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Feedback saddle point equilibria for soft-constrained
zero-sum linear quadratic descriptor differential game

MUHAMMAD WAKHID MUSTHOFA, SALMAH, JACOB C. ENGWERDA and ARI SUPARWANTO

In this paper the feedback saddle point equilibria of soft-constrained zero-sum linear
quadratic differential games for descriptor systems that have index one will be studied for a
finite and infinite planning horizon. Both necessary and sufficient conditions for the existence
of a feedback saddle point equilibrium are considered.

Key words: soft-constrained zero-sum linear quadratic differential game, feedback infor-
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1. Introduction

In the last decade significant progress has been made in the study of linear quadratic
differential games. A linear quadratic differential game is a mathematical model that rep-
resents a conflict between different agents which control a dynamical system and each of
them is trying to minimize his individual quadratic objective function by giving a control
to the system. For this purpose, linear quadratic differential games have been applied
in many different fields like economic and management science [25], [4], to study is-
sues like e.g. economic competitions among companies and environmental management
games; military studies, to study armed conflicts; or parlor games, see e.g. [11]. More-
over, in optimal control theory it is well known that the issue to obtain robust control
strategies to solve the disturbance attenuation problem can be approached as a dynamic
game problem [1, 16, 3, 20].

Although the theory has been applied in many fields, however, an extension of
this theory is called for systems that can be modeled as a set of coupled differential
and algebraic equations. These, so-called, descriptor systems can be used to model
more accurately the structure of physical systems, including non-dynamic modes and
impulsive modes [13]. Applications of descriptor systems can be found in chemical
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processes [15], circuit systems [23, 24], economic systems [17], large-scale intercon-
nected systems [18, 29], mechanical engineering systems [12], power systems [28], and
robotics [19].

The study of differential games for descriptor systems was initiated by [10]. They
investigated the well-posedness of closed-loop Nash strategies with respect to singular
perturbations and presented a hierarchical reduction procedure to reduce the game to an
ordinary game which is well-posed. Further references that studied the time-continuous
games are [30, 31], while the discrete-time version of such games was studied by [32].
The index one case1 was studied by [6] for an open-loop information structure and in
[7, 8] for the feedback information structure. All of them solved the game by converting
it to a reduced ordinary game. The general index case was studied in [26], where the
theory of projector chains is used to decouple algebraic and differential parts of the
descriptor system, and then the usual theory of ordinary differential games is applied
to derive both necessary and sufficient conditions for the existence of feedback Nash
equilibria for linear quadratic differential games. Moreover, the open-loop framework of
soft-constrained descriptor differential game was studied in [20], also with its application
in robust optimal control design.

This paper is the continuation of the work of [7] and [1], where the general linear
quadratic differential game was considered for descriptor systems of index one. [1] have
studied the soft-constrained ordinary differential game while [7] have studied the feed-
back (hard-constrained) descriptor differential game with an infinite planning horizon.
By merging results from [1] and [7], in this paper, we study the feedback soft-constrained
zero-sum descriptor differential game. The problem addressed in this paper is to find the
smallest constraint value of γ > 0 -that appears in the cost function of the game (see e.g
equation (2))- under which the game still has a Nash equilibrium and then to find the
corresponding controllers for both players. We consider the game for both a finite and
infinite planning horizon. We assume that players act non-cooperatively and the infor-
mation they have is the current value of the state. We solve the problem by changing the
descriptor differential game into a reduced ordinary differential game using the results
in [6] and [7]. Like in [7] in this paper we try to provide complete parametrization of
all feedback saddle point solution in term of descriptor systems. A different approach
for such problem has been done by [27] where the problem is solved directly without
modifying into ordinary game.

The feedback information structure implies that the resulting equilibrium actions
have the important property that they are strongly time consist. That is, the equilibrium
solution of the truncated game also remains an equilibrium solution for all consistent
initial conditions xt1 (that can be attained at t1 from some consistent initial state at t = 0
for every t1 ∈ (0, t f )) off the equilibrium path. This property is, e.g., not satisfied by
equilibrium actions constructed under an open-loop information structure [5].

1Index roughly translates to the number of differentiations required to represent a differential algebraic
equation as a differential equation.
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This paper is going to be organized as follows. Section 2 will include some basic re-
sults of linear quadratic differential games for descriptor systems and also state the main
problem of this paper. Section 3 will present the main results for the soft-constrained
zero-sum game both on a finite and infinite planning horizon as well as both for γ = 1
and γ ̸= 1. Section 4 will illustrate in an example some results from the previous sections.
At last, section 5 will conclude.

2. Preliminaries

In this paper we consider a game modeled by the set of coupled differential and
algebraic equations

Eẋ(t) = Ax(t)+B1u1 (t)+B2u2 (t) , x(0) = x0 (1)

where E,A ∈ R(n+r)×(n+r), rank(E) = n, Bi ∈ R(n+r)×mi and x0 is the consistent initial
state 2 (see (10) for a characterization). Vectors ui ∈Us are the actions player i can use to
control the system, where Us represents the set of all admissible actions for both players.
The first player (minimizer) has a quadratic cost functional Jγ given by

Jγ (u1,u2)=

t f∫
0

[
xT (t)Q̄x(t)+uT

1 (t) R̄1u1 (t)− γuT
2 (t) R̄2u2 (t)

]
dt + xT (t f ) Q̄t f x(t f ) (2)

where the parameter γ ∈ R is a weighting for the action of the second player who likes
to maximize Jγ (or, stated differently, to minimize −Jγ). The game defined by (1,2) is
called the (zero-sum) soft-constrained differential game. This terminology is used to
capture the feature that in this game there is no hard bound with respect to u2 [1].

We start this section by stating some required basic results. First, we recall from [2]
some results concerning the descriptor system

Eẋ(t) = Ax(t)+ f (t) , x(0) = x0 (3)

and the associated matrix pencil
λE −A. (4)

System (3) and (4) are said to be regular if the characteristic polynomial is not identically
zero. System (3) has a unique solution for any consistent initial state if and only if it is
regular. Then, from [9] we recall the so-called Weierstrass’ canonical form.

Theorem 2 If (4) is regular, then there exist nonsingular matrices X and Y such that

Y T EX =

[
In 0
0 N

]
and Y T AX =

[
A1 0
0 Ir

]
(5)

2An initial state is called consistent if with this choice of the initial state the system (1) has a solution.
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where A1 is a matrix in Jordan form whose elements are the finite eigenvalues, Ik ∈Rk×k

is the identity matrix and N is a nilpotent matrix also in Jordan form. A1 and N are
unique up to permutation of Jordan blocks.

Then, throughout this paper the next assumptions are made w.r.t system (1) (see also [7]
and [14]):

1. matrix E is singular

2. det(λE −A) ̸= 0

3. system (1) impulse controllable

4. matrix N = 0 in (5).

Assumption 4. implies that system (1) has index one.
Following the procedure in [21] and [22] yield that (u∗1 (t) ,u

∗
2 (t)) is a saddle point

solution for the differential game (1,2) if and only if (u∗1 (t) ,u
∗
2 (t)) is a saddle point

solution for the differential game defined by dynamical system

ẋ1 (t) = A1x1 (t)+Y1B1u1 (t)+Y1B2u2 (t) , x1 (0) =
[

In 0
]

X−1x0 (6)

with the cost function for first player

Jγ (u1,u2) =

t f∫
0

{
zT (t)Mγz(t)

}
dt + xT

1 (t f )Qt f x1 (t f ) (7)

where

[
x1 (t)
x2 (t)

]
= X−1x(t), x1 (t) ∈Rn, x2 (t) ∈Rr, zT (t) =

[
xT

1 (t) uT
1 (t) uT

2 (t)
]

and

Mγ =

 Q V W
V T R1̄1̄ N
W T NT R2̄2̄γ

 . (8)

The spellings of the matrices defined in (8) and other additional notation that will be
used throughout this paper are presented in the Appendix.

In this feedback information framework we assume that the controls given by both
players are in linear feedback control form defined by

ui (t) = Fi(t)x(t) ∈Us, i = 1,2, (9)

where Fi(t) is a piecewise continuous function. Furthermore, as has been discussed in
[7], the set of consistent initial states for system (1) is{

x1 (0) ,x2 (0)
∣∣∣x2 (0) = S−1

[
B12 B22

]
FX1x1(0), x1(0) ∈ Rn

}
. (10)
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Following the procedure in [7], we have that (u∗1 (t) ,u
∗
2 (t)) is a saddle point solution

for the differential game (6,7) if and only if
(

F̃∗
1 (t) , F̃∗

2 (t)
)

is a saddle point solution
for the differential game defined by the dynamical system

ẋ1 (t) =

(
A1 +

[
B11 B21

][ F̃1(t)
F̃2(t)

])
x1 (t) , x1 (0) =

[
In 0

]
X−1x0 (11)

with cost function for the first player

Jγ

(
F̃1, F̃2

)
=

t f∫
0

xT
1 (t)

[
I F̃T

1 F̃T
2

]
M̃γ

 I
F̃1

F̃2

x1 (t)

dt + xT
1 (t f )Qt f x1 (t f ) (12)

where

M̃γ =

 Q̃ Ṽ W̃
Ṽ T R̃11 Ñ
W̃ T ÑT R̃22γ

 .
Now, we define our main object of study in this paper, the feedback saddle point

(FSP) equilibrium [6], [5].

Definition 1 (F∗
1 (t),F

∗
2 (t)) ∈ Us is a FSP equilibrium for the differential game (1,2) if

for every (F1(t),F
∗

2 (t)) ,(F1(t),F
∗

2 (t)) ∈Us,

Jγ (F∗
1 (t),F2(t))¬ Jγ (F∗

1 (t),F
∗

2 (t))¬ Jγ (F1(t),F
∗

2 (t)) .

Then, the addressed problem in this paper is to find the set of γ such that the differential
game (1,2) has a FSP solution ui (t) = Fi(t)x(t). Furthermore, in case the FSP solution
exists, we want to characterize the set of FSP solutions. This, both for a finite and infinite
planning horizon.

3. Soft-constrained linear quadratic descriptor differential game

3.1. Finite planing horizon

In this section we will characterize the set of FSP solutions for the game (1,2) using
the reduced ordinary differential game described by the dynamical system (11) with the
cost function (12). For γ = 1 the problem reduces to find the FSP solutions for the game

J1

(
F̃1, F̃2

)
=

t f∫
0

xT
1 (t)

[
I F̃T

1 F̃T
2

]
M̃

 I
F̃1

F̃2

x1 (t)

dt + xT
1 (t f )Qt f x1 (t f ) (13)
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where

M̃ =

 Q̃ Ṽ W̃
Ṽ T R̃11 Ñ
W̃ T ÑT R̃22

 .
From [7] one straightforwardly derives the next result.

Theorem 3 Assume that γ = 1, matrix G̃ is invertible, the matrices Q̃ and Qt f are sym-
metric and R̃ii > 0, i = 1,2. Then (F1(t),F2(t)) is an FSP equilibrium for (1,2) for eve-
ry consistent initial state if and only if Fi(t) = F̃i(t)O+(t)+ Zi (I −O(t)O+(t)), where

Zi ∈Rmi×(n+r), O(t) = X

[
I

−B12F̃1(t)−B22F̃2(t)

]
, O+ denotes the Moore-Penrose in-

verse of O and
(

F̃1(t), F̃2(t)
)

are given by[
F̃1(t)
F̃2(t)

]
=−G̃−1

[
BT

11K1(t)+Ṽ T
1

−BT
21K1(t)−W̃ T

1

]

where K1(t) is the symmetric solution of the Riccati differential equation (RDE) on [0, t f ]

K̇ (t) =−AT
1 K (t)−K (t)A1 − Q̃+

[
Ṽ +K (t)B11 W̃ +K (t)B21

]
G̃−1

×
[

Ṽ +K (t)B11 −
(

W̃ +K (t)B21

) ]T
, K (t f ) = Q̄t f .

(14)

Moreover, the saddle point value of the game is L1 = xT
0 X−T

[
I 0

]T
K1

[
I 0

]
X−1x0.

Next, for γ ̸= 1, in order to guarantee the differential game (1,2) has an FSP solution
we must assure that the following Riccati differential equation

K̇ (t) =−AT
1 K (t)−K (t)A1 − Q̃+

[
Ṽ +K (t)B11 W̃ +K (t)B21

]
G̃−1

γ

×
[

Ṽ +K (t)B11 −
(

W̃ +K (t)B21

) ]T
, K (t f ) = Q̄t f .

(15)

does not have a conjugate point on [0, t f ]. Following [1], the next lemma is useful to
characterize when the Riccati differential equation (15) has a solution.

Lemma 1 For γ large enough, the Riccati differential equation (15) has a solution on
[0, t f ].

Therefore, it makes sense to introduce the following nonempty set

ΓCL = {infΓ1, infΓ2} , γ̂CL = maxΓCL (16)
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where

Γ1 =
{

γ̃ > 0
∣∣∣∀γ > γ̃, R̃22γ > 0

}
Γ2 =

{
γ̃ > 0

∣∣∀γ > γ̃, the RDE (15) does not have a conjugate point on [0, t f ]
}
.

For γ = γ̂CL we have the next two lemmas [1].

Lemma 2 For γ = γ̂CL the Riccati differential equation (15) has a conjugate point.

Lemma 3 For any fixed x0 ∈ Rn+r, the function min
F1

Jγ (F1,F2) has a finite supremum in

F2 ∈Us if γ > γ̂CL, and only if γ­ γ̂CL.

Lemma 1 to 3 above along with Theorem 3 in [7] can be used to arrive at the following
theorem (see also [1] for the ordinary game).

Theorem 4 Consider the linear quadratic zero-sum soft-constrained differential game
with a feedback information structure (1,2) defined on the interval [0, t f ], assume that
R̃11, R̃22γ > 0 and let the parameter γ̂CL be as defined by (16). Then:

1. For γ > γ̂CL, the Riccati differential equation (15) does not have a conjugate point
on the interval [0, t f ].

2. For γ > γ̂CL, the differential game (1,2) admits an FSP solution, which is given by

Fi(t) = F̃i(t)O+(t)+Zi
(
I −O(t)O+(t)

)
(17)

where Zi ∈ Rmi×(n+r),

O(t) = X

[
I

−B12F̃1(t)−B22F̃2(t)

]
and

(
F̃1(t), F̃2(t)

)
are given by

[
F̃1(t)
F̃2(t)

]
=−G̃−1

γ

[
BT

11K1γ(t)+Ṽ T
1

−BT
21K1γ(t)−W̃ T

1

]
, (18)

where K1γ(t) is the symmetric solution of the Riccati differential equation (15).

3. For γ > γ̂CL, the saddle point value of the game is

Lγ = xT
0 X−T

[
I 0

]T
K1γ(0)

[
I 0

]
X−1x0.

4. If R̃22γ̂CL > 0, for γ < γ̂CL the differential game has an unbounded upper value for
all F1 ∈Us as well as an unbounded lower value.
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Proof Part 1 of the theorem follows from the definition of (16). Next consider part 2.
Since (15) does not have a conjugate point on the interval [0, t f ] then there exists a K1γ(t)
as a solution of (15). By Theorem 3 in [7] we have then that (18) is the unique FBSP
solution for the reduced game (11,12). From the relationship

F̃i := FiX

[
I
H

]
, (19)

we have then that the set of all FBSP solutions are given by (17). Part 3 follows directly
from Theorem 3 in [7]. Finally, part 4 follows from part (ii) of Theorem 4.2 in [1].

3.2. Infinite planning horizon

In this section we consider the infinite planning horizon case, that is the game defined
by dynamical system (1) with cost function, to be minimized for the first player,

J∞
γ (u,w) =

∞∫
0

[
xT (t) Q̄x(t)+uT (t) R̄1u(t)− γwT (t) R̄2w(t)

]
dt (20)

or, equivalently,

J∞
γ

(
F̃1, F̃2

)
=

∞∫
0

xT
1 (t)

[
I F̃T

1 F̃T
2

]
M̃γ

 I
F̃1

F̃2

x1 (t)

dt (21)

and for the second player −J∞
γ .

For well-posedness sake of the cost functional we restrict, in this section we also
restrict the controller in the sense that it must stabilize the system for all consistent
initial states. As discussed in [7] we assume that the feedback matrix F belongs to the
set

F :=

{
F =

[
FT

1 FT
2

]∣∣∣∣∣ all finite eigenvalues of(E,A+BF) are stable
and(E,A+BF) has index one,

}
(22)

where B =
[

B1 B2

]
. That is, we assume that the matrix pairs (A1,Bi1) , i = 1,2, are

stabilizable. So, in principle, each player is capable to stabilize the first part of the trans-
formed system on his own. Furthermore, to ensure that such a stabilizing control for
player one is generated naturally through the solution (optimization) process, unstable
modes of A1 will have to be observable through Q̃. So, we make the assumption that the
pair

(
A1, Q̃

1
2

)
is detectable [1].
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For γ = 1 we get the special form for cost function (21):

J∞
(

F̃1, F̃2

)
=

∞∫
0

xT
1 (t)

[
I F̃T

1 F̃T
2

]
M̃

 I
F̃1

F̃2

x1 (t)

dt. (23)

Instead of the Riccati differential equation (14) we consider the following associated
algebraic Riccati equation which will play an important role in this section

AT
1 K1+K1A1+Q̃1−

[
Ṽ1+K1B11W̃1+K1B21

]
G̃−1

[
Ṽ1+K1B11−

(
W̃1+K1B21

)]T
=0. (24)

From [7] we obtain straightforwardly the following theorem.

Theorem 5 Assume that γ = 1, matrix G̃ is invertible and the matrices R̃ii > 0, i = 1,2.
Then (F1,F2) is an FSP equilibrium for (1,2) for every consistent initial state if and

only if Fi = F̃iO+ + Zi (I −OO+), where Zi ∈ Rmi×(n+r), O = X

[
I

−B12F̃1 −B22F̃2

]
and

(
F̃1, F̃2

)
are given by[

F̃1

F̃2

]
=−G̃−1

[
BT

11K1 +Ṽ T
1

−BT
21K1 −W̃ T

1

]
,

where K1 is the symmetric solution of the algebraic Riccati equation (24) such that

A1 −
[

B11 B21

]
G̃−1

[
BT

11K1 +Ṽ T
1

−BT
21K1 −W̃ T

1

]

is stable. Moreover, the cost for player one is L1 = xT
0 X−T

[
I 0

]T
K1

[
I 0

]
X−1x0

and for player two is −L1.

To prove for γ ̸= 1 in the next theorems, let us introduce the counterpart of (16)

Γ∞
CL = {infΓ∞

1 , infΓ∞
2 } , γ∞ = maxΓ∞

CL, (25)

where
Γ∞

1 =
{

γ̃ > 0
∣∣∣∀γ­ γ̃, R̃22γ > 0

}
,

Γ∞
2 =

{
γ̃ > 0

∣∣∣∣∀γ­ γ̃, J̄∞
γ := inf

F1∈Us
sup

F2∈Us

J∞
γ (F1,F2)¬ 0

}
.

Here J̄∞
γ denotes the upper value of the game (1,20). We also introduce the following

algebraic Riccati equation corresponding to the Riccati differential equation (15)

AT
1 K1+K1A1+Q̃1−

[
Ṽ1+K1B11W̃1+K1B21

]
G̃−1

γ

[
Ṽ1+K1B11−

(
W̃1+K1B21

)]T
=0. (26)
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The next theorem characterizes when the game defined by (11,21) has a finite upper
value if Q­ 0 (see [1] for the proof).

Theorem 6 Let (A1,Bi1), i = 1,2 be stabilizable and
(

A1, Q̃
1
2

)
be detectable. Then,

there exists a finite scalar γ∞ > 0 such that for all γ > γ∞ the game defined by (11,21)
has finite upper value, i.e.,

J̄∞
γ (x0)< ∞, for all x0 ∈ Rn+r, (27)

and there exists a nonnegative definite solution to (26), say K+
1γ, with the further property

that

F̂+
γ := A1 −

[
B11 B21

]
G̃−1

γ

[
BT

11K+
1γ +Ṽ T

1

−BT
21K+

1γ −W̃ T
1

]
(28)

is stable.
Such solution K+

1γ has the following additional properties (for all γ > γ∞ ):

1. K+
1γ > 0, if

(
A1, Q̃

1
2

)
is observable;

2. K+
1γ is the unique solution of (26) in the class of nonnegative definite matrices that

satisfy (28);

3. In the class of nonnegative definite matrices, K+
1γ is the minimal solution of (26);

4. The matrix

Â1γ := A1 −
[

B11 0
]

G̃−1
γ

[
BT

11K+
1γ +Ṽ T

1

0

]
(29)

is stable;

5. J̄∞
γ (x0) := sup

F̃2∈Us

J∞
γ

(
F̃∗

1 , F̃2

)
= xT

0 X−T
[

I 0
]T

K+
1γ

[
I 0

]
X−1x0, where

F̃∗
1 =−

[
I 0

]
G̃−1

γ

[
BT

11K+
1γ +Ṽ T

1

−BT
21K+

1γ −W̃ T
1

]
; (30)

6. K+
1γ = lim

t f→∞
K1γ (t; t f ) for Qt f = 0.

If γ < γ∞, the upper value is infinite, and (26) has no real solution which also satisfies
property 4.

Next, the assumption of detectability of
(

A1, Q̃
1
2

)
can be relaxed by requiring that

the system trajectory be asymptotically stable [1]. We present this consequence in the
following theorem.
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Theorem 7 Let (A1,Bi1), i = 1,2 be stabilizable, Q ­ 0 and
(

A1, Q̃
1
2

)
have no unob-

servable modes on the imaginary axis. Then, there exists a finite scalar γ∞ > 0, such that
for all γ > γ∞ the game in which player one is restricted to stabilizing controllers has a
finite upper value, i.e.,

J̄∞
γ (x0) := inf

F̃1∈Us:x(∞)=0
sup

F̃2∈Us

J∞
γ

(
F̃1, F̃2

)
< ∞, for all x0 ∈ Rn+r,

and there exists a nonnegative definite solution to (26), say K̃1γ, with the further property
that

ˆ̃Fγ := A1 −
[

B11 B21

]
G̃−1

γ

[
BT

11K̃1γ +Ṽ T
1

−BT
21K̃1γ −W̃ T

1

]
(31)

is stable.
Such solution K̃1γ has the following additional properties (for all γ > γ∞):

1. K̃1γ = lim
t f→∞

K1γ (t; t f ) , for Qt f = Σ̃, where Σ̃ is the unique maximal solution of the

algebraic Riccati equation associated with the limiting control problem

AT
1 Σ+ΣA1 − (ΣY1B1 +V1)R−1

11

(
BT

1 Y T
1 Σ+V T

1
)
+Q = 0; (32)

2. K̃1γ is the unique solution of (26) in the class of nonnegative definite matrices that
satisfy (31);

3. In the class of nonnegative definite matrices K1 with the property K1 ­ Σ̃, K̃1γ is
the minimal solution of (26);

4. The matrix Ã1γ := A1 −B11G̃−1
γ

[
BT

11K̃1γ +Ṽ T
1

]
is stable;

5. J̄∞
γ := sup

F̃2∈Us

J∞
γ

(
F̃∗

1 , F̃2

)
= xT

0 X−T
[

I 0
]T

K̃1γ

[
I 0

]
X−1x0, where

F̃∗
1 =−

[
I 0

]
G̃−1

γ

[
BT

11K̃1γ +Ṽ T
1

−BT
21K̃1γ −W̃ T

1

]
.

If γ < γ∞, the upper value is infinite, and (26) has no real solution which also satisfies
property 4.

Next, we characterize FSP solutions for the infinite-horizon linear quadratic soft-
constrained differential game (1,20). One of the interesting questions in this situation is



484 M.W. MUSTHOFA, SALMAH, J.C. ENGWERDA, A. SUPARWANTO

if (15) does not have a conjugate point on [0, t f ] for any t f and in case lim
t f →∞

K1 (t; t f ) = K̄1

exists, does this necessarily imply that the pair[
F̃1

F̃2

]
=−G̃−1

γ

[
BT

11K̄1 +Ṽ T
1

−BT
21K̄1 −W̃ T

1

]
(33)

is in saddle point equilibrium? [1] has shown that there is no continuity in the saddle
point property of the maximizers feedback policy, as t f → ∞, whereas there is continuity
in the value of the game and in the feedback policy of the minimizer. Applying this fact
and Theorem 5 to the infinite-horizon linear quadratic soft-constrained differential game
(1,20) yields then the following theorem (see [1] for the ordinary game).

Theorem 8 Consider the infinite-horizon linear quadratic soft-constrained differential
game (1,20) with a feedback information structure. Assume an arbitrary consistent initial
state x0 ∈ Rn+r, Qt f = 0. Moreover assume that R̃11, R̃22γ > 0 and the pair

(
A1, Q̃

1
2

)
is

detectable. Then:

1. For each fixed t, the solution to (15), K1 (t; t f ), is nondecreasing in t f , that is if
(15) has no conjugate point in a given interval [0, t f ], then

K1
(
t; t f

‘)−K1
(
t; t“

f
)
­ 0, t f > t‘

f > t“
f ­ 0;

2. If there exists a nonnegative definite solution of (26), there is a minimal solution,
denoted K+

1γ. This matrix has the property that K+
1γ −K1

(
t; t f

)
­ 0 for all t f ­ 0,

where K1

(
t; t f

)
is the solution of (15) with Qt f = 0. If

(
A1, Q̃

1
2

)
is observable,

then every nonnegative definite solution of (26) is positive definite;

3. The differential game (1,20) has equal upper and lower values if and only if the
algebraic Riccati equation (26) admits a nonnegative definite solution, in which
case the common value is

L∞∗
γ = xT

0 X−T
[

I 0
]T

K+
1γ

[
I 0

]
X−1x0;

4. If the upper value is finite for some γ > 0, (say, γ = γ∞), then it is bounded and
equal the lower value for all γ > γ∞;

5. If K+
1γ ­ 0 exists let F∗

i be given by

F∗
i = F̃∗

i O++Zi
(
I −OO+

)
, (34)
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where Zi ∈ Rmi×(n+r), O = X

[
I

−B12F̃∗
1 −B22F̃∗

2

]
, F̃∗

1 and F̃∗
2 are given by

[
F̃∗

1

F̃∗
2

]
=−G̃−1

γ

[
BT

11K+
1γ +Ṽ T

1

−BT
21K+

1γ −W̃ T
1

]
. (35)

Then F∗
1 is the steady-state feedback controller attains the finite upper value, in

the sense that

sup
F2∈Us

J∞
γ (F∗

1 ,F2) = L∞∗
γ = xT

0 X−T
[

I 0
]T

K+
1γ

[
I 0

]
X−1x0, (36)

and F∗
2 is the maximizing feedback solution in (20).

6. If the upper value is bounded for some γ > 0, (say, γ = γ∞), then for all γ > γ∞, the
two feedback matrices (28) and (29) are asymptotically stable;

7. For γ > γ∞, K+
1γ ­ 0 is the unique solution of (26) in the class of nonnegative

definite matrices which make F̂γ stable;

8. Since (A1,Bi1), i = 1,2 are stabilizable then the upper value is bounded for some
finite γ > 0.

Proof Similar as in the proof of Theorem 4, we can restrict for the proof of most state-
ments to the reduced order system. For part 1 – 4 see part (i) – (iv) of Theorem 4.8
from [1]. Part 5 follows by using the relationship (19) again, using the results of The-
orem 3 from [7]. Finally, part 6 – 8 result again, from part (vi) – (viii) of Theorem 4.8
in [1].

The more general version of Theorem 8 can be obtained by relaxing the detectability
condition of

(
A1, Q̃

1
2

)
. For this condition by letting γ−2 = 0 in (26) we arrive at the stan-

dard algebraic Riccati equation (32) that arises in linear regulator theory for descriptor
system (see also [1] for the ordinary game). Let Σ̃+ ­ 0 denote its maximal solution. We
are now in position to state the following theorem (For a proof we refer to Theorem 4.8’
in [1]).

Theorem 9 Consider the framework of Theorem 8, but with (A1,Bi1), i = 1,2, stabiliz-
able and

(
A1, Q̃

1
2

)
having no unobservable modes on the imaginary axis. Let Σ̃+ be the

unique maximal solution of (32). Then:

1. There exists a finite γ > 0, (say, γ = γ∞), such that for all γ > γ∞, the upper value
is bounded, and for γ < γ∞, it is unbounded;
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2. For all γ > γ∞, in the class of all symmetric matrices bounded from below by Σ̃+,
there is a minimal one that solves (26), to be denoted K̃+

1γ. This matrix has the

additional property that K̃+
1γ −K1

(
t; t f

)
­ 0 for all t f ­ 0, where K1

(
t; t f

)
is the

solution of (14) with Qt f = Σ̃+ and γ fixed;

3. For all γ> γ∞, the differential game has equal upper and lower value. The common
value of the game is

L∞∗
γ = xT

0 X−T
[

I 0
]T

K̃+
1γ

[
I 0

]
X−1x0;

4. For all γ > γ∞, the steady-state FSP equilibrium F∗
i given by F∗

i = F̃∗
i O+ +

Zi (I −OO+), where Zi ∈Rmi×(n+r), O = X

[
I

−B12F̃∗
1 −B22F̃∗

2

]
, F∗

1 and F̃∗
2 are

given by (35). F∗
1 attains the finite upper value L∞∗

γ , and

sup
F2∈Us

J∞
γ (F∗

1 ,F2) = L∞∗
γ = xT

0 X−T
[

I 0
]T

K̃+
1γ

[
I 0

]
X−1x0.

The maximizing feedback solution above then is F∗
2 ;

5. For all γ > γ∞, the two matrices (28) and (29) are stable (again with K̃+
1γ taken

above);

6. For all γ > γ∞, the matrix K̃+
1γ defined in 2. is the unique solution of (26) in the

class of nonnegative definite matrices which make (28) stable;

7. For γ< γ∞, the algebraic Riccati equation (26) has no real solution that also makes
(29) stable.

4. Numerical example

Consider the zero-sum game between player 1 and player 2 defined by the system

Eẋ(t) = Ax(t)+B1u1 (t)+B2u2 (t) , x(0) = x0 (37)

and cost function to be minimized by player 1

J1γ (u1,u2) =
∞∫
0

{
xT (t) Q̄x(t)+uT

1 (t) R̄1u1 (t) − γ uT
2 (t) R̄2u2 (t)

}
dt (38)
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where E =

[
0 0
1 −1

]
, A =

[
0 1
1 −2

]
, B1 =

[
1
0

]
, B2 =

[
1
1

]
, Q̄ =

[
5 1
0 1

]
,

R̄1 = [1], R̄2 = [3], x(0) =

[
1
0

]
and x(t) =

[
x1 (t)
x2 (t)

]
∈R2. Player 1 is the minimizing

player which controls the slow dynamics of the systems (described by the state x1 (t)),
using the control u1 (t) , whereas player 2 is the maximizing player who controls the
fast dynamics of the systems (described by the state x2 (t)), using control u2 (t). With

Y T =

[
1 1
1 0

]
and X =

[
1 1
0 1

]
the matrix pencil (E,A) can be rewritten into its

Weierstrass’ canonical form (5) where X1 = Y T
2 =

[
1
0

]
, X2 = Y T

1 =

[
1
1

]
, N = [0],

and J = [1]. Then, the game can be described by (11,21) with matrix M̃γ and G̃γ :

M̃γ =

 1 −3 −3
−3 14 13
−3 13 11+ γ

 and G̃γ =

[
14 13
−13 11+ γ

]
,

respectively. Using (35) we have[
F̃∗

1

F̃∗
2

]
=

 (24+γ)K+
1γ−3γ−72

14γ−15
−K+

1γ+3
14γ−15


where K+

1γ =
34γ+114−

√
1176γ2+7324γ−7428
2γ+46 is the nonnegative definite solution of the alge-

braic Riccati equation

−(γ+23)K+2
1γ +(34γ+114)K+

1γ +(5γ−222) = 0,

such that
(23+ γ)K+

1γ +11γ−84

14γ−15
< 0. (39)

Solving (39) above, we get γ∞ = 15
14 = 1.0714. Furthermore, after some calculations,

matrix O and O+ result as

O =

 −(23+γ)K+
1γ+17γ+70

14γ−15

− (23+γ)K+
1γ−3γ−85

14γ−15

 and O+ =
[

Θ1 Θ2

]
respectively, where

Θ1 =
196γ2 −420γ+225(

γ2 + γ+529
)

K+2
1γ −

(
6γ2 +69γ+3979

)
K+

1γ +205γ2 +90γ+7550
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and

Θ2 = (
−196γ3 +4928γ2 +9435γ−5175

)
K+

1γ +2156γ3 −2422γ2 +4200γ+225

(143γ3−γ2+7391γ−7935)K+2
1γ −(84γ3+856γ2+54671γ−59685)K+

1γ+2870γ3−1815γ2+93350γ+116250
.

If γ = 3.5, this yields the next set of equilibrium strategies (34) (see Theorem 8):[
F∗

1

F∗
2

]
=

[
−0.4520 −0.3216
0.0164 0.0117

]
+

[
z11 z12

z21 z22

][
0.3099 −0.4910
−0.4356 0.6901

]
(40)

=:

[
F∗

11 F∗
12

F∗
21 F∗

22

]

where zi j ∈ R, i, j = 1,2.
Next, to analyze the robustness property of the strategies above, we consider the

system if one uses the equilibrium actions F∗
i from (40) to control dynamical system

(37). Then the closed-loop system is described by[
1 0
0 0

]
ẋ(t) =

[
1+F∗

11 +2F∗
21 F∗

11 +F∗
12 +2F∗

21 +2F∗
22

F∗
11 +F∗

21 1+F∗
11 +F∗

12 +F∗
21 +F∗

22

]
x(t) =: Aclx(t) . (41)

To increase robustness, the players have to choose the zi j ∈ R, i, j = 1,2 in such a way
that the closed-loop system (41) becomes as stable as possible. Therefore, we need to
determine zi j ∈ R, i, j = 1,2 in such a way that the real part of the largest root of the
polynomial in λ

z(zi j, i, j = 1,2) :=

{∣∣∣∣∣ λ−1−F∗
11 −2F∗

21 −F∗
11 −F∗

12 −2F∗
21 −2F∗

22

−F∗
11 −F∗

21 −1−F∗
11 −F∗

12 −F∗
21 −F∗

22

∣∣∣∣∣= 0

}

is minimal. Elementary calculations show that

λ =
(1+F∗

11 +F∗
12 +F∗

21 +F∗
22)+(F∗

11 +2F∗
21 +F∗

12F∗
21 −F∗

11F∗
22)

1+F∗
11 +F∗

12 +F∗
21 +F∗

22
.

So, to enforce a minimal real part of λ the next two conditions must be satisfied 1+
F∗

11+F∗
12+F∗

21+F∗
22 =−ε (where ε is a small positive number) and F∗

11+2F∗
21+F∗

12F∗
21−

F∗
11F∗

22 > 0. Then, as there is a lot of freedom in the choice of the zi j values, by choosing
zi j accordingly the system becomes as stable as possible. Numerical simulations show
that, choosing z11 and z21 as small as possible and z12 and z22 as big as possible, will
attain a robust strategy for the game (37,38).

Another option to increase robustness occurs if the parameter γ ∈ Γ∞
CL could be cho-

sen freely by the players. Then, choosing γ = γ∞ + ε for ε sufficiently small will make
the closed loop system as stable as possible. Figure 1 illustrates the optimal trajectory of
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Figure 1. Optimal trajectory of state x∗1 (t)

Figure 2. Equilibrium actions
(
u∗1 = F∗

1 x,u∗2 = F∗
2 x
)

Figure 3. The comparison of the optimal trajectory uses open-loop and feedback controller
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state x∗1 (t) when player 1 uses the equilibrium strategies (40) for different values of γ.
Figure 2 illustrates the equilibrium actions of the game used by both players for γ = 3.5.
Compared to the open-loop controller, the feedback controller has advantages in terms
of speed to reach stability. Based on the results obtained in [20], Figure 3 shows a com-
parison of the optimal trajectory obtained if the system uses the open-loop and feedback
controller, respectively.

5. Concluding remarks

This paper studies the linear quadratic zero-sum soft-constrained differential game
for descriptor systems which have index one. Necessary and sufficient conditions for the
existence of an FSP equilibrium have been derived. The paper shows how the solution
of the game depends on a Riccati differential equation for the finite horizon case and an
algebraic Riccati equation for the infinite horizon. The paper also shows how the critical
value γ̂CL for finite planning horizon and γ∞ for infinite planning horizon play a key role.
A numerical example illustrating some of the theoretical results is presented.

The problem addressed in this paper is restricted to index one descriptor systems. To
find an FSP equilibrium in a zero-sum game that has higher order index is still an open
problem to be analyzed.

Appendix

We use the next shorthand notation in this paper:

Q := XT
1 Q̄X1 =: Q̃, V :=−XT

1 Q̄X2Y2B1, W :=−XT
1 Q̄X2Y2B2,

N := BT
1 Y T

2 XT
2 Q̄X2Y2B2, Ṽ :=−XT

1 Q̄X2B12 +XT
1 V , W̃ :=−XT

1 Q̄X2B22 +XT
1 W ,

Ñ := BT
12XT

2 Q̄X2B22 −V T X2B22 −BT
12XT

2 W +N, R1̄1̄ := BT
1 Y T

2 XT
2 Q̄X2Y2B1 + R̄1,

R̃11 := BT
12XT

2 Q̄X2B12 −V T X2B12 −BT
12XT

2 V +R11, R2̄2̄γ := BT
2 Y T

2 XT
2 Q̄X2Y2B2 − γR̄2,

R̃22 := BT
22XT

2 Q̄X2B22 −W T X2B22 −BT
22XT

2 W +R22,

R̃22γ := BT
22XT

2 Q̄X2B22 −W T X2B22 −BT
22XT

2 W + γR22,

S := I +
[

B12 B22

]
FX2, F =

[
FT

1 FT
2

]
, Bi1 =

[
I 0

]
Y T Bi,

Bi2 =
[

0 I
]

Y T Bi, F̃i :=FiX

[
I
H

]
, H :=−

(
I+
[

B12 B22

]
FX2

)−1 [
B12 B22

]
FX1,
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G̃ =

[
R̃11 Ñ1

−ÑT
1 R̃22

]
, G̃γ =

[
R̃11 Ñ1

−ÑT
1 R̃22γ

]
.
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