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Abstract. The paper deals with the problem of robust predictive fault-tolerant control for nonlinear discrete-time systems described by

the Takagi-Sugeno models. The proposed approach is based on a triple stage procedure, i.e. it starts from fault estimation while the fault

is compensated with a robust controller. The robust controller is designed without taking into account the input constraints related with

the actuator saturation that may change due to its faulty behaviour. Thus, to check the compensation feasibility, the robust invariant set

is developed, which takes into account the input constraints. If the current state does not belong to the robust invariant set, then suitable

predictive control actions are performed in order to enhance the invariant set. This appealing phenomenon makes it possible to enlarge the

domain of attraction, which makes the proposed approach an efficient solution for the fault-tolerant control. The final part of the paper shows

an illustrative example regarding the application of the proposed approach to the twin-rotor system.
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1. Introduction

A permanent increase in the complexity, efficiency, and relia-

bility of modern industrial systems necessitates a continuous

development in control and fault diagnosis. A moderate com-

bination of these two paradigms is intensively studied under

the name of Fault-Tolerant Control (FTC). The Fault-Tolerant

Control (FTC) systems are classified into two distinct class-

es [1]: passive and active. In the passive FTC [2], controllers

are designed to be robust against a set of predefined faults,

therefore there is no need for fault diagnosis, but such a de-

sign usually degrades the overall performance. In the contrast

to the passive ones, active FTC schemes react to faults ac-

tively by reconfiguring control actions in such a way that the

system stability and acceptable performance are maintained.

To achieve that, the control system relies on the Fault Detec-

tion and Isolation (FDI) [3–7] as well as an accommodation

technique [8]. Most of the existing works treat the FDI and

FTC problems separately. Unfortunately, a perfect FDI and

fault identification are impossible and hence there always is

an inaccuracy related to this process. Thus, there is a need for

integrated FDI and FTC schemes for both linear and nonlinear

systems [9].

A number of books was published in the last decade on

the emerging problem of the FTC. In particular, the book [10],

which is mainly devoted to fault diagnosis and its applications

provides some general rules for the hardware-redundancy-

based FTC. On the contrary, the work [11] introduces the

concepts of the active and passive FTC. It also investigates

the problem of performance and stability of the FTC under

imperfect fault diagnosis. In particular, the authors consider

(under a chain of some, not necessary easy to satisfy assump-

tions) the effect of a delayed fault detection and an imperfect

fault identification but the fault diagnosis [12, 13] scheme is

treated separately during the design and no real integration

of the fault diagnosis and the FTC is proposed. The FTC is

also treated in a very interesting work [14] where the number

of practical case studies of FTC is presented, i.e., a winding

machine, a three-tank system, and an active suspension sys-

tem. Unfortunately, in spite of the incontestable appeal of the

proposed approaches neither the FTC integrated with the fault

diagnosis nor a systematic approach to nonlinear systems are

studied.

The proposed approach overcomes the above-mentioned

difficulties and provides an elegant way of incorporating

fault diagnosis (particularly fault identification) into the fault-

tolerant control framework. The proposed approach is based

on a triple stage procedure, i.e. it starts from fault estimation,

then the fault is compensated with a robust controller. The

robust controller is designed without taking into account the

input constraints related with the actuator saturation. Thus, to

check the compensation feasibility, the robust invariant set is

developed, which takes into account the input constraints. If

the current state does not belong to the robust invariant set,

then suitable predictive control actions are performed in or-

der to enhance the invariant set. This appealing phenomenon

makes it possible to enlarge the domain of attraction, which

makes the proposed approach an efficient solution. Indeed,

the presented solution can be perceived as an extension of

the recent developments in this area [15], which shows a fault

estimation and compensation strategy for nonlinear systems.

The novelty of the scheme boils down to:
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• introduction of robustness to exogenous disturbances,

through the H∞ approach,

• introduction of the triple stage procedure: fault estimation,

fault compensation with robust controller, and predictive

control enhancing the applicability of the approach,

• extension of the work of [16] to the case with exogenous

disturbances,

• development of robust invariant set extending the usual

framework proposed by [16].

The paper is organised as follows. Section 2 presents prelim-

inaries regarding the problem being undertaken. Robust fault

estimation and control approach is proposed in Sec. 3. Subse-

quently, Sec. 4 presents the development of a robust invariant

set while Sec. 5 presents an efficient robust predictive fault-

tolerant control strategy, which enhances the performance of

the overall scheme. The final part of the paper contains a

numerical example, which shows the performance of the pro-

posed approach.

2. A general description

of the fault-tolerant scheme

A nonlinear dynamic system can be described in a relative-

ly simple way by a Takagi-Sugeno fuzzy model, which uses

series of locally linearised models from the nonlinear sys-

tem, parameter identification of an a priori given structure or

transformation of a nonlinear model using the nonlinear sec-

tor approach (see, e.g. [3,17,18]). According to this model, a

nonlinear dynamic systems can be linearised around a num-

ber of operating points. Each of these linear models represents

the local system behaviour around the operating point. Thus,

a fuzzy fusion of all linear model outputs describes the glob-

al system behaviour. A Takagi-Sugeno model is described by

fuzzy IF-THEN rules. The presented structure may represent

a nonlinear system with control-affine state equation. It has a

rule base of M rules, each having p antecedents, where i-th

rule is expressed as

Ri : IF s1
k is F i

1 and . . . and s
p
k is F i

p,

THEN xf,k+1 = Aixf,k + Biuf,k + Bifk + W iwk,
(1)

in which xf,k ∈ R
n stands for the state and uf,k ∈ R

r

denotes the nominal control input, fk ∈ R
r is the actua-

tor fault, i = 1, . . . , M , F i
j (j = 1, . . . , p) are fuzzy sets

and sk = [s1
k, s2

k, . . . , s
p
k] is a known vector of premise vari-

ables [3, 17]. It is of course possible to employ the approach

that can be dedicated for the case when some of the premise

variables are unmeasurable [19, 20]. Similarly, the approach

can be extended to the case when only some state variables are

available, but this leads to the need for employing observer-

based schemes [15]. However, the above mentioned strategies

are beyond the scope of this paper. Additionally, wk ∈ l2 is

an exogenous disturbance vector, while:

l2 = {w ∈ R
r| ‖w‖l2 < +∞} , (2)

‖w‖l2 =

(
∞∑

k=0

‖wk‖
2

)1/2

. (3)

Given a pair of (sk, uk) and a product inference engine,

the final output of the normalized T-S fuzzy model can be

inferred as:

xf,k+1 =

M∑

i=1

hi(sk)[Aixf,k + Biuk + Bifk + W iwk],

= A(hk)xf,k + B(hk)uk + B(hk)fk + W (hk)wk,

(4)

where hi(sk) are normalised rule firing strengths defined as

hi(sk) =

p

T
j=1

µF i
j
(sj

k)

M∑
i=1

(
p

T
j=1

µF i
j
(sj

k))

(5)

and T denotes a t-norm (e.g., product). The term µF i
j
(sj

k) is

the grade of membership of the premise variable s
j
k. More-

over, the rule firing strengths hi(sk) (i = 1, . . . , M ) satisfy

the following constraints





M∑
i=1

hi(sk) = 1,

0 ≤ hi(sk) ≤ 1, ∀i = 1, . . . , M.

(6)

For the purpose of further deliberations, the following set of

assumptions is imposed:

Assumption 1: The matrix Bi, i = 1, . . . , M fulfils

rank(Bi) = r.

Assumption 2: The fault satisfies

fk = fk−1 + vk, vk ∈ l2. (7)

Assumption 3: The control limits shaping U are given by

−ui ≤ ui,k ≤ ui, i = 1, . . . , r, (8)

where ui > 0 (i = 1, . . . , r) are given control bounds and

ui,k stands for ith component of uk.

Assumption 4:

W (hk)wk ∈ col(B(hk)), (9)

where col(B(hk)) = {α ∈ R
n : α = B(hk)β} for some

β ∈ R
r.

Due to the simplicity of presentation, these limits are sym-

metrical around zero but with an appropriate scaling it is rela-

tively easy to introduce non-symmetrical ones. Note also that

Assumption 4 is a technical condition, which will be used in

the subsequent part of this paper. It describes possible settings

of disturbance distribution matrix W (hk) were the simplest

choice is W (hk) = B(hk).
The main objective of the subsequent part of the paper is

to design the control strategy in such a way that the system

(4) will converge to the origin irrespective of the presence of

the fault fk. The proposed control scheme is as follows:

uf,k = −K(hk)xk − f̂k−1 + ck, (10)

while the predicted future input is described by:

uf,j =

{
−K(hj)xj − f̂k−1 + cj , j = k, . . . , k + nc − 1,

−K(hj)xj − f̂k−1, j ≥ k + nc.

(11)

978 Bull. Pol. Ac.: Tech. 63(4) 2015



A robust predictive actuator fault-tolerant control scheme for Takagi-Sugeno fuzzy systems

where:

• nc is the prediction horizon,

• K(hk) =
M∑
i=1

hi(sk)Ki is the H∞ Parallel Distributed

Compensation (PDC) controller designed to achieve robust-

ness with respect to exogenous disturbances wk,

• f̂k−1 is the fault estimate, which compensates the effect of

a fault,

• cj is a vector introducing additional design freedom, which

should be exploited when the fault compensation does not

provide the expected results due to the actuator saturation.

Note that beyond the prediction horizon nc, cj is set to zero,

which denotes the feasibility of the H∞ control. Thus, the

design of the proposed control strategy boils down to solving

a set of problems:

• to design a robust PDC controller K(hk) in such way that

a prescribed disturbance attenuation level is achieved with

respect to xf,k while guaranteeing its convergence to the

origin,

• to estimate the fault fk,

• to determine a set of states for which the robust PDC con-

troller along with the fault compensation (under the control

constraints) is feasible,

• to determine cj in such a way as to enhance a set of states

and, hence making the control problem feasible.

Since the general scheme is given, the remaining part of the

paper is devoted to solving the above-mentioned design prob-

lems.

3. Fault estimation and robust control

In this section, the fault estimation technique is proposed,

which along with the robust PDC controller K(hk) is used

to compensate the effect of a fault and feed the system in such

a way that the state xf,k goes to the origin. Note that the de-

signs of the fault estimator and the robust PDC controller are

realised for the unconstrained case. Moreover, the free control

parameter cj (cf. (11)) is set to zero. Following the seminal

paper [16] along with further developments, the constraints

are introduced during the development of the set of states, for

which the robust PDC controller along with the fault com-

pensation is feasible as well as during the computation of ck,

which enhance a set of states and, hence making the control

problem feasible.

Thus, following [6, 21], by computing

H(hk) = B(hk)+ =
[
B(hk)T B(hk)

]−1
B(hk)T , (12)

and then multiplying (4) by H(hk) along with extracting fk,

it can be shown that:

fk = H(hk)xf,k+1 − H(hk)A(hk)xf,k

−uf,k − H(hk)W (hk)wk,
(13)

while its estimate can be given as:

f̂k = H(hk)xf,k+1 − H(hk)A(hk)xf,k − uf,k, (14)

with the associated fault estimation error

εf,k = fk − f̂k = −H(hk)W (hk)wk. (15)

The main difficulty of the above approach is related with

the existence of H(hk), which boils down to checking the

full rank property of all convex combinations of Bi, i =
1, . . . , M . It is an obvious fact that, in a general case, H(hk)
is not a convex combination of (Bi)+, i = 1, . . . , M . Unfor-

tunately, to the authors’ knowledge there are no suitable con-

ditions for checking this property in the control engineering–

related literature. Let us define

Qp,p = (Bp)T Bp, p = 1, . . .M, (16)

Qp,a =(Bp)T Ba+(Ba)T Bp−(Ba)T Ba−(Bp)T Bp

for p < a,
(17)

Rp = R
p
a,b =





Qp,p if (a, b) = (1, 1)

Qb−1,p if a = 1 ∧ b = 2, . . . , p

I if a = b ∧ 1 < b < p

−I if b = 1 ∧ a = p + 1

0 otherwise

(18)

Theorem 1. The following statements are equivalent

(a) All convex combinations of B1, . . . , BM have full rank.

(b) BM has full row rank and the (M−1)Mn-by-

(M−1)Mn matrix

V =




R1R
−1
M (R2 − R1)R

−1
M (R3 − R2)R

−1
M . . . (RM−1 − RM−2)R

−1
M

−IMn IMn 0Mn . . . 0Mn

0Mn −IMn IMn . . . 0Mn

. . . . . . . . . . . . . . .

0Mn . . . 0Mn −IMn IMn




, (19)
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is a block P -matrix [22] with respect to the partition

{F 1, . . . , F M−1} of {1, . . . , (M−1)Mn}, with F i = {(M−
1)Mn + 1, . . . , iMn}, i = 1, . . . , M − 1.

Proof. The proof can be derived by a direct application of

Theorem 2 in [22]. Note also that BM has a full row rank

under Assumption 1.

Remark 1. Following [22], the matrix V is a block P -matrix

with respect to any partition if its all principal minors are

positive. This feature makes it possible to easily check the

condition of Theorem 3.

Since the general framework for computing the fault esti-

mate (14) is given, then its computational feasibility can be

verified. Indeed, to obtain f̂k it is necessary to have xf,k+1.

Thus, the only choice to compensate fk in (4) is to use f̂k−1.

This determines the above-proposed control strategy

uf,k = −f̂k−1 − K(hk)xf,k. (20)

Note that this strategy is derived by setting ck = 0 in (10).

Taking into account (15) and (7), it can be shown that

f̂k = f̂k−1 + H(hk)W (hk)[wk − wk−1] + vk, (21)

and knowing that wk, vk ∈ l2 it is evident that there exists

vk such that:

f̂k = f̂k−1 + vk, vk ∈ l2. (22)

Thus, vk is related with both exogenous disturbances wk and

fault estimation uncertainty expressed by εf,k. For the pur-

pose of further analysis, it is additionally assumed that the

above bounds have the following form

vk ∈ Ev, Ev = {v ∈ R
r|vT Qv ≤ 1}, Q ≻ 0. (23)

Thus, (20) can be written in an equivalent form, which will

be used for further deliberations

uf,k = −f̂k + vk − K(hk)xf,k. (24)

Substituting (24) into (4) gives

xf,k+1 = A1(hk)xf,k

+ [I − B(hk)H(hk)] W (hk)wk + B(hk)vk,
(25)

with A1(hk) =
M∑
i=1

M∑
j=1

hi(sk)hj(sk)(Ai − BiKj).

Further analysis of (25), and in particular
[
I − B(hk)

[
B(hk)T B(hk)

]−1
B(hk)T

]
W (hk)wk =

(26)

W (hk)wk −B(hk)
[
B(hk)T B(hk)

]−1
B(hk)T W (hk)wk,

(27)

along with the fact that (under Assumption 1) any vector

W (hk)wk ∈ col(B(hk)) can be written as W (hk)wk =
B(hk)wk for some non-zero wk, leads (27) to

B(hk)wk − B(hk)
[
B(hk)T B(hk)

]−1

·B(hk)T B(hk)wk = 0.

(28)

This significant simplification of (25) yields its new form:

xf,k+1 = A1(hk)xf,k + B(hk)vk. (29)

Before providing the PDC control design procedure, let

us remind the following lemma [23–25]:

Lemma 1. The following statements are equivalent

1. There exists X ≻ 0 such that

V T XV − W ≺ 0. (30)

2. There exists X ≻ 0 such that
[

−W V T UT

UV X − U − UT

]
≺ 0. (31)

Remark 2. Note that the regularity of U is ensured by the

last block diagonal element of (31), which implies U +UT ≻
X ≻ 0. This property will be exploited in further delibera-

tions.

The following theorem constitutes the main result of this

section.

Theorem 2. For a prescribed disturbance and fault estima-

tion uncertainty attenuation level µ > 0 for the xf,k, the H∞

controller design problem for the system (4) is solvable if

there exist U , N i and P i ≻ 0 (i = 1, . . . , M ) such that the

following condition is satisfied:

M∑

i=1

M∑

j=1

M∑

l=1

hi(sk)hj(sk)hl(sk+1)Υ
l
i,j ≺ 0, (32)

where

Υl
i,j =




−P
i

0 U
T

A
(i)T

− N
(j)T

B
(i)T

U
T

0 −µ
2Ir B

(i)T
0

A
i
U − B

i
N

j
B

i
P

l
− U − U

T
0

U 0 0 −I




(33)

with N j = KjU .

Proof. The problem of H∞ controller design (cf. [26,27]) is

to determine the gain matrix K(hk) such that

lim
k→∞

xf,k = 0 for vk = 0, (34)

‖xf‖l2 ≤ µ‖vk‖l2 for vk 6= 0, e0 = 0. (35)

In order to settle the above problem it is sufficient to find a

Lyapunov function Vk such that:

∆Vk + xT
f,kxf,k − µ2vT

k vk < 0, k = 0, . . .∞, (36)

where ∆Vk = Vk+1 − Vk. Indeed, if vk = 0 then (36) boils

down to

∆Vk + xT
f,kxf,k < 0, k = 0, . . .∞, (37)

and hence ∆Vk < 0, which leads to (34). If vk 6= 0 then (36)

yields

J =

∞∑

k=0

(
∆Vk + xT

f,kxf,k − µ2vT
k vk

)
< 0, (38)
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which can be written as

J = −V0 +
∞∑

k=0

xT
f,kxf,k −

∞∑

k=0

µ2vT
k vk < 0, (39)

Knowing that V0 = 0 for xf,0 = 0, (39) leads to (35).

Selecting the Lyapunov function as (cf. Remark 2)

Vk = xT
f,kU−T P (hk)U−1xf,k, (40)

where

P (hk) =
M∑

i=1

hi(sk)P i, (41)

the inequality (36) is

∆V + xT
f,kxf,k − µ2vT

k vk < 0, (42)

with

∆V = Vk+1 − Vk = xT
f,k

·
[
A1(hk)T U−T P (hk+1)U

−1A1(hk)−U−T P (hk)U−1
]
xf,k

+xT
f,k

[
A1(hk)T U−T P (hk+1)U

−1B(hk)
]
vk

+vT
k

[
BT (hk)U−T P (hk+1)U

−1A1(hk)
]
xf,k

+vT
k

[
B(hk)T U−T P (hk+1)U

−1B(hk)
]
vk.

(43)

Note that by Rayleigh quotient and Remark 2:

α ≤ λi(U
T U) ≤ α, β ≤ λi(P ) ≤ β i = 1, . . . , n,

where λ(·) stands for an eigenvalue of its argument. This im-

plies that

αβxT
f,kxf,k ≤ Vk ≤ αβxT

f,kxf,k,

which clearly indicated that Vk is a proper Lyapunov candi-

date matrix. Thus, it can be shown that (42) is equivalent to
[

a∗ b∗

c∗ d∗

]
≺ 0. (44)

where

a∗ = A1(hk)T U−T P (hk+1)U
−1A1(hk) + In

−U−T P (hk)U−1,

b∗ = A1(hk)T U−T P (hk+1)U
−1B(hk),

c∗ = B(hk)T U−T P (hk+1)U
−1A1(hk),

d∗ = B(hk)T U−T P (hk+1)U
−1B(hk) − µ2Ir.

Multiplying it from left by diag(UT , Ir) and from right

by diag(U , Ir) gives
[
UT A1(hk)T U−T

B(hk)T U−T

]
P (hk+1)

·
[
U−1A1(hk)U U−1B(hk)

]

+

[
UT U − P (hk) 0

0 −µ2Ir

]
≺ 0.

(45)

Applying Lemma 1 to (45) yields



UT U − P (hk) 0 UT A1(hk)T

0 −µ2Ir B(hk)T

A1(hk)U B(hk) P (hk+1) − U − UT


≺ 0

⇔




UT

0

0


 In

[
U 0 0

]

+



−P (hk) 0 UT A1(hk)T

0 −µ2Ir B(hk)T

A1(hk)U B(hk) P (hk+1) − U − UT


≺ 0,

(46)

which by Schur complements leads to



−P (hk) 0 UT A1(hk)T UT

0 −µ2Ir B(hk)T
0

A1(hk)U B(hk) P (hk+1) − U − UT
0

U 0 0 −I


 ≺ 0,

(47)

Finally, substituting

A1(hk)U =
M∑

i=1

M∑

j=1

hi(sk)hj(sk)(AiU − BiKjU)

=

M∑

i=1

M∑

j=1

hi(sk)hj(sk)(AiU − BiN j),

gives (32), which completes the proof.

Note that (32) requires further relaxation procedure in or-

der to be tractable within the effective LMI framework. A ba-

sic sufficient solution to this problem were described in [28]

and further improved by many researchers (see, e.g., [25, 29]

and the references therein). As indicated in [29], the condi-

tions provided by [30] lead to a good compromise between

complexity and conservatism, which in the case (32) leads to

the following lemma:

Lemma 2. Condition (32) is fulfilled providing the following

conditions hold:

Υl
i,i ≺ 0, i ∈ {1, . . . , M}, (48)

2

M − 1
Υl

i,i + Υl
i,j + Υl

j,i ≺ 0,

i, j, l ∈ {1, . . . , M}, i 6= j.

(49)

Finally, the design procedure boils down to solving (48),

(49) with respect to U , N j and P i (i = 1, . . . , M, j =
1, . . . , M ), and then calculating

Kj = N jU−1, j = 1, . . . , M. (50)

The objective of this section was to provide a fault estimation

and compensation scheme without taking into the account the

control limit. Thus, the objective of the subsequent section

is to provide a useful description of the invariant set, taking

into account the input constraints, while the Sec. 5 presents

an on-line optimisation strategy that can be used for enlarging

this set.
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4. Derivation of a robust invariant set

As it was mentioned in the previous section, in order to main-

tain a desired system behaviour, the idea of a robust invariant

set of state variables is to be employed [31–33]. To settle this

problem the Quadratic Boundedness (QB) [34] will be re-

called along with its further extension called Extended Non-

Quadratic Boundedness (EQNB) [35].

Let us assume that P (hk) = P in , P ≻ 0, which makes

it possible to formulate the following definitions (cf. [34]):

Definition 1. The system (29) is strictly quadratically bound-

ed with P ≻ 0 for all allowable vk ∈ Ev , k ≥ 0, if Vk > 1
implies Vk+1 − Vk < 0 for any vk ∈ Ev .

Definition 2. A set Exf
is a robust invariant set for the sys-

tem (29) for all allowable vk ∈ Ev if xf,k ∈ Exf
implies

xf,k+1 ∈ Exf
, for any vk ∈ Ev.

In this section the ellipsoidal bounding will be used for

describing the robust invariant set, i.e.

Exf
= {xf ∈ R

n|xT
f Pxf ≤ 1}. (51)

The proposed ellipsoidal bounding strategy can be perceived

as an inner approximation of the exact invariant set [36]. An

obvious drawback to the proposed approach is that the ob-

tained set is smaller than the exact one. However, the simplic-

ity of the ellipsoidal description will make it possible to use

it for on-line optimisation, which will be described in Sec. 5.

Using the above definitions and assumptions, it is possible

to recall results provided in [34] that can be directly applied

to (29):

Lemma 3. The following facts are equivalent

1. for all allowable vk ∈ Ev, k ≥ 0, the system (29) is strictly

quadratically bounded with P ≻ 0,

2. for all allowable vk ∈ Ev, k ≥ 0, the ellipsoid (51) is a

robust invariant set for the system (29).

In spite of the incontestable appeal of the above results,

they inherit a drawback related to the fact that P (hk) = P .

To avoid such a limitation, the notion of EQNB was intro-

duced [35]. In the light of this framework Definition 1 and

Definition 2 can be suitably reformulated as:

Definition 3. The system (29) is strictly non-quadratically

bounded for all allowable vk ∈ Ev, k ≥ 0, if Vk =
xT

f,kP (hk)xf,k > 1 implies ∆V = Vk+1 − Vk < 0 for any

vk ∈ Ev.

Definition 4. A set Exf,k

Exf,k
= {xf,k ∈ R

n|xT
f,kP (hk)xf,k ≤ 1} (52)

is a robust invariant set for the system (29) for all allowable

vk ∈ Ev if xf,k ∈ Exf,k
implies xf,k+1 ∈ Exf,k+1

, for any

vk ∈ Ev.

Following the same line of reasoning Lemma 4 can be refor-

mulated in a similar fashion:

Lemma 4. The following facts are equivalent

1. for all allowable vk ∈ Ev, k ≥ 0, the system (29) is strictly

non-quadratically bounded,

2. for all allowable vk ∈ Ev, k ≥ 0, the ellipsoid (52) is a

robust invariant set for the system (29).

Using Definition 3 and the fact that vT
k Qvk ≤ 1 (cf. (23)),

it is possible to write:

vT
k Qvk < xT

f,kP (hk)xf,k,

⇒ xT
f,k+1P (hk+1)xf,k+1 − xf,kP (hk)xf,k < 0.

(53)

which by Definition 3 gives

vT
k Qvk < xT

f,kP (hk)xf,k, ⇒ ∆V < 0, (54)

which can be written as
[

xf,k

vk

]T [
−P (hk) 0

0 Q

][
xf,k

vk

]
≺ 0,⇒ (55)

[
xf,k

vk

]T[
e∗A1(hk) − P (hk) e∗B(hk)

f∗A1(hk) f∗B(hk)

][
xf,k

vk

]
≺ 0,

(56)

where
e∗ = A1(hk)T P (hk+1),

f∗ = B(hk)T P (hk+1).

By applying the S-Lemma [37], the relations (55), (56)

can be written in the form:[
A1(hk)T

B(hk)T

]
P (hk+1)

[
A1(hk)B(hk)

]

+

[
−(1 − α)P (hk) 0

0 −αQ

]
≺ 0,

(57)

where α > 0 is some scalar. Thus, by applying Schur com-

plement it can be written as


−(1 − α)P (hk) 0 A1(hk)T

0 −αQ B(hk)T

A1(hk) B(hk) −P (hk+1)
−1


 ≺ 0, (58)

and subsequently, multiplying it from left nad right by

diag(I, I, P (hk+1))


−(1 − α)P (hk) 0 A1(hk)T P (hk+1)

0 −αQ BT P (hk+1)

P (hk+1)A1(hk) P (hk+1)B(hk) −P (hk+1)


≺ 0.

(59)

Finally, substituting

A1(hk) =

M∑

i=1

M∑

j=1

hi(sk)hj(sk)(Ai − BiKj)

=

M∑

i=1

M∑

j=1

hi(sk)hj(sk)Ai,j
1

gives

M∑

i=1

M∑

j=1

M∑

l=1

hi(sk)hj(sk)hl(sk+1)Ψ
l
i,j ≺ 0, (60)
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where

Ψl
i,j =



−(1 − α)P i

0 A
(i,j)T
1 P l

0 −αQ B(i)T P l

P lA
i,j
1 P lBi −P l


. (61)

Similarly as in the previous section, this allows writing the

following lemma:

Lemma 5. Condition (61) is fulfilled providing the following

conditions hold:

Ψl
i,i ≺ 0, i ∈ {1, . . . , M}, (62)

2

M − 1
Ψl

i,i + Ψl
i,j + Ψl

j,i ≺ 0,

i, j, l ∈ {1, . . . , M}, i 6= j,

(63)

0 < α < 1. (64)

Note that for a fixed α, the design procedure boils down

to solving LMIs (62), (63) with respect to P i (i = 1, . . . , M ).

Remark 3. By Proposition 2 from [34], for any Q ≻ 0, the

system (29) is exponentially stable if and only if there exist

α > 0 and P ≻ 0 such that (58) is satisfied.

5. Efficient predictive FTC

The robust fault-tolerant control presented in Sec. 4 is based

on the idea of estimating the fault, and then compensating it

with a suitable increase or decrease of the control feeding the

faulty actuator. In spite of the incontestable appeal of the pro-

posed approach, its main drawback is that it does not take into

account the fact that all actuators obey some saturation rules.

Thus, the idea behind the approach presented in this section

is as follows: when a saturation of a faulty actuator appears

then perturb (or modify) the control strategy of the remaining

actuators in such a way as to increase the robust invariant set

and to make the overall control problem feasible. The subse-

quent part of this section is devoted to the implementation of

such a strategy.

Thus, the objective of the subsequent part of this section

is to develop a suitable control strategy that takes into ac-

count the actuator saturation. For this purpose, the efficient

predictive control scheme introduced by [16] is utilised. In

particular, the proposed scheme is suitably extended to cope

with the external disturbances, and hence, achieving robust-

ness.

Thus, predictions at time k are generated as follows [16]:

zk+1 = Z(hk)zk + B̃(hk)vk, (65)

where

Z(hk) =

[
A(hk) − B(hk)K(hk) B(hk)T

0 M

]
,

B̃(hk) =

[
B(hk)

0

]
, M =

[
0(nc−1)r×r I

0r×r 0r×(nc−1)r

]
,

zk =

[
xf,k

ωk

]
, ωk =




ck

ck+1

. . .

ck+nc−1


,

T =
[
Ir×r 0 . . . 0

]
.

Following [16], it can be pointed out that if there exists robust

invariant set Exf
(cf. (52)) for (65), then there must exist at

least one robust invariant set Ez for (65). Thus, (61) can be

easily adapted for (65), which gives the robust invariant set

for the proposed fault-tolerant predictive scheme:



−(1 − α)P i
0 Z(i,j)T P l

0 −αQ B̃
(i)T

P l

P lZi,j P lB̃
i

−P l


 0 < α < 1. (66)

Note, for wk = 0, the stability of (65) is guaranteed by the

stability of A(hk) − B(hk)K(hk). In case wk 6= 0, the

stability of (65) follows from Remark 3, which refers to the

existence of a solution of (66) with respect to α > 0 and

P i ≻ 0.

Since the robust invariant set for (65) is given then it is

possible to introduce the input constraints (69). The easiest

way to do this is to suitably scale ωk in (65) as follows, i.e.

ωk is replaced by:

ωk =




ck − f̂k−1

ck+1 − f̂k−1

. . .

ck+nc−1 − f̂k−1


. (67)

Let us define

M (hk) = [−K(hk) T ] (68)

and hence

uf,k = M (hk)zk. (69)

Let ei denote i-th column of the r-order identity matrix,

which makes it possible to rewrite the input constraints as

follows

|eT
i uf,k| ≤ ui i = 1, . . . , r. (70)

Subsequently, it can be observed that for zk ∈ Ez the above

inequality implies

|eT
i uf,k|

2 = |eT
i M(hk)zk|

2

= eT
i M(hk)P (hk)−1/2P (hk)1/2zk|

2

≤ ||eT
i M(hk)P (hk)−1/2||2||P (hk)1/2zk||

2

≤ ||eT
i M(hk)P (hk)−1/2||2

(71)
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and if there exists a symmetric matrix Y such that

M(hk)P (hk)−1M(hk)T − Y ≺ 0,

Y i,i ≤ u2
i , i = 1, . . . , r

(72)

then |ui,f,k| ≤ ui, (i = 1, . . . , r). Using the Schur comple-

ments, inequality (72) can be written as
[

−Y M(hk)

M (hk)T −P (hk)

]
≺ 0, Y i,i ≤ u2

i . (73)

Thus, in order to take into account the input constraints, (66)

should be accompanied with
[

−Y (M j)

(M j)T −P i

]
≺ 0, Y a,a ≤ u2

a,

a = 1, . . . , r, i = 1, . . . , M, j = 1, . . . , M.

(74)

If the robust invariant set along with input constraints are de-

scribed in a form of LMIs, then it is possible to solve them and

simultaneously maximize the invariant set. For that purpose,

various criteria can be selected, e.g.:

• minimization of the determinant of P (hk), which corre-

sponds to the maximization of volume of the invariant set,

• minimization of the trace of P (hk), which corresponds to

the maximization of the sum of the axes of the ellipsoid

describing an invariant set.

Taking into account the structure of P (hk), which is a weight-

ed sum of matrices, to maximize the size of the Exf
the fol-

lowing sum of traces should be minimized:

min trace

(
M∑

i=1

(
T P iT T

))

= min trace
(

diag
(
T P 1T T , . . . , T P MT T

)) (75)

with

xf,k = T zk, (76)

under the constraints formed with (66) and (74). The algo-

rithm for computing ck in (65) is also inspired by [16] and

boils down to perform, at each sampling time, the following

minimisation

ω∗

k = min
ωk

ωT
k ωk, s.t. zT

k P (hk)zk ≤ 1, (77)

which can be equivalently written as:

ω∗

k = min
ωk

ωT
k ωk, s.t. xT

f,kP 1,1(hk)xf,k

+ 2xT
f,kP 1,2(hk)ωk

+ ωT
k P 2,2(hk)ωk ≤ 1,

(78)

where P 1,1(hk) , P 1,2(hk) and P 2,2(hk) are block partitions

of P (hk) conformal to the partition of zk = [xT
f,k ωT

k ]T .

Thus, if the H∞ control is feasible then ω = 0, otherwise

the solution lies on the boundary of Ez described by (78).

This means that when ω = 0 is contained in Ez described

by (78), then there is no need for optimisation and the opti-

mal solution is ω = 0. Otherwise, as indicated in [16], the

above optimisation problem has a unique solution and can be

very efficiently solved with, e.g., the Newton-Raphson algo-

rithm [38, 39]. Thus, the structure of whole robust predictive

fault-tolerant control can be summarized as follows:

Off-line computation:

1. for a predefined disturbance attenuation level µ > 0,

design a robust controller K(hk) by solving (33),

2. determine the robust invariant set by solving (75) un-

der the constraints (66) and (74).

On-line computation: for each k,

1. compute the fault estimate f̂k−1 with (14),

2. solve the optimisation problem (78),

3. implement the first element of ωk, i.e. ck.

An outline of the proposed scheme is depicted in Fig. 1.

Fig. 1. Proposed robust predictive FTC scheme outline

6. Illustrative example

The selected nonlinear system is based on the Twin-Rotor MI-

MO System (TRMS), a laboratory set-up [40] developed by

Feedback Instruments Limited. Extensive research regarding

TRMS can be found in [41] and the references therein. The

TRMS, as shown in Fig. 2, is driven by two DC motors. It

has two perpendicular propellers joined by a beam pivoted on

its base. Chassis have thus 2 degrees of freedom, allowing it

to move inside imaginary static sphere. The joined beam can

be moved by changing the input voltage of its motor, which

controls the rotational speed of the propellers. The system is

equipped with a pendulum counterweight fixed to the beam

and it determines a stable equilibrium position. Additionally,

the system is balanced in such a way that when the motors

are switched off, the main rotor end of the beam is lowered.
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The behaviour of the TRMS system resembles that of a he-

licopter [41]. For example, there is a strong cross-coupling

between the main rotor (collective) and the tail rotor. Howev-

er, the system is different from a helicopter in many ways, the

main differences being the: location of the pivot point (mid-

way between two rotors in TRMS vs. main rotor head in the

helicopter), vertical control (speed control of main rotor vs.

collective pitch control), yaw control (tail rotor speed vs. pitch

angle of tail rotor blades) and lastly, cyclical control (none vs

directional control).

Fig. 2. Components of the twin-rotor MIMO system

The mathematical model of the TRMS can be described

by a set of four nonlinear differential equations with two lin-

ear differential equations and four nonlinear functions [40].

Some of the parameters can be obtained from manual [40],

whereas others should be collected as an experimental results,

e.g., inertia, magnitudes of the physical propeller, coefficients

of friction and impulse force. The inputs of the system are

defined by the input vector u = [uh, uv]
T , where uh is the

input voltage of the tail motor and uv is the input voltage of

the main motor. The input bounds are u1 = 1 and u2 = 1.

The state vector is defined as x = [Ωh, φh, ωh, Ωv, φv, ωv]
T ,

where Ωh is the angular velocity around the vertical axis, φh

is the azimuth angle of the beam, ωh is the rotational velocity

of the tail rotor, Ωv is the angular velocity around the horizon-

tal axis, φv is the pitch angle of the beam, ωv is the rotational

velocity of the main rotor. For the complete physical model

of such a system refer to [40, 41].

A normalised TS model, which approximates the nonlin-

ear TRMS system, is obtained by linearising a system around

five operating points [2]. The system can be described in the

following way:

xf,k+1 =

5∑

i=1

hi(sk)[Aixf,k + Biuf,k + Bifk + Wwk], .

(79)

The matrices Ai, and Bi, (i = 1, . . . , 5) are acquired by lin-

earising the initial system around five points chosen in the

operating range of the system considered, with the premise

variable sk = φh,k and membership functions shown in

Fig. 3. A detailed description of the model (79) can be found

in [2]. Note also that, according to [2] the constant bias aris-

ing from the linearisation were removed due to their avoid-

ably small values. Moreover, it was verified that the matrices

Bi, i = 1, . . . , M satisfy the conditions of Theorem 3, which

makes it possible to conduct the remaining design procedure.

Five local models guarantee a relatively good approximation

of the state of the real system by the TS model within the

operating range.

Fig. 3. Fuzzy sets used in the Takagi-Sugeno model

The robust H∞ controller gain matrix K(hk) has been

obtained obtained by solving (33) with a predefined attenua-

tion level µ = 0.2 and for W = 0.01I. While, after numerous

experiments, the prediction horizon was set to nc = 6, which

guarantees a good compromise between the complexity and

quality of FTC. The actuator faults scenarios, i.e., a decrease

in the performance of the main rotor (f1,k) and a rotor mis-

alignment in tail electric motor (f2,k) are described as fol-

lows:

f1,k =

{
−0.2 50 ≤ k ≤ 90,

0 otherwise

f2,k =

{
0.5 sin(2π+1+0.1π ∗ (k − 80)) 80 ≤ k ≤ 120,

0 otherwise

Figure 4 present the horizontal and vertical angular po-

sition of the beam, achieved for the proposed FTC strategy.

As a result, Fig. 5 clearly shows that the faults can be esti-

mated with a very high accuracy. The fault estimate exhibits

some deviations from the nominal value due to exogenous

disturbances and modelling errors being a consequence of the

high nonlinearity of the system (its high cross-coupling be-

tween the main rotor and the tail rotor). Contrarily to the

non-FTC scheme, the proposed strategy exhibits a small er-

ror only. Thus, the proposed control strategy deals with the
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faults in a satisfactory way. Figure 6 shows control signals

for the chosen fault scenario. Nonlinearities in TRMS have

also influence on the faulty behaviour of the system. Thus,

Fig. 6 shows appropriate control that should be provided for

both inputs in order to stabilize the system behaviour. This

case proves efficiency of proposed control scheme for respec-

tively large fault. Figure 4 presents stabilization of the beam

position with FTC enabled while even small fault evolves into

large deviation in the beam position for the non-FTC scheme.

However, overshoots cannot be totally avoided, their existence

have minor influence on the overall performance of the sys-

tem, and hence, of the proposed scheme can be perceived as

a reliable one.

Fig. 4. Selected states of the system with with and without FTC

Fig. 5. Faults and their estimates

Fig. 6. Respective control inputs u1, u2

7. Conclusions

The main contribution of the paper is a fault-tolerant scheme

for the nonlinear systems described in the Takagi-Sugeno

framework. The proposed approach deals with the actuator

faults and it is naturally assumed that the actuators have giv-

en performance limits. The scheme is composed of three main

components: robust controller, fault estimator and the predic-

tive controller. The robust controller is designed in such a way

that a suitable disturbance attenuation level is achieved during

the fault-free performance of the system. In a faulty situation

the fault estimate is used for compensating the fault. However,

such a compensation may lead to the faulty actuator satura-

tion. This unappealing phenomenon is detected and main-

tained with the suitable predictive control action that employs

the remaining actuators in order to bring the system back into

the robust invariant set. Thus, this new triple-stage strategy

faces a very challenging problem of fault-tolerant control for

nonlinear input-constrained system. As indicates the state-of-

the-art, there were no efficient solution to this problem so far.

All the proposed approaches can be efficiently implemented,

i.e., the off-line computations boils down to solving a number

of linear matrix inequalities while the on-line computation re-

duces to the application of the Newton-Raphson method. The

proposed approach was applied to the benchmark example of

the twin-rotor system. The achieved results show the perfor-

mance of the high performance of the proposed approach. In

spite of the incontestable appeal of the proposed approach

there are still some points, which may further improve its ef-

fectiveness. Indeed, in the proposed approach it is assumed

the the state is available and, hence a natural approach is to

relax this assumption by the introduction of a suitable state es-

timation strategy (cf. [15]). Another issue is associated with

the inner-bounding of the real invariant set by an ellipsoid.

It is evident that the drawback of such an approximation is

the decreased size of the set while the advantage is related

with the on-line computational burden. Finally, an interesting

research direction is to develop an approach dedicated to the

case when some of the premise variables are unmeasurable.
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