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Adaptive, compensating control of wheel slip in railway vehicles

J. KABZIŃSKI∗

Institute of Automatic Control, Lodz University of Technology, 18/22 Stefanowskiego St., 90-924 Lodz, Poland

Abstract. The problem of slip stabilization and tracking in railway vehicle applications is considered. A nonlinear adaptive control com-
pensating for unknown disturbance in motion dynamics such as: friction, contact force variations and air resistance is proposed. The control
is based on approximate models with adaptive parameters. The stability of several control algorithms is proven and performance of the
derived controllers is investigated. The proposed controllers are evaluated in numerical simulations and by DSP application to slip control
in a friction gear driven by a permanent magnet synchronous motor.
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1. Introduction

The tangential force exerted during wheel-rail contact is com-
monly referred to as “adhesion force”, while the ratio between
the adhesion force and the normal force is known as the ad-
hesion coefficient. Operation with maximal adhesion force is
one of the most important problems in the control of propul-
sion drives for railway vehicles. Due to special contact con-
ditions between the wheel and the railway under huge normal
forces, the adhesion coefficient is a function of slip and ve-
locity, as presented in Fig. 1. Acting with too small values
of slip results in insufficient adhesive force. Operation on the
decreasing slope of the surface presented in Fig. 1 produces
lower contact force with increasing slip and may cause sys-
tem instability, if linear (PI or PID) motion controllers are
applied. During an attempt to accelerate a vehicle, this pro-
duces heat or sparkling, destroys the wheel and rail surfaces
and may make acceleration impossible. In braking mode, the
wheel may be blocked, which makes it slip on the rail, chang-
ing the circular shape of the wheel. Operation with excessive
slip decreases the efficiency of energy conversion and leads
to the costly repairs of trains and rails.

Fig. 1. Adhesion force coefficient as a function of wheel slip and
velocity according to the model given in Ref. 1

The aim of the proposed control algorithm is to stabilize
the slip value that provides adhesive force maximization. Slip
depends on actual train velocity and railway conditions [1, 2],
and identification of the exact value is a difficult and complex
problem. Nevertheless, it is relatively easy to estimate the slip
value that leads to the adhesive force that is sufficiently close
to the maximal value under a wide range of external condi-
tions. Stabilization of such a slip value (if robust for any value
on the decreasing or the increasing slope of the slip-adhesion
force curve) provides acceptable drive performance. For this
reason, the slip stabilization problem is an important issue.
Regardless, generalization in the context of the slip tracking
problem is considered in the present paper.

Slip stabilization must be robust against uncertainties and
variations in any of the drive model parameters. For exam-
ple, the wheel radius may change by several percent during
the wheel’s lifetime. The adhesion coefficient depends on the
railway conditions (wet or dry, contaminated with lubricants);
train mass changes according to load or number of passen-
gers; the resistance force caused by the motion of the train
depends on the wind force and direction, as well as the slope
and curvature of the rail; even the normal force oscillates due
to suspension dynamics and changes because of the rail slope
variations, or the rail or wheel irregularities [2]. All of these
factors legitimize application of adaptive control in order to
stabilize the slip.

It has been evident for many years that a special control
strategy must be used to cope with slip in railway traction.
With the increasing speed of vehicles, this problem becomes
ever more important. The first concept of anti-slip, re-adhesion
control was to detect an excessive slip and to apply torque re-
duction according to a predefined pattern [3]. Slip detection
may be based on the analysis of several signals: velocity, ac-
celeration, vibrations or noise spectrum [4], or motor current
[5, 6]. PI controllers were widely applied, usually with lin-
ear observers of the adhesion coefficient, adhesion coefficient
derivative, or adhesion force [7–9]. It was noticed, however,
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that linear controllers do not guarantee stability if for any
reason the system operates with a negative slope of the slip
curve. Therefore, modern nonlinear control techniques have
been proposed to achieve contact force maximization. It has
been observed that a fuzzy controller can be used instead of
torque reduction [3].

The problem of the desired train position and velocity
tracking was investigated in [10–12]. Such an approach may
only be applied under the assumption that reference trajecto-
ries implicate that the desired adhesive force is always avail-
able. A sliding mode approach [13] was intensively inves-
tigated, although it suffers from typical drawbacks such as
high switching torque frequency. Recently, the immersion and
invariance technique was used [14] with promising results.
However, it requires a special form of adhesive coefficient
curve, some parameters must be known and the train velocity
is assumed to be varying slowly. As is evident from this dis-
cussion, each approach has some drawbacks and as such, the
investigation of other methods is justified.

In this paper a new control strategy is proposed, based on
adaptive compensation of the unknown components in slip
dynamics equations. The controller operates using linearly
parameterized models of all disturbances present in system
dynamics: rotational friction, contact force and linear motion
resistance. It is not assumed that the models are accurate –
it is sufficient if the modelling error is bounded. Additional-
ly, no special structure of real contact force or friction acting
on the system is required. Several control algorithms for slip
tracking, as well as for the slip velocity tracking problem, are
investigated and compared.

The paper is organized as follows: in Sec. 2, the prob-
lem is formulated (2.1) and several control algorithms of slip
stabilization are derived and their stability in the UUB sense
is proven (2.2); finally, a control approach with slip velocity
tracking is discussed (2.3). In Sec. 3, some simulations eval-
uating the performance of the proposed control are presented
and the control implementation within the laboratory stand
with a friction gear driven by a permanent magnet synchro-
nous motor (PMSM) is described.

2. Control algorithms

2.1. Problem statement. The longitudinal dynamics of the
train body may be represented as a chain of k vehicles joined
by N−1 nonlinear, elastic couplings with p motors. This rep-
resentation leads to the so-called “multi mass model” [12]
that accounts for in-train forces. As in-train forces are ex-
tremely difficult to measure and model, the simplified mod-
el that neglects the coupling elasticity and the motor-wheel
transmission dynamics is commonly accepted [2, 12–14]. The
single-mass, single motor model is given by

J
d

dt
ω = TN − RFa − Tf , (1)

M
d

dt
v = Fa − Ff , (2)

Fa = µaN, (3)

where M is the vehicle mass corresponding to the driving
axle, v – linear velocity, J – the wheel inertia, ω – rotational
speed, R – the wheel radius, TN is the motor torque (thrust
or braking), Tf is the friction torque affecting the motor and
Ff is the resistance force caused by the motion of the vehicle
and the air drag. The contact (adhesion) force Fa is propor-
tional to the normal force N . The adhesion coefficient µa is
a function of the wheel slip, which is defined as

s =
ωR − v

v
=

ωR

v
− 1, (4)

or, according to some investigations [1, 15], a function of slip
and linear velocity, as it is presented in Fig. 1.

The coefficient µa depends on many factors such as the
presence of water and contaminations on the railway, railway
or wheel shape and many others. The typical curve of µa(s)
can be found in [15] and the bibliography therein. It must be
stressed that the information about this curve is very uncertain,
although the primary features are: µa(s) is anti-symmetric, it
possesses extrema ±µmax for s = ±smax, converges to zero
for slip tending to zero and approaches constant asymptote
for a big negative or positive slip. For wet railways, µmax

decreases significantly, while smax decreases slightly. Infor-
mation about the actual adhesive force can be obtained from
various types of observers [3, 4, 6, 12] and in this way, ap-
proximate information about smax is provided.

The aim of control is to maximize the adhesion force sta-
bilizing the actual slip around smax by following the reference
value sd. In the present contribution, the way for calculating
sd is not discussed in detail; instead, the presentation concen-
trates on the tracking problem. It is assumed that the desired
slip trajectory sd is smooth and that the derivative ṡd is avail-
able.

Generally, motors’ electrical time constants are much
smaller than the mechanical time constants of a railway vehi-
cle. Therefore, in some applications, dynamics of the torque
generation may be neglected and TN is the control input. In
others, it is not necessary to consider details of electric motor
propulsion and it is enough to model the torque generation
dynamics by a simple linear equation:

τṪN = −TN + γTz, (5)

where Tz – the desired torque, is the control variable. Para-
meters τ , γ may be considered known or unknown, depending
on the drive type. It is also assumed that the actual torque TN

may be calculated on-line from the motor current; however,
this calculation will vary for different types of motors.

The tracking error will be denoted by

es = s − sd. (6)

The tracking error dynamics may be derived from (4) and
(1)–(3):

ės =
R

Jv
(−RFa − Tf) − (s + 1)

1

Mv
(Fa − Ff )

+
R

Jv
TN − ṡd.

(7)
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It is assumed that approximate, linearly parameterized
models for unknown functions µa(s), Tf(ω), Ff (v) are avail-
able:

µmdl(s) = θT
µ ξµ (s) ,

Tfmdl(ω) = θT
T ξT (ω),

Ffmdl(v) = θT
F ξF (v),

(8)

where the subscript ∗mdl denotes the output of the mod-
el of the function µa(s), Tf (ω), or Ff (v), respectively, θT

∗

(∗ = µTF ) are unknown parameters and ξ∗ are known func-
tions of proper dimensions. Approximate models of this type
can be obtained from numerical data, by neural or fuzzy mod-
elling [16], or developed by any other method of approxi-
mation. Takagi-Sugeno-Kang’s fuzzy modelling approach de-
scribed in [16] can be specifically recommended. This pro-
cedure is able to recognize significant inputs and can decide
the fuzzy model structure and initial parameters automatical-
ly, according to the desired modelling accuracy. For example,
the fuzzy model for adhesive coefficient µmdl(s) is given by
m rules j = 1, 2, . . ., m

IF s IS ϕj THEN µ = µj(s) = p1js + p0j , (9)

with membership functions

ϕj(s) =
1

1 +

(

s − cj

aj

)2bj
, (10)

so that a general description of the model is

µmdl(s) =

m
∑

j=1

µj(s)ϕj(s)

m
∑

j=1

ϕj(s)
= θT

µ ξµ(s), (11)

where

θT
µ = [p11, p01, . . . , p1m, p0m],

ξµ(s) =
1

m
∑

j=1

ϕj(s)

























sϕ1(s)

ϕ1(s)

...

sϕm(s)

ϕm(s)

























.
(12)

The fuzzy model may be trained by any suitable method,
for example, ANFIS [17]. An exemplary modelling of the ad-
hesive coefficient curve by the fuzzy model is presented in
Figs. 2 and 3, where the flexibility offered by fuzzy models
is demonstrated.

Fig. 2. Adhesion force coefficient fuzzy modelling: input data: +,
trained fuzzy model: o, initial fuzzy model: x

Fig. 3. Adhesion force coefficient fuzzy modelling: three curves
obtained by three different sets of consequent parameters θT

µ =
[p11, p01, . . . , p14, p04] and the same membership functions and

rules as in Fig. 2

2.2. Slip tracking control. It is obvious that slip is not de-
fined if linear velocity approaches zero; thus, the applica-
tion of the derived controller is limited to a bounded interval
0 < vmin < |v| < vmax.

Let us consider the function

f =
1

v

(

−
R2

J
− (s + 1)

1

M

)

µaN −
R

Jv
Tf + (s + 1)

1

Mv
Ff

extracted from (7) and let us propose the model of f :

fmdl = θT
f ξf , θT

f =
[

cµ cf1 cf2

]

,

ξf =













−
1

v

(

R2

J
+ (s + 1)

1

M

)

N0θ
T
µ0ξµ(s)

−
R

Jv
θT

T0
ξT (ω)

(s + 1)
1

Mv
θT

F0
ξF (v)













,
(13)
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where R, J , M are defined as in Eqs. (1), (2), N0 is the
nominal normal force, θT

∗0 are the nominal values of the para-
meters in models (8) of µa(s), Tf(ω), or Ff (v), respectively.
The adaptive parameters θT

f represent the correcting (propor-
tionality) factors between the actual and nominal values of
the components in f . If the initial guess of N0, θµ0, θT0 and
θF0 is precise, the values of cµ, cf1, cf2 will be 1 (and it is
the initial condition for adaptation). If the model containing
N0, θµ0, θT0 and θF0 is inaccurate, it will be improved by the
adaptation of cµ, cf1, cf2 decreasing the slip tracking error.

The model (13) may be parameterized in various ways; as
a matter of fact, the selected parameterization has little impact
on control derivation, as long as fmdl is linear in parameters.
It follows from our experience that it is sufficient to select
one adaptive parameter for each unknown function Fa, Tf ,
Ff , but one may also apply more adaptive parameters. It is
important to assume that there exist constant parameters θ∗T

f

such that the modelling error is bounded, that is:

f = θ∗T
f ξf + εf , |εf | < ε < ∞, (14)

in a compact set of the input variables under consideration.
It is not necessary to know ε (neither εf ), but it is enough to
assume that it exists.

Thus, the tracking error dynamics (7) may be represented
as

ės = θ∗T
f ξf − ṡd + TN

R

Jv
+ εf . (15)

Considering the desired thrust torque

TNd =
Jv

R

(

−θT
f ξf + ṡd − Kes

)

, (16)

where K is a positive design parameter and denoting

eT = TN − TNd, eθ = θ∗f − θf , (17)

Eqs. (15) and (5) imply that

ės = eT
θ ξf − Kes + εf +

R

Jv
eT , (18)

ėT = −ṪNd −
1

τ
(TNd + eT ) +

γ

τ
Tz. (19)

If γ, τ are known, it is possible to apply the control

Tz =
τ

γ

(

ṪNd +
1

τ
(TNd + eT ) − KT eT + α

)

, (20)

where KT is a positive design parameter. Plugging (20) into
(19) results in

ėT = −KT eT + α. (21)

Theorem 1. Under the control (20) with

α = −es
R

Jv
(22)

and adaptive laws

θ̇f = esΓξf − σ ‖e‖Γθf , e =
[

es eT

]T

(23)

with positive definite Γ and positive σ, trajectories es, eT ,
eθ are uniformly ultimately bounded (UUB) and Kmin =
min{K, KT} defines the bound for es, eT .

Proof. Consider the Lyapunov function

V =
1

2

(

e2

s + e2

T + eT
θ Γ−1eθ

)

. (24)

Using (15)–(20), the derivative of V along the system trajec-
tories is derived:

V̇ = −Ke2

s − KT e2

T + eSεf + σ ‖e‖ eT
θ

(

θ∗f − eθ

)

. (25)

As eT
θ

(

θ∗f − eθ

)

= eT
θ θ∗f − ‖eθ‖

2
≤ ‖eθ‖

∥

∥

∥
θ∗f

∥

∥

∥
− ‖eθ‖

2
=

‖eθ‖
(∥

∥

∥
θ∗f

∥

∥

∥
− ‖eθ‖

)

and
∥

∥

∥
θ∗f

∥

∥

∥
≤ δ, eSεf < ε ‖e‖, and also

−Ke2

s − KT e2

T ≤ −Kmin ‖e‖
2 we get

V̇ ≤ −Kmin ‖e‖
2 + σ ‖e‖ ‖eθ‖ (δ − ‖eθ‖) + ‖e‖ ε. (26)

Hence, the system derivative is negative if only ‖e‖ > ε
Kmin

and ‖eθ‖ > δ. Negative derivative of the Lyapunov func-
tion outside a compact set is sufficient to conclude that the
system is stable in UUB sense [19], and that the trajectories
will ultimately remain inside the set defined by inequalities
‖e‖ < ε

Kmin

, ‖eθ‖ < δ. Therefore it is possible to (arbitrary)
decrease ‖e‖ increasing Kmin while keeping the adaptive pa-
rameters θf bounded. Parameters θf are not supposed to iden-
tify the unknown θ∗f , but to cooperate making the whole model
(13) accurate enough.

If the exact values of the constant parameters γ, τ are not
known precisely, the second adaptive loop must be applied.
In this case, we denote the nominal values of the parameters
τ0, gamma0 and introduce

p1 =
1

τ0

, p2 =
γ0

τ0

,
1

τ
= c1p1,

γ

τ
= c2p2, (27)

where c1, c2 are constant correcting factors between assumed
and real values.

If aT =
[

a1 a2

]

are adaptive parameters and eT
a =

[

1

c2

c1

c2

]

− aT we have

1

c2

d

dt
eT = aT ξT + p2Tz + eT

a ξT , (28)

ξT =

[

−ṪNd

−p1 (TNd + eT )

]

. (29)

With the control input

Tz =
1

p2

(

−aT ξT − KT eT + α
)

α = −eS
R

Jv
(30)

(28) takes the following form:

1

c2

d

dt
eT = −KT eT + α + eT

a ξT . (31)

Theorem 2. Under the control (30) with the adaptive laws
(23) and

ȧ = eT ΥξT − σ ‖e‖Υa, (32)
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with positive definite Γ, Υ and positive σ, trajectories es,
eT , eθ, ea are uniformly ultimately bounded (UUB) and
Kmin = min{K, KT} defines the bound for es, eT .

Proof. It is analogous to the proof of Theorem 1, but in this
instance, we consider the Lyapunov function as being

V =
1

2

(

e2

s +
1

c2

e2

T + eT
θ Γ−1eθ + eT

a Υ−1ea

)

. (33)

The control proposed in (20) requires the derivative of the
desired torque TNd. This torque was calculated in the first
adaptive loop. The same information is required in (30). If
the derivative is calculated on-line by a proper discrete fil-
ter, the adaptive parameter a1 also compensates for errors in
calculation of the derivative, but the rigorous proof of sta-
bility requires strict information on ṪNd. A slightly modified
derivation that includes a filter for taking the derivative into
account and that allows for proving stability may be presented.
This idea is based on the command control filtering approach
from the adaptive backstepping control theory [18].

Let us consider a first order filter

ż = −β (z − TNd) (34)

with a design parameter β. When the transient response of the
filter vanishes, z ≈ TNd, and so −β(z − TNd) ≈ ṪNd. It is

also evident that z − TNd is bounded if
∣

∣

∣
ṪNd

∣

∣

∣
is bound-

ed. If the initial condition for the filter state variable is
z(0) = TNd(0), then |z − TNd| ≤ max

∣

∣

∣
ṪNd

∣

∣

∣
β−1.

The dynamics of eFT = TN − z may be described as

1

c2

ėFT =
[

a1 a2

]

ξFT + p2Tz + eT
a ξFT , (35)

ξFT =

[

β (z − TNd)

−p1 (z + eFT )

]

(36)

and after selection of the control input

Tz =
1

p2

(

−aT ξFT − KFT eFT + α
)

, α = −eS
R

Jv
(37)

(35) is reduced to

1

c2

d

dt
eFT = −KFT eFT + α + eT

a ξFT . (38)

Theorem 3. Under the control (37) and adaptive laws

θ̇f = esΓξf − σ ‖e‖Γθf ,

ȧ = eFT ΥξFT − σ ‖e‖Υa,
(39)

where

e =
[

es eFT

]T

, (40)

with positive definite Γ, Υ and positive σ, trajectories es,
eT , eθ, ea are uniformly ultimately bounded (UUB) and
Kmin = min{K, KT} defines the bound for es, eFT , while
KT and β influence the bound for eT .

Proof. We consider the Lyapunov function to be:

V =
1

2

(

e2

s +
1

c2

e2

FT + eT
θ Γ−1eθ + eT

a Υ−1ea

)

. (41)

Using (18) and (38)–(40), we calculate the derivative of V

along the system trajectories:

V̇ = −Ke2

s − KFT e2

FT + σ ‖e‖ eT
θ

(

θ∗f − eθ

)

+σ ‖e‖ eT
a (a∗ − ea) + es

R

Jv
(z − TNd) + esεf .

(42)

We may formulate a set of inequalities:

eT
θ

(

θ∗f − eθ

)

≤‖eθ‖
∥

∥θ∗f
∥

∥ − ‖eθ‖
2 = ‖eθ‖

(∥

∥θ∗f
∥

∥ − ‖eθ‖
)

,

eT
a (a∗ − ea) ≤ ‖ea‖ ‖a

∗‖ − ‖ea‖
2

= ‖ea‖ (‖a∗‖ − ‖ea‖) ,
∥

∥θ∗f
∥

∥ ≤ δθ, ‖a∗‖ ≤ δa,

eS

(

εf +
R

Jv
(z − TNd)

)

< ε ‖e‖ ,

−Ke2

s − KT e2

FT ≤ −Kmin ‖e‖
2
,

Kmin = min{K, KFT}
(43)

and hence

V̇ ≤ −Kmin ‖e‖
2 + σ ‖e‖ ‖eθ‖ (δθ − ‖eθ‖)

+σ ‖e‖ ‖ea‖ (δa − ‖ea‖) + ‖e‖ ε.
(44)

Therefore, the system derivative (44) is negative if ‖e‖ >
ε

Kmin

and ‖eθ‖ > δθ, ‖ea‖ > δa; thus, trajectories es, eFT ,

eθ, ea are uniformly ultimately bounded (UUB) [19] and
Kmin = min{K, KFT} defines the bound for es, eFT . As
eT = eFT + z − TNd, it is also UUB.

2.3. Slip velocity tracking control. The proposed control al-
gorithms, based on a slip tracking approach, require dividing
by the actual vehicle velocity. As velocity is a real signal,
measured on-line during system operation, any values close
to zero may make the control inapplicable.

Slip tracking can also be obtained by slip velocity control.
This approach may generate a more robust (numerically) con-
trol algorithm, but will require the measurement or calculation
of the vehicle acceleration.

Slip velocity is defined by

vs := sv = ωR − v (45)

thus, tracking the desired slip sd is equivalent to tracking the
desired slip velocity vsd = sdv. The desired trajectory deriv-
ative must be provided for control and is given as

v̇sd = ṡdv + sdv̇. (46)

If the tracking error for slip velocity is denoted as evs =
vs − vsd, its dynamics may be described by

ėvs = θ∗T
f ξf − v̇sd + TN

R

J
+ εf , (47)

where

[

cµ cf1 cf2

]















(

−
R2

J
−

1

M

)

N0θ
T
µ0

ξµ(s))

−
R

J
θT

T0
ξT (ω)

1

M
θT

F0
ξF (v)















=: θT
f ξf

(48)
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θ∗T
f =

[

c∗µ c∗f1
c∗f2

]

are “optimal” values of parame-

ters leading to the bounded modelling error |εf | < ε < ∞.
Note that in this parameterization, adaptive parameters θT

f will
be able to compensate for the gap between nominal models
and the actual values of disturbances µa(s), Tf(ω), Ff (v),
and to cope with the imprecisely know constant parameters

−
R2

J
−

1

M
, −

R

J
,

1

M
.

Instead of (16), the desired torque

TNd =
J

R

(

−θT
f ξf + v̇sd − Kevs

)

(49)

is used. Plugging (49) into (47) gives

ėvs = eT
θ ξf − Kevs +

R

J
eT + εf (50)

while the dynamics of eT = TN − TNd is given by (19), as
shown previously. If γ, τ are known, we may apply the control

Tz =
τ

γ

(

d

dt
TNd +

1

τ
(TNd + eT ) − KT eT + α

)

,

α = −evs
R

J

(51)

and proceeding analogously as in the case of slip tracking, we
are able to prove the following theorem.

Theorem 4. Under the control (51), (49) and adaptive laws

θ̇f = evsΓξf − σ ‖e‖Γθf , e =
[

evs eT

]T

(52)

with positive definite Γ and positive σ and ξf defined in
(48), trajectories evs, eT , eθ are uniformly ultimately bounded
(UUB) and Kmin = min{K, KT} defines the bound for evs,
eT .

If the exact values of the constant parameters γ, τ are un-
known, the second adaptive loop has to be applied as it was
done in formulae (27)–(29). We select the control input as

Tz =
1

p2

(

−aT ξT − KT eT + α
)

, α = −evs
R

J
. (53)

A theorem analogous to Theorem 2 can then be proven.

Theorem 5. Under the control (52), (49) with adaptive laws
(52) and

ȧ = eT ΥξT − σ ‖e‖Υ (54)

(ξT defined in (29)) with positive definite Γ, Υ and positive σ

trajectories evs, eT eθ, ea are uniformly ultimately bounded
(UUB) and Kmin = min{K, KT} defines the bound for evs,
eT .

Similarly, a control command filtering technique may be
introduced as it was in formulae (34)–(36) and following se-
lection of the control input

Tz =
1

p2

(

−aT ξFT − KFT eFT + α
)

, α = −evs
R

J
. (55)

Theorem 6, analogous to Theorem 3, can be proven.

Theorem 6. Under the control (55), (49) and adaptive laws

θ̇f = evsΓξf − σ ‖e‖Γθf ,

ȧ = eFT ΥξFT − σ ‖e‖Υa,
(56)

e =
[

evs eFT

]T

(57)

(ξFT defined in (36)), with positive definite Γ, Υ and posi-
tive σ, trajectories evs, eFT , eθ , ea are uniformly ultimately
bounded (UUB) and Kmin = min{K, KT} defines the bound
for evs, eFT , while KT and β influence the bound for eT .

The described approaches, i.e., slip stabilization and slip
velocity tracking are conceptually equivalent. The primary
technical difference is that when slip velocity is tracked, the

component α = −evs
R

J
appears in control and α = −es

R

Jv
is present if we stabilize the slip. Depending on application
details, the velocity range and the measurement technique,
the slip velocity control approach may be more robust against
measurement noise and outliers.

3. Control performance evaluation

The performance and robustness of the proposed control sys-
tems were evaluated by numerous simulation experiments.
Some of the results are presented in this paper. The data for
the vehicle were taken from a popular locomotive EP07 pro-
duced by ZNTK in Poland. One of the bogies was modelled
using the following data:

M = 20 000 kg, J = 60 kgm2, R = 0.625 m. (58)

For control purposes, the adhesion coefficient curve was
modelled by

µa(s) = 2µmax

(smaxs)
κ/2

sκ
max

+ sκ
, (59)

which allowed for receiving the curves presented in Fig. 2.
The following values were chosen for the nominal parame-
ters: κ = 2, µmax = 0.4, smax = 0.12. Rotational friction
was modelled as proportional to rotational speed and linear
motion resistance as a linear combination of v and v2.

The disturbances in the bogie model were modelled by
look-up tables. Differences between the actual and modelled
values of µa(s), Tf(ω), Ff (v) were roughly 20%. For exam-
ple, smax in the plant was 20% smaller than in the model.
The normal force of the bogie was disturbed by 10% oscil-
lations, not modelled in the controller. The torque generation
was modelled as a first order inertia with a 0.3 s time constant
and unity gain, and both were unknown to the controller.

Simulations of many different scenarios were performed,
including the braking and accelerating modes of operation.
Some of the results are presented in Figs. 4 to 7. The slip
tracking algorithm was set to stabilize the desired slip val-
ue sd = 0.1, providing a large contact force and effective
acceleration for 5 s.

It can be seen from Fig. 7 that adaptation to normal force
oscillation was the most important task of the controller. As
the adaptive loop is designed to imitate the linear combination
with three adaptive parameters, one of them takes the leading
role. Likely, the rapid adaptation of only one parameter will
be sufficient in this case.
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Fig. 4. Acceleration with stabilized slip – slip tracking control (The-
orem 3)

Fig. 5. Slip stabilization on sd = 0.1 – slip tracking control (Theo-
rem 3)

Fig. 6. The desired torque – slip tracking control (Theorem 3)

Fig. 7. Adaptive parameters during slip stabilization – slip tracking
control (Theorem 3)

The results obtained by the slip velocity tracking algo-
rithm were quite similar, even if moderate (10%) noise was
added to the measured velocity.

As practical testing of train control algorithms is techni-
cally difficult and expensive, a simple laboratory stand was
constructed with a friction gear driven by PMS motors, as
shown in Figs. 8 and 9. Normal forces between the wheels
are much smaller than those observed between a train wheel
and a rail; therefore, the real life adhesive force characteristic
is different, but the experiment preserves the typical features
of µa(s) curves known for railway transport, with the max-
imal value of adhesive coefficient obtained for the slip as
s ≈ 0.2. The control algorithms described above were im-
plemented by a signal processor board dSpace 1103 with a
sampling time of 50 µs. Algorithms with slip stabilization and
slip velocity tracking presented similar behaviour. An exem-
plary time-history of slip stabilization is presented in Fig. 10.
In Fig. 11, the driving wheel rotational speed is plotted to-
gether with the receiving wheel speed, multiplied by the gear
ratio, while the thrust torque is plotted in Fig. 12.

Fig. 8. Laboratory stand with a friction gear driven by PMS motors
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Fig. 9. Diagram of laboratory stand with a friction gear driven by PMS motors

Fig. 10. Slip stabilization in a friction gear driven by PMS motors

Fig. 11. Wheels rotational speed during acceleration with a stabilized
slip

Fig. 12. Thrust torque during slip stabilization

The slip is stabilized sufficiently even in the presence of
all the unavoidable measurement noises and errors caused by
the digital implementation of the control algorithm.

4. Conclusions

New nonlinear, adaptive controllers were developed that can
be successfully applied in railway vehicles to solve the prob-
lem of slip or slip velocity tracking or stabilization. The results
in the current paper show that it is possible to stabilize the
system at the operating point, even if the desired slip value is
placed on the negative slope of the slip-adhesion curve. The
presented approach allows for considering any disturbances
present in the motion dynamics, such as friction and air resis-
tance, and total disturbance compensation is possible. Neither
the special structure of the actual slip-adhesion coefficient
curve was assumed, nor the special parameterization of the
formula describing this curve was required. It is admissible
that the implemented models are inaccurate and it is sufficient
that the modelling error is bounded.

Additionally, some constant plant parameters may be com-
pletely unknown. Naturally, less accurate models require more
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effort from the adaptive control loop. The same approach may
be used in braking and accelerating the vehicle. The slip track-
ing control uses typical signals available in modern trains
and trams, while a simpler slip velocity tracking algorithm
requires a train acceleration signal.

The derived controllers were tested in numerous simula-
tions using various train data. The proposed algorithms were
also implemented at the laboratory stand with a frictional gear
driven by PMSM. All the experiments – the simulations and
the practical implementation – proved that the proposed ap-
proach is applicable, possesses attractive features and may
present an interesting alternative for existing techniques.
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