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MAREK PAWLIKOWSKI ∗

CORTICAL BONE TISSUE VISCOELASTIC PROPERTIES AND ITS
CONSTITUTIVE EQUATION – PRELIMINARY STUDIES

In the paper, preliminary studies on formulation of a new constitutive equation
of bone tissue are presented. A bone is modelled as a viscoelastic material. Thus,
not only are elastic properties of the bone taken into account, but also both short-
term and long-term viscoelastic properties are considered. A potential function is
assumed for the bone, constant identification on the basis of experimental stress-strain
curve fitting is completed and a preliminary constitutive equation is formulated. The
experiments consisted of compressive tests performed on a cuboids-like bone sample
of the following dimensions: 10×5×7.52 mm. The specimen was compressed along
the highest dimension at the strain rates 0.016 s−1 and 0.00016 s−1.In addition to this,
stress relaxation test was performed to identify long-term viscoelastic constants of
bone. In the experiments, only displacement in the load direction was measured. The
bone sample was extracted from a bovine femur. The form of the proposed potential
function is such that it models a bone as a transversely isotropic material. For the
sake of simplicity, it is assumed that the bone is incompressible. After the material
constant identification the strain energy function proved to be adequate to describe
bone behaviour under compressive load. Due to the fact that the function is convex,
the results of the studies can be utilised in modelling of bone tissue in finite element
analyses of an implant-bone system. Such analyses are very helpful in the process
of a new prosthesis design as one can preoperatively verify the construction of the
new implant and optimise its shape.

1. Introduction

Clinical results of orthopaedical surgeries depend on variety of factors,
i.e. patient condition, surgical technique, applied artificial components etc.
Also the way of patient’s living influences significantly whether or not or-
thopaedical treatment is successful. Surgeons estimate the possible clinical
results on the basis of medical examination of a patient. However, there is
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always a certain risk, which cannot be pre-operatively predicted, that the
organism’s response to the surgery will be clinically unfavourable. Bone
tissue atrophy is one of such negative reactions of the operated patient’s
organism [1], [2]. Bone atrophy, i.e. decrease of bone density, is a result of
stress shielding phenomenon that takes place in bone after a prosthesis im-
plantation. In normal conditions, non-implanted bone carries out load itself.
After a prosthesis implantation, the load is carried out both by bone and
the prosthesis. In consequence, stresses in the bone are lower than in non-
implanted one. According to Wolff’s law, stress reduction in bone in respect
of natural state leads to bone functional adaptation, i.e. bone density decrease
(internal remodelling) and/or bone volume decrease (external remodelling)
[3].

Internal remodelling is the most dangerous phenomenon, which also oc-
curs most often after a prosthesis implantation. The phenomenon may lead to
the prosthesis loosening (e.g. the stem loosening in femur or the acetabulum
loosening in pelvis in the case of implanted hip joint). Low durability of
the prosthesis, which is revealed by early prosthesis loosening due to lack
of its firm biofixation in the bone, leads to the revision arthroplasty that is
usually more difficult than the primary arthroplasty. A realistic pre-operative
modelling of bone behaviour after an orthopaedical surgery becomes, thus,
very important, not to say indispensable, in the clinical practice to minimise
the risk of failure. The mentioned above phenomenon of bone remodelling
can be modelled as bone density change with time [4]. Simulation of bone
remodelling allows one to predict, to a certain degree, how bone tissue will
react to the changed load conditions after the surgery of prosthesis implan-
tation. This consequently leads to the process of the prosthesis construction
optimisation against bone density distribution in the vicinity of the prosthesis
[5]. The author would like to go a step further and to create a new constitutive
formula for bone tissue. In this paper, the preliminary studies in the range
are shown.

The approach of the constitutive equation formulation presented in the
paper is based on postulation of a potential function form W and is well
described in the literature [6], [7], [8]. It is a very convenient approach as it
makes it possible to take into account various phenomena, such as a material
ability to dissipate energy, relation between material reaction and deformation
rate, anisotropy of a material by means of structural tensors, etc. Potential
energy of elasticity per unit of volume is the physical interpretation of the
potential function W , which is also referred to as strain energy density. The
energy must be an invariant of the coordinate system transformation. Thus,
potential energy has to depend on invariants of the tensors used to describe
material behaviour. In this approach, another method is also involved, namely
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the approach of mechanistic models, i.e. springs and dumpers. Bone tissue
is a viscoelastic material. This is true for both trabecular bone [9], [10], [11]
and compact bone [12], [13].The viscoelastic properties of cortical bone are
accounted for the presence of collagen matrix in the structure [14]. In the
paper, those properties are modelled by means of the Kelvin-Voigt model, and
then the model is applied to formulate the constitutive equations by means of
a potential function. The differential equation describing a one-dimensional
case is generalised to a tensor form and the proper expressions are replaced
with derivatives of the potential function.

The strain energy density W is a scalar function of one tensorial vari-
able, i.e. the deformation gradient F. The second-order tensor F represents
the mapping of the deformation from the reference state to the deformed
configuration. It is assumed that W vanishes in the reference configuration,
i.e. when time t = 0. Thus, in the initial state the deformation gradient F = I
where I is the unit tensor. It is known from physical observations that the
potential function increases monotonically with deformation. Thus, W attains
its global minimum in the reference configuration which is a stress-free state:

W (I) = 0, W (F) ≥ 0. (1)

Another restriction that is placed on the strain energy density is that in order
to expand a body infinitely or to compress a body to the volume of zero an
infinite amount of energy is needed:

W (F)→ ∞ as detF → ∞, (2)

W (F)→ ∞ as detF → 0. (3)

It is obvious that the potential function and the resulting constitutive
equations must satisfy some requirements. Those requirements result from
mathematical theory and the physical nature of the materials:
i) convexity,
ii) objectivity,
iii) material-frame indifference.

The constraint i) is a fundamental one for existence and uniqueness of
the solution in the boundary value analysis [15], [16]. In order to obtain a
numerical solution in cases where an analytical one is not possible to be
obtained, one has to ensure the uniqueness of the solution. This requirement
is essential to have confidence in numerical results.

The objectivity constraint, which is also referred to as observer invariance
demand, means that the state of deformation of a body cannot depend on the
position of the observer registering the motion. This can be put in other words
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as follows: two observers in different positions will observe the identical
deformation of a body at one instance.

The third constraint is closely related to the previous one. It states that a
rigid motion of a deformed body does not influence the value of the energy
of the body.

In the paper, the potential function W for bone tissue is formulated such
that it takes into account the instantaneous response of bone We and the
viscous properties of the body Wv. Thus, takes the form:

W = We + Wv, (4)

where We – elastic potential, Wv – viscous potential.
As it was mentioned above, the strain energy density depends on invari-

ants of some tensors. The elastic potential We can be dependent on three
invariants of the right Cauchy tensor C, i.e. I1, I2 and I3. The tensor C is
defined: C = FT F. For incompressible isotropic materials, We is a function
of only two invariants, i.e. I1 and I2 or one of them, as the third invariant of
C defines the volume change of a body.

The viscous potential Wv, on the other hand, can be a function of I1, I2, I3
and invariants of the right Cauchy deformation rate tensor Ċ, i.e. J1, J2 and
J3. For incompressible isotropic materials Wv depends on I1 and/or I2 and
J1 and/or J2 [17].

In a general viscoelastic constitutive equation formulation one has to
take into account the principle of fading memory developed in [18]. It takes
into consideration the deformation history and states that the deformation
occurred in the recent time history influences in a greater degree the actual
state of stress than the deformation occurred in the more distant time history.
The principle is mathematically expressed as follows:

S = Se (C (t)) +

∫ t

0
F (G (t − s) , s; C (t))ds, (5)

where: S – second Piola-Kirchhoff stress tensor, Se – elastic second Piola-
Kirchhoff stress tensor, F – a general tensor-valued function that depends on
variables G (t − τ) and τ. In Eq. (5) s represents the historical time variable,
whereas t is the current time.

The application of a viscoelastic constitutive model indicating the long-
term viscoelastic properties is restricted to low strain rates, namely 0.0006–
0.0075 s−1 [19]. For higher low strain rates (up to 0.1 s−1) the constitutive
model gives inaccurate results [20]. This seems to be quite evident as such
viscoelastic models are to capture the whole history of deformation through
the integral formulation and are not suited to capture the material behaviour
in the very short time.
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The first objective of the paper is to propose a potential function for
bone tissue and formulate a phenomenological constitutive equation for the
tissue. In the studies, the bone tissue is assumed to be incompressible and
transversely isotropic. The viscoelastic material constants are identified on the
basis of experimental data by means of the author’s code realising Levenberg-
Marquardt algorithm for least-square curve fitting. In this approach, only
short-term viscoelastic effects are taken into account.

The second objective of the paper is to utilise the theory, first described
in [21] and developed in [22], concerning long-term viscoelastic formulation
of constitutive equation to create a new viscoelastic constitutive equation for
bone tissue. The hereditary integral in Eq. (5) can be numerically approxi-
mated by a function representing the relaxation process of bone or by means
of the theory introduced in [21]. In the process of bone viscoelastic constants
identification, three Kelvin-Voigt models are applied to simulate viscoelastic
properties of bone tissue.

2. Materials and Methods

The paper contains preliminary studies on the formulation of new con-
stitutive equations that will be implemented in a commercial finite element
system. Although bone tissue is a highly anisotropic material, it is considered
in this work as a transversely isotropic one. In addition to this, it is assumed
to be incompressible. This assumption is often applied to various biological
tissues, e.g. [23].

2.1. Short-term viscoelastic effects

On the basis of thermodynamical considerations [24], a relation between
the second Piola-Kirchhoff stress tensor and the arguments of the potential
energy function W can be derived as:

S = 2
m∑

α=1

(
∂We

∂Iα

∂Iα
∂C

)
+ 2

n∑

α=1

(
∂Wv

∂Ja

∂Jα
∂C

)
, (6)

where m, n denote the number of the Cauchy stress tensor invariants and
Cauchy stress rate tensor invariants, respectively. It can be seen from Eq.
(6) that the stress response is divided in an elastic Se and a viscous Sv
contribution. The form of Eq. (6) ensures also fulfilment of requirement (1).
Thus, Eq. (6) can be shortly written as follows:

S = Se + Sv (7)
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In the case of the models that take into account the short-term memory
effects, the stress state depends only on a very short part of the deformation
history. In those cases s in Eq. (5) tends to zero, and the component G(t − s)
in the equation can be approximated by its Taylor expansion. If we consider
only the first degree of Taylor expansion, Eq. (5) takes the form of Eq. (7).

In order to calculate the second Piola-Kirchhoff stress tensor, one has
to decide the number of elastic invariants Iα and viscous invariants Jα that
the strain energy functions We and Wv depend on. Limbert and Middleton
provide 12 elastic and viscous invariants for a transversely isotropic material
[25]:

I1 = trC, I2 =
1
2

(
(trC)2 − trC2

)
, I3 = det C, (8)

I4 = N0 : C, I5 = N0 : C2, (9)

J1 = trĊ, J2 = trĊ2
, J3 = det Ċ, (10)

J4 = N0 : Ċ, J5 = N0 : Ċ2
, (11)

J6 = tr
(
C · Ċ

)
, J7 = tr

(
C · Ċ2

)
, J8 = tr

(
C2 · Ċ

)
, J9 = tr

(
C2 · Ċ2

)
, (12)

J10 = tr
(
N0 · C · Ċ

)
, J11 = tr

(
N0 · C · Ċ2

)
, J12 = tr

(
N0 · C2 · Ċ

)
, (13)

where N0 = n0 ⊗ n0 is a symmetric second-order structural tensor, n0 is a
unit vector defined in the reference configuration oriented in the direction
perpendicular to the isotropy plane,̇ is the dot product of two tensors or
vectors, : is the double contraction of two tensors, ⊗ denotes the dyad or
tensor product of two vectors, tr(A) represents the trace of the tensor A,
”det(”A) is the determinant of the tensor A. It is assumed that in the uniaxial
compression the vector n0 represents the direction of loading.

The isotropic response of the material is represented by the invariants
I1, I2, I3, J1, J2, J3, J6, J7, J8 and J9 while its transversely isotropic response is
taken into account by means of the other complementary invariants.

As collagen, in particular type-I collagen, constitutes a great majority of
the organic substances in bone [26], the structure of this biological tissue can
be regarded as a composite structure made of the collagen fibres distributed
in an isotropic solid matrix. Thus, it is reasonable that the mechanical be-
haviour of bone be described by means of the transversely isotropic material
symmetry approach. In view of this information, the unit vector n0 represents
the preferred direction of anisotropy in the material [27]. Apart from this,
the fact that bone contains a relatively high amount of water justifies the
assumption of incompressibility of bone.
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Constitutive relationships based on a strain function with fabric tensor
taken into account have been proposed by various authors, e.g. [28], [29].
Those constitutive approaches, however, describe only the elastic contribution
in a material behaviour. The strain energy function proposed in the paper is a
non-linear viscoelastic function. As for other biological tissues, the potential
functions that are most often presented in many papers concern soft tissues,
such as ligaments or tendons, e.g. [23], [25], [30]. In the paper, the proposed
strain energy function is adopted to bone tissue behaviour. For the sake of
further possibility to utilise the new constitutive formula for bone tissue in
numerical analyses, it is taken care of that the potential function be convex.

The identification of the material parameters is completed (Fig. 1) on
the basis of experimental tests consisting in uniaxial compression along the
vector n0. One compression test was performed with relatively high strain
rate, namely 0.016 s−1, in order to formulate a constitutive model including
short-term viscoelastic effects. Another one was performed with lower strain
rate, namely, 0.00016 s−1, to simulate long-term viscoelastic effects. The
strain rate 0.016 s−1 corresponds to the compressive velocity 10 mm/min,
whereas 0.00016 s−1 corresponds to the velocity 0.1 mm/min. In this way,
a wide range of the strain rate values is considered in the formulation of
the constitutive equation for bone. In addition to this, a relaxation test was
executed to simulate the viscous response of bone. During the tests, defor-
mation in the direction of load was measured. The cuboid bone sample was
cut out from the cortical tissue of the bovine femur. The dimension of the
specimen were 10×5×7.52 mm. The specimen was compressed along the
highest dimension which corresponded to the direction of the femur long
axis. Before the sample formation, the bone was kept in the temperature of
-20◦C. Then, it was left to thaw for 12 hours and, after that, the bone sample
was cut out. Between the tests, the sample was kept in distilled water for two
hours to avoid drying out. After that, the sample was refrozen. The tests were
performed at the time interval of at least 24 hours to let the bone to relax.
The sample surfaces perpendicular to the loading direction were covered with
a thin layer of lubricant to ensure free sliding against the metal surfaces of
the strength machine elements that compressed the sample. Thus, friction
between the surfaces in contact and the risk of barrel-like deformation of the
sample were minimised.

The state of deformation of the sample is described by the deformation
gradient tensor F:

F =



λ1 0 0
0 λ2 0
0 0 λ3

 , (14)
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Fig. 1. The bone sample utilised in the experimental tests. Vector n0 indicates the preferred

direction of anisotropy. In the assumed coordinate system n0(1,0,0).

where λ1, λ2, λ3 are the stretch ratios along the directions x1, x2, x3, respec-
tively. Due to incompressibility, the relation λ1λ2λ3 = 1 is valid. In addition
to this, the transverse isotropy assumption justifies the fact that the stretch
ratios in the direction perpendicular to n0 are equal, i.e. λ2 = λ3. Thus, those

two assumptions imply: λ2 = λ3 =
1√
λ1

. The deformation gradient tensor is

now defined as:

F =



λ1 0 0

0
1√
λ1

0

0 0
1√
λ1


. (15)

According to Eq. (4), the strain energy function is represented by the sum
of an elastic strain energy function We(I1, I5) and a viscous energy function
Wv(J2, J5). This additive hypothesis does not exclude the coupling between
elastic and viscous invariants in the function Wv(J2, J5). In view of this in-
formation, Wv(J2, J5) is rewritten as Wv(J2, J5, I1, I5). This approach, i.e. the
additive decomposition of stress, corresponds to a Kelvin-Voigt rheological
model for bone tissue.

Based on the observations above, it is clearly visible that the strain energy
function applied in these studies depends on two elastic invariants, i.e. I1, I5,
and two viscous invariants, i.e. J2, J5. As the state of deformation in the
material is multi-axial it seems natural to select I1 as one of the invariants
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characterising the energy function, because it represents the sum of the square
of stretch ratios λ1, λ2, λ3. As for the invariant I5, it was chosen in order to
take into consideration the transverse isotropy. The invariant can be written
as follows (see Eq. (9)-2):

I5 = ni
0CikCk jn

j
0. (16)

Taking into account the form of the deformation gradient tensor (Eq. (15))
and the fact that the vector n0 has the components n0(1,0,0), I5 represents
stretch ratio along the fibre direction to the fourth power:

I5 = λ4
1. (17)

The viscous invariant J2 represents the sum of the square of the eigenval-
ues of the right Cauchy deformation rate tensor Ċi j. Moreover, its derivative
with respect to Ċi j is equal to the rate itself:

∂J2

∂Ċi j
= 2Ċi j. (18)

It is then ensured that the expression for viscous stress response is linearly
dependant on the rate of deformation Ċi j. The invariant J5 was selected to
take into account the anisotropic response of the material. It can be written
in the form (see Eq. (11)-2):

J5 = ni
0ĊikĊk jn

j
0. (19)

In view of the experiment conditions and the assumption of transverse isotropy
with the preferred anisotropy direction defined by n0(1,0,0) (Fig. 1), J5 can
be written as:

J5 = Ċ2
11. (20)

In order to be able to formulate an expression for stress S (Eq. 6), the
derivatives of the invariants I1 and I5 with respect to Ci j and that of J5 with
respect to Ċi j have to be provided:

∂I1
∂Ci j

= δi j,
∂I5
∂Ci j

= ni
0Ciknk

0 + n j
0C jknk

0,
∂J5

∂Ċi j
= ni

0Ċiknk
0 + n j

0Ċ jknk
0. (21)

The strain energy function proposed for bone tissue is of the form:

W = c1 (I1 − 3)2 + c2 (I5 − 1) ·
(
ec2·(I5−1) − 1

)
+

+µ1J2 (I1 − 3) + µ2J5 · ln
(
1 + µ3 (I5 − 1)2

)
,

(22)
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where: c1, c2, c3 are elastic material constants, µ1, µ2, µ3 are viscous material
constants to be identified on the basis of experimental tests. First, the elastic
constants were identified and then the viscous ones. The constants were
determined using a code written in MATLAB that realised the Levenberg-
Marquardt algorithm. The method of least squares is utilised in the algorithm
for best theoretical curve fitting to the experimental results.

Incorporating Eq. (22) into Eq. (6) one finally obtains:

Si j = 4c1 (I1 − 3) δi j + 2
(
c2

(
ec2(I5−1) − 1

)
+

+c2 (I5 − 1) c3ec2(I5−1)
) (

ni
0Ciknk

0 + n j
0C jknk

0

)
+

+2
(
µ1 (I1 − 3) 2Ci j + µ2 · ln

(
1 + µ3 (I5 − 1)2

) (
ni

0Ciknk
0 + n j

0C jknk
0

))
− pC−1i j ,

(23)
where p plays the role of a Lagrangean multiplier and has to be entered into
the expression for the second Piola-Kirchhoff stress tensor when incompress-
ibility is assumed. The physical meaning of the quantity p is a hydrostatic
pressure. It is determined by means of the equilibrium equations and the
boundary conditions.

2.2. Long-term viscoelastic effects

In the second approach, a relaxation test was performed in order to
take into account long-term viscoelastic effects and, in addition, a uniaxial
compression test with the strain rate 0.00166 s−1 was realised. On the basis of
the compression test, the elastic constants in the elastic strain energy function
were determined. The results of the relaxation test were utilised to determine
viscous constants of the material.

In the relaxation test, the bone sample was subjected to the load cor-
responding to the stress in the sample 52MPa. The relaxation process was
registered for approx. 20 min. The test was a ramp strain test, i.e. both the
loading phase to the strain 0.0164 and the relaxation stage was taken into
account for the viscous constant calibration. The time of the whole test could
not be long to prevent the sample from excessive drying out.

The general constitutive model used in this approach consists of a strain-
dependant function having dimension of stress T0(λ1) and a dimensionless
time-dependant function g(t):

T (λ1, t) = T0 (λ1) ∗ g (t) . (24)

In Eq. (24), T (λ1, t) denotes the first Piola-Kirchhoff stress at time t and strain
corresponding to stretch ratio λ1. The strain dependant function T0 (λ1) is in
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fact the first Piola-Kirchhoff stress derived from the elastic strain function
We. The time-dependant function g(t) takes the form:

g (t) = g∞ +

3∑

i=1

gi · e
t
τi , (25)

where g∞ and gi are constants, τi represent the relaxation times in the Prony
series [31]. The three constants gi are to be calibrated from the experimental
data and g∞ is a function of them:

g∞ = 1 −
3∑

i=1

gi. (26)

It has to be noted that ∗ in Eq. (24) denotes the convolution of T0 and g.
Thus, Eq. (24) takes the form:

T (λ1, t) =

∫ t

0
g (t − s)

∂T0 (λ1)
∂λ1

∂λ1

∂s
ds, (27)

which, in turn, can be split into a long-term elastic response and a viscoelastic
contribution:

T (t) = g∞T0 (t) +

∑3
i=1

∫ t
0 gi · e−

t−s
τi (∂T0 (s))

∂s
ds. (28)

The stress T (t) is now a function of only time t if the strain history λ1(t) is
known.

The integral in Eq. (28) may be computed using the algorithm presented
in [22], which is based on finite increments of time. Following the derivation
introduced in [22], Eq. (28) can be written in the form:

T (t + 1) = g∞T0 (t + 1) +

+

3∑

i=1

e
− ∆t
τi · hi (t) + gi

1 − e−
∆t
τi

∆t
τi

(T0 (t + 1) − T0 (t))


, (29)

where ∆t is the time increment, hi(t) represents the stress at the previous
time step. As the initial stress and strain in the material are known, the stress
at time t > 0 can be easily calculated.

The constant calibration in the constitutive modelling with long-term
viscoelastic effects taken into consideration was completed according to the
following plan: first the elastic constants c1, c2 and c3 and viscous ones g1, g2
and g3 were determined on the basis of the relaxation compression test. In the
second step, the uniaxial compression test data were used to calibrate once
again the elastic constants. The relaxation times τ1, τ2, τ3 were assumed to
be equal to 1, 10, 100 s, respectively.
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3. Results

The viscoelastic constitutive model for bone tissue was firstly determined
taking into account only short-term viscoelastic effects. In this step, the po-
tential function given in Eq. (22) was chosen. The constants were calculated
using the monotonic stress-strain data obtained from the uniaxial compression
test.

The second approach consisted in determination of a constitutive model
for bone tissue that took into account long-term viscoelastic effects. The
constants were calibrated using the stress-strain data and the relaxation data.

3.1. Short-term viscoelastic effects

The elastic and viscoelastic constants were identified using the Levenberg-
Marquardt algorithm realising the least-square optimisation procedure [32].
The computer code utilising the algorithm was written in the Matlab script
language.

Utilising only the elastic part of Eq. (23) and taking advantage of the fact
that stress in the perpendicular directions was equalled to zero, the elastic
constants were first calibrated. In the process of the constant calibration, the
relationship between the first and the second Piola-Kirchhoff stress tensors
was utilised:

Ti j = FikSk j. (30)

The values of the identified constants are presented in Table 1.

Table 1.
The elastic constants obtained by identification of the proposed transversely isotropic viscoelastic
model with the experimental data (uniaxial compression with strain rate 0.016 s−1). The elastic

strain energy function We from Eq. (23) was utilised in the calibration process

c1[MPa] 33.5

c2[MPa] 104.8

c3[-] 2.6

From the numerical point of view it is crucial that the elastic potential
We in Eq. (22) be convex. In Fig. 2, the potential We is shown as a function
of C11 and C22. The value of C33 was assumed to be equal 1.1. Under the
compressive test along the 1st direction (Fig. 1) the value of the stretch ratio
in the 3rd direction will be increasing, as well as that in the 2nd direction. The
idea of Fig. 2 is to show qualitatively the convexity of the potential function.
The value of C33 can be assumed arbitrarily with the restriction that it should
be greater than 1. Fig. 2 clearly demonstrates that the elastic potential of the
proposed form is convex.
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Fig. 2. Convexity of the elastic potential We in function of C11 and C22(C33=1.1)

Thus, the identification of the viscous constants could be performed.
Through this calibration process, the values of the elastic constants were
kept unchanged and equal, as it is presented in Table 1. The full forms of
Eq. (22) and Eq. (23) were used, as well as Eq. (30). The identification
of the constants µ1, µ2 and µ3 were performed on the same experimental
data obtained from uniaxial compression test. In Fig. 3 the theoretical curve
matched to the experimental data is presented. The values of the viscous
constants are listed in Table 2.

Table 2.
The viscous constants obtained by identification of the proposed transversely isotropic

viscoelastic model with the experimental data (uniaxial compression with strain rate 0.016 s−1).
The full strain energy function W from Eq. (23) was utilised in the calibration process

µ1[MPa·s] 82433.5

µ2[MPa·s] 126392.95

µ3[-] -0.12
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Fig. 3. Analytical stress-stretch ratio curve obtained at the compression rate 0.016 s−1. The curve

match corresponds to the identification of the elastic and viscous constants c1, c2, c3, µ1, µ2, µ3 in

Eq. (23)

In view of the identified viscoelastic constants, the expression (22) for
strain energy function W is written as follows:

W = 33.5 (I1 − 3)2 + 104.8 (I5 − 1) ·
(
e2.6·(I5−1) − 1

)
︸                                                      ︷︷                                                      ︸

We

+

+ 82433.5 · J2 (I1 − 3) + 126392.95 · J5 · ln
(
1 − 0.12 (I5 − 1)2

)
︸                                                                           ︷︷                                                                           ︸

Wv

(31)

From Eq. (6), the second Piola-Kirchhoff stress can be now calculated. The
hydrostatic pressure p can be determined from the condition that S22 = 0.
Utilising the relationship between S and the Cauchy stress σ:

σi j = FikSklF jlJ−1, (32)

where J is the Jacobian of the deformation tensor F defined as J=detF, one
can easily formulate the viscoelastic constitutive equation for bone tissue.

Long-term viscoelastic effects

Combining Eq. (6) and Eq. (30), we can write the elastic part of the first
Piola-Kirchhoff stress in the direction of the fibres in the form:
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Fig. 4. Analytical curve obtained from the relaxation test data. The curve match corresponds to

the identification of the elastic and viscous constants c1, c2, c3, g1, g2, g3 in Eq. (29)

T0 =
1
λ1

(
4 ·

(
1 + 2.6

(
λ4

1 − 1
))
· 104.8λ4

1e
2.6·(λ4

1−1) − 419.2λ4
1+

+134
(
λ2

1 +
2
λ1
− 3

)
λ2

1 −
134
λ1

(
λ2

1 +
2
λ1
− 3

))
.

(33)

Now, utilising the algorithm based on finite increments of time and Eq.
(29) the six constants c1, c2, c3, g1, g2 and g3 were calibrated. In this case,
also a code in Matlab was written. The theoretical curve (29) was matched
to the relaxation compression test data (Fig. 4).

The elastic constants were then recalculated by matching Eq. (29) with
the experimental data obtained from the uniaxial compression test at the
strain rate 0.00016 s−1. The recalibrated values of the elasticand viscous
constants are presented in Table 3.

The relaxation function (25) is, thus, defined and the constitutive equation
(24) for bone tissue can be fully formulated. The equation takes into account
long-term viscoelastic effects.
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Table 3.
The elastic and viscous constants obtained by recalibration of the proposed transversely isotropic
viscoelastic model with the experimental data (compression test at compression rate 0.00016 s−1

and relaxation test)

c1[MPa] 27.25

c2[MPa] 426.09

c3[-] 0.46

g1[-] 0.054

g2[-] 0.044

g3[-] 0.034

4. Discussion

The main objective of the paper was to utilise the method of a strain
energy function postulation to derive a constitutive equation for bone tissue.
Such a method is widely used to formulate a constitutive equation for various
biological tissues [23], [26], [33], [34]. In the paper, the method was adopted
to create a constitutive model for bone tissue.

Fig. 5. The response of the material described by the short-term viscoelastic effects constitutive

model derived from the potential function (22) to the tensile (a) and compressive (b) simulated

loads

In the paper, two approaches of viscoelasticity were presented. In the first
one, bone tissue was loaded with a relatively high strain rate, i.e. 0.016 s−1. In
such a case, the material can be modelled with short-term viscoelastic effects
taken into account. The proposed potential W (22) fulfils the restrictions
(1), (2) and (3) and the requirements relating to convexity, objectivity and
material-frame indifference. The stress in the fibre direction was derived for
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compressive load. In order to verify how it describes the material behaviour
under a tensile load, a simulation of a uniaxial tensile test was performed. The
result was compared to that of a simulated compressive test (Fig. 5). Fig. 5a
shows a prediction of the material behaviour to tensile load (λ1 corresponds
to the stretch ration in the simulated tensile test). Fig. 5b shows a prediction
of the material behaviour to compressive load (λ1 corresponds to the stretch
ration in the simulated compressive test). The curves T11(λ1) were derived
from Eq. (22). It can be seen that the constitutive model describes the material
behaviour under compressive load sufficiently well until the moment when
stretch ratio achieves the value of 0.97. The corresponding stress is equal to
approx. 130 MPa. Under such a compressive load the bone breaks, which is
simulated by the theoretical T11 by the change of the curve slope. It does not
describe correctly the material behaviour under tensile load, see e.g. [35].
The potential function has to be examined in this matter more thoroughly.

Also the constitutive model taking into account long-term viscoelastic
effects was verified in the same manner. The response of the material de-
scribed by such a constitutive equation is presented in Fig. 6.The derived
constitutive equation describes almost linearly the response of bone tissue to
tensile (Fig. 6a) and compressive (Fig. 6b) loads. Comparing the theoretical
curve shown in Fig. 6b corresponding to compression test to the experimental
data presented in Fig. 3 one can conclude that the constitutive model (29)
with the proposed elastic potential function is adequate for compressive loads
up to the destructive load.

Fig. 6. The response of the material described by the long-term viscoelastic effects constitutive

model (29) to the tensile (a) and compressive (b) simulated loads

The constants in the proposed strain energy function have their physi-
cal meaning. The constants c1 and c2 are isotropic and anisotropic elastic
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constants, respectively. The constant c3 is a material parameter that warrants
convexity of the potential function and good matching to the experimen-
tal results. The constants µ1 and µ2 are isotropic and anisotropic viscosity
coefficients, respectively. The constant µ3 has the similar meaning as c3.

The bone sample was subjected to strength tests of various types, i.e.
compression test at the two strain rates and a relaxation test. The tests were
performed in the time interval 24 hours. After each test, it was kept in distilled
water for two hours and then refrozen. The preservation of bone samples is
very important for their mechanical properties. Unger et al. concluded that
the mechanical properties of cortical bone are preserved best when they are
fresh-frozen [36]. They suggest that bone samples kept in a special liquid
can be utilised only in pilot tests. There are other factors that influenced the
obtained results, such as: i) the tests were performed in room temperature
and humidity, ii) the “history” of the animal bone, from which the sample
was cut out, is not known, iii) the process of the sample cutting out was also
performed in room temperature.

The experimental tests were done in room temperature and humidity.
The displacement along the load direction was measured. In the case when
incompressibility of the material is assumed, the deformation measurement
is sufficient.

To minimise the friction between the sample and the machine plates the
surfaces in contact were lubricated. The lubrication of the frontal surfaces
of the sample could have had but a positive influence on the character of
the stress distribution in the compressed specimen. Thus, it seems that the
surface lubrication is reasonable and correct.

The relaxation test could not be performed longer than 20 minutes be-
cause it was done in room temperature and humidity. Thus, longer period of
stress relaxation would lead to excessive drying out of the sample and make
the results less accurate.

In order to fully describe mathematically the behaviour of bone under
various loads, one has to study both short- and long-term viscoelastic prop-
erties. The former effects are predominant in the case of cyclic loads that
are exerted in bones during, for instance, the gait cycle. The studies on the
long-term viscoelasticity of bone are undertaken in the context of bone re-
modelling phenomenon. Mathematical models of the adaptation phenomenon
incorporate internal energy that changes during the process of deformation.
The energy can be identified with the potential energy. The method of consti-
tutive equation formulation, presented in the paper, is based on the postulation
of the potential energy form.

Studies on long-term viscoelasticity of bone are also justified by the
fact that the results of the paper are going to be implemented in numerical
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analyses of bone behaviour and included in prosthesis design process. The
fact that viscoelastic properties of bone will be also included makes the
analyses more reliable as the load transfer between the prosthesis and bone
is, thus, simulated in a more realistic manner [37]. Hence, pre-operative
optimisation of the prosthesis as well as follow-up prediction of its clinical
functioning will be possible to perform.

5. Conclusions

The study presented in the paper is a preliminary investigation leading
to the further studies aiming at formulation of constitutive equations for
bone tissue and their application into finite element analyses. The results
were obtained from experimental tests performed on one bone sample. As
bone tissue, especially that of long bones, is mainly subjected to compressive
loads, it has been decided to examine the tissue at this stage of the researches
only under compression.

Generally, the proposed strain energy function proved to be adequate to
simulate bone behaviour subjected to compressive load. Since the function
is convex, the derived constitutive equations can be adopted in numerical
analyses. However, the work on the constitutive model formulation is not yet
finished. To create a full and reliable set of constitutive equations for bone,
more experiments have to be done. Moreover, the experiments should be
done on samples extracted from different regions of one bone. Also the fact
that the derived model does not describe bone behaviour under tensile load
has to be dealt with.

The methodology of constitutive equation formulation presented in the
paper proved to be adequate in application to bone tissue. The special em-
phasis has to be put on the potential function form. It influences the final
result, i.e. the proper form of the constitutive equation that can be utilised in
numerical analyses.

In the future it is also planned to include the remodelling phenomenon
of bone into advanced numerical analyses of bone-implant system with the
new constitutive equation of bone taken into account. It is crucial for the
prosthesis construction optimisation process.

Manuscript received by Editorial Board, October 31, 2011;
final version, March 07, 2012.
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Równanie konstytutywne i lepkosprężyste właściwości korowej tkanki kostnej –
badania wstępne

S t r e s z c z e n i e

W pracy przedstawiono wstępne badania nad sformułowaniem nowego równania konstytuty-
wnego dla tkanki kostnej. Kość zamodelowano jako materiał lepkosprężysty. W badaniach uwzględ-
niono więc, nie tylko właściwości sprężyste tkanki kostnej, ale także krótko- i długoterminowe
właściwości lepkosprężyste. Zaproponowano funkcję potencjalną, na podstawie badań eksperymen-
talnych wyznaczono stałe materiałowe metodą najlepszego dopasowania do krzywej naprężenie-
odkształcenie oraz sformułowano wstępne równanie konstytutywne dla tkanki kostnej. Badania
eksperymentalne polegały na przeprowadzeniu testów ściskania prostopadłościennej próbki kostnej
o wymiarach 10×5×7,52 mm. Próbka była ściskana wzdłuż największego wymiaru z prędkościa-
mi odkształcenia 0,016 s−1 i 0,00016 s−1. Dodatkowo wykonano jeszcze próbę relaksacji w celu
zidentyfikowania długoterminowych właściwości lepkosprężystych kości. Podczas badań doświad-
czalnych mierzono tylko przemieszczenie w kierunku siły ściskającej. Próbka kostna została wycięta
z wołowej kości udowej. Postać funkcji potencjalnej dobrano w ten sposób, żeby modelowała ona
tkankę kostną jako materiał poprzecznie izotropowy. Dla uproszczenia założono, że kość zachowu-
je się jak materiał nieściśliwy. Postać funkcji energii odkształcenia, po wyznaczeniu stałych, była
adekwatna do opisu zachowania się tkanki kostnej pod wpływem obciążenia ściskającego. Ze
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względu na to, że funkcja ta jest wypukła, wyniki badań mogą być wykorzystane w modelowaniu
tkanki kostnej w analizach układu implant-kość wykonanych metodą elementów skończonych. Tego
rodzaju analizy są bardzo pomocne w procesie projektowania nowej endoprotezy, ponieważ można
jeszcze przed operacją zweryfikować jej konstrukcję i dokonać optymalizacji jej kształtu.


