilde{\eta}_n)</th>
<th>δ(\tilde{\eta}_n) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.20774</td>
<td>34.13068</td>
<td>0.41319</td>
<td>84.87152</td>
</tr>
<tr>
<td>2</td>
<td>1.10863 \cdot 10^{-2}</td>
<td>1.82175</td>
<td>1.18744 \cdot 10^{-2}</td>
<td>2.43906</td>
</tr>
<tr>
<td>3</td>
<td>8.54057 \cdot 10^{-3}</td>
<td>1.40432</td>
<td>1.67003 \cdot 10^{-2}</td>
<td>3.43034</td>
</tr>
<tr>
<td>4</td>
<td>1.64159 \cdot 10^{-3}</td>
<td>0.26975</td>
<td>2.95667 \cdot 10^{-3}</td>
<td>0.60731</td>
</tr>
<tr>
<td>5</td>
<td>9.15386 \cdot 10^{-4}</td>
<td>0.15041</td>
<td>1.14107 \cdot 10^{-3}</td>
<td>0.23438</td>
</tr>
<tr>
<td>6</td>
<td>2.87311 \cdot 10^{-4}</td>
<td>4.72222 \cdot 10^{-2}</td>
<td>1.73445 \cdot 10^{-4}</td>
<td>3.56265 \cdot 10^{-2}</td>
</tr>
<tr>
<td>7</td>
<td>1.19841 \cdot 10^{-4}</td>
<td>1.96929</td>
<td>9.30739 \cdot 10^{-5}</td>
<td>1.91179 \cdot 10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>3.76351 \cdot 10^{-5}</td>
<td>6.18435 \cdot 10^{-3}</td>
<td>8.17855 \cdot 10^{-5}</td>
<td>1.67992 \cdot 10^{-2}</td>
</tr>
<tr>
<td>9</td>
<td>1.39789 \cdot 10^{-5}</td>
<td>2.29707</td>
<td>5.44008 \cdot 10^{-5}</td>
<td>1.11742 \cdot 10^{-2}</td>
</tr>
<tr>
<td>10</td>
<td>3.62801 \cdot 10^{-6}</td>
<td>5.96170 \cdot 10^{-4}</td>
<td>3.23537 \cdot 10^{-5}</td>
<td>6.64562 \cdot 10^{-3}</td>
</tr>
</tbody>
</table>

The calculations have been also executed for the perturbed input data. We have burdened the input data by the 0.5, 1.0 and 2.0% random error. In Table 3 we present the absolute and relative errors of reconstructing the temperature and the heat flux for various perturbations of input data and for the fifth-order approximate solution. Next, in Figs. 6 and 7 there are displayed the absolute errors of reconstruction of the boundary conditions in case of input data burdened by 1 and 2% error, obtained for the fifth-order approximate solution. On the basis of received results one can conclude that the investigated method is stable with regard to the errors of input data. Each time when the input data were burdened with errors, the error of the boundary conditions reconstruction did not exceed the error of the input data.

<table>
<thead>
<tr>
<th>Error</th>
<th>Δ(\tilde{\theta}_n)</th>
<th>δ(\tilde{\theta}_n) [%]</th>
<th>Δ(\tilde{\eta}_n)</th>
<th>δ(\tilde{\eta}_n) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5%</td>
<td>1.26959 \cdot 10^{-3}</td>
<td>0.20862</td>
<td>1.15961 \cdot 10^{-3}</td>
<td>0.23819</td>
</tr>
<tr>
<td>1.0%</td>
<td>1.85554 \cdot 10^{-3}</td>
<td>0.30491</td>
<td>2.63330 \cdot 10^{-3}</td>
<td>0.54089</td>
</tr>
<tr>
<td>2.0%</td>
<td>4.57154 \cdot 10^{-3}</td>
<td>0.79170</td>
<td>7.90250 \cdot 10^{-3}</td>
<td>1.62322</td>
</tr>
</tbody>
</table>
6. Conclusions

In the paper we have presented the application of the homotopy analysis method for solving the two-phase inverse Stefan problem. A concept of the investigated method consists in creation of a series, terms of which satisfy the differential equation resulting from the considered task and easier to solve in comparison with the original equation. We have proven in the paper that if this series is convergent then its sum determines the solution of the considered equation. We have formulated the sufficient condition for this convergence and we have estimated the error of approximate solution obtained by taking only the partial sum of the discussed series. The received series are usually fast convergent, therefore the use of only several terms ensures very good approximation of the exact solution. Presented exemplary calculations show that this method is effective for solving the problems under consideration. Additionally, the method appears to be stable with regard to the input data errors. In each considered case the errors of reconstruction of the missing boundary conditions were smaller than the perturbations of input data. An advantage of the approach is the fact that discretization of the region is not required like it is happening in classical methods, for example in the finite difference method or finite element method. Another advantage is that the solution is obtained in the form of the continuous function which can be used for the further analysis.

REFERENCES

