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Hysteresis Modeling Using a Preisach Operator
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Abstract—The aim of this paper is to present the analysis
and modeling of the hysteresis phenomenon using a Preisach
operator. The fundamentals of parameterized hysteresis modeling
are introduced, by utilizing three probability density functions.
Then, the Preisach operator and its characteristics are defined.
Subsequently, results of simulations obtained by means of the
aforementioned functions are presented and compared to the
ones obtained by other authors.
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I. INTRODUCTION

H ISTORICALLY, the term hysteresis was used for the
first time in association with the ferromagnetic phe-

nomenon [1]. In ferromagnetism the matter remains in a
magnetized state, despite the disappearance of the coerced
magnetic field (a so-called spontaneous magnetization). Fer-
romagnetic materials constitute the group of materials, for
which the relative magnetic permeability µr (the property,
that determines the dependence of magnetic induction on the
coerced magnetic field, with µr >> 1 [2]). Ferromagnetic
materials have the inner structure based on microareas that
are in a permanent magnetized state - magnetic domains.
These areas are provided with a certain magnetic momentum.
Despite the dissapearance of the external magnetic field, the
magnetic domains remain in a magnetized state, which has
a crucial impact on creating a magnetic curve, called the
hysteresis loop. In the latter, the magnetic induction B is
not determined interchangeably by the coerced field H . In
devices in which the multiple magnetization process occurs
(i.e. the transformer core) the hysteresis is considered as a
problem because it’s surface area is proportional to the energy
dissipation during one cycle of magnetization process. On
the other hand, hysteresis can also be considered of great
importance to the technology of non-volatile memory storage
for computers, as it allows for creation of strong magnetic
fields.

The hysteresis phenomenon has the following properties
(see Fig. 1):

- Causality - the output value of B depends only on the past
and present values of the input H .

- Monotonicity - the monotonic changes of H depend on
monotonic changes of B.

- Presence of a major loop - the set of points on the (H,B)
surface, that are placed between the curves create the major
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hysteresis loop. Their mutual relations influence the most
distinctive feature of the hysteresis loop, which is the magnetic
saturation condition. It is the invariability of the output signal
for large values of the input signal.

- Minor loop closure - let’s assume, that the input values
H and B in a certain moment are such that the point
(H,B) occurs on the major loop. If the input changes from
a value (H̃) and then comes back to the value H , then the
output changes it’s value to (B̃) and then back to B. The
other way of describing this dependence is the following:
(H,B)→ (H̃, B̃)→ (H,B).

- Energy dissipation - it can be observed, that the supplying
energy needed to close the loop between two points (H1, B1)
and (H2, B2) is proportional to the area embraced by the
closed loop.

- Order preservation - the lines created by increasing input
values on the (H,B) plane do not intersect. The similar
phenomenon takes place when the input values are decreasing.

Fig. 1. Various magnetisation curves (major and minor loops) presented
for an unspecified ferromagnetic material. The major hysteresis loop on the
plane (H,B) is obtained by changing the value of the coerced magnetic field
H from the value −Hmax to Hmax and vice versa. There can be also be
observed the phenomenon of the minor loop closure (H1, B1)→ (H2, B2).

II. THE FUNDAMENTALS OF MATHEMATICAL HYSTERESIS
MODELING

In order to define the term ”hysteresis” properly, one must
determine the character of quasistatic changes on the input
of the system. It can be done by using a rate-independent
operator. A relay (Fig. 2) is an electrical device, designed
to cause an established sudden state change in one or many
of output circuits, at the same time fulfilling certain input
conditions.

The relay responds to a change of a certain physical input
value (i.e. voltage, current, temperature etc.) in a way that
makes the output signal change its value in a step manner
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Fig. 2. The relay defined by a pair of threshold values (β, α). The output of
the relay is +1, when the input is greater than α, -1 when the input is smaller
than β and stays unaltered when the input stays in the (β, α) range.

after the input signal achieves a certain value. Typically it
changes between two values: the high one (turn on) and the
low one (turn off). Based on Fig. 2 it can be interpreted that
if the input v has a value smaller than α, then the output u is
”low”, which means that the relay is off. During the increase
of v, the output stays low untill v reaches the value of β. It
is the moment, when the relay turns on. Subsequent increase
of v doesn’t cause any further changes. On the other hand,
it’s decrease causes that the input tries to achieve the value α
again. The dependence of each operator’s state on the previous
ones is then obvious. Let α, β ∈ R and β ≤ α, where α and
β are a pair of threshold values. Let’s assume, that v(t) is
measurable in the range of [0, T ] (where T is a period of
input signal duration) and u(t) = ζ, where ζ = {−1,+1}.
The output function of the relay presented in Fig. 2 is defined
as follows [3]:

u(0) =

 −1 when v(t) ≤ β
1 when v(t) ≥ α
ζ when β < v(t) < α

(1)

with additional definitions:

At = {t ∈ [0, T ] : v(t) = α or β}, (2)

where At is a set of switching instants and:

u(t) =

 u(0) when At = 0
1 when At 6= 0 and v(max(At = α))
−1 when At 6= 0 and v(max(At = β))

(3)
The definition of the relay presented above shows that the

current value of the output signal in the whole hysteresis loop
depends on the history of changes of the input signal v(t) (see
Fig. 3).

III. THE PREISACH OPERATOR DEFINITION

The Preisach operator is a ”black box” model. It describes
the way the system works in the sense, that it associates certain
input signals with corresponding output signals. The Preisach
model can be exceptionally accurate in a ferromagnetic field
if the the sufficiently accurate modeling method and Preisach

Fig. 3. Sine input signal, in which extreme values are greater than the
threshold values α and β. For a set of instants At = sup{t1, t2} the new
extreme value is the latter value from this set. Thresholds of the input function
for instant t1 and t2 describe the output state of the relay (in this case +1).
The similar case refers to instants t3 and t4. It is acknowledged that the relay
in case of the signals that are bigger than the predetermined threshold values
is in the saturated state (”0”). b) The output of the system depends on the local
threshold values of the input signal. The output of the relay in the instants t1
and t2 is +1. Because the state of the operator that precedes the instant t1 is
unknown, it is necessary to assume one of the two options. In this case it is
assumed that the relay state is +1. Unknown is also the state of the relay in
the range from t2 to t3, it is assumed however that it is determined by the
latter state, that is +1. Similar case concerns the range t3 − t4.

density function is assumed. It represents the ferromagnetic
material structure, which is based on magnetic domains.

The coerced magnetic field causes the domains translocation
on the microscopic level in a step manner. The magnetization
direction of the magnetic domains is identical with the direc-
tion of the coerced field [2].

As it was stated in section II, there is a certain relation
between the input and the output signals in hysteretic models.
In order to obtain the major hysteresis loop, a sine signal is
provided to the system input. Minor hysteresis loop can be
acquired by providing a fading function to the system input.

Consider the relay described with the equations (1) and (3)
and depicted in Fig. 2. The relay is defined by Rβ,α, where α
and β are scalar values. The output uβ,α(t) of the relay Rβ,α
depends only on v(t) and the output value in the time instant
0: uβ,α(0), as it is defined by uβ,α(t) = Rβ,α(v(t), uβ,α(0)).
Let’s consider a constant, piecewise-monotonic input function
v(t), t ∈ [0, T ], where uβ,α(0) ∈ {+1,−1}. The Preisach
operator is defined by the weighted superposition of relays,
also known as hysterons. For the input function v(·), the
Preisach operator output is described by [4]:

u(t) =

∫∫
α≥β

µ(β, α) ·Rβ,α(v(t), uβ,α(0)) dβ dα (4)

where µ : S → R is the nonnegative, measurable function
on a halfplane S = {(β, α) : α ≥ β}, described further as
the weight of the relay. This function describes the amount
of hysterons for each pair (β, α). The set S is the Preisach
halfplane (a triangle obtained by dividing the plane by the
β = α line into two halves), while µ is the Preisach probability
density function. For each point (β, α) belonging to S there
exists interchangeably defined relay Rβ,α and analogically -
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for each relay there is a point on the plane. The behavior of
the Preisach operator is determined by the equation:

u(t) = (v(t), uβ,α(t)), t ∈ [0, T ] (5)

where uβ,α(t) is the primary state of the operator. Hence,
the primary state of the Preisach operator is the set of initial
conditions for each relay on S.

IV. THE PREISACH OPERATOR CHARACTERISTICS

During the calculation of the output of the Preisach operator,
the state of relays accumulated on the Preisach plane changes
at each instant. Therefore equation (4) can be subdivided into
two integrals, over positive and negative sets of relays

u(t) =

∫∫
S+

µ(β, α) dβ dα−
∫∫

S−
µ(β, α) dβ dα (6)

where S+ and S− are the areas on the Preisach plane, where
respectively the positive and negative relays are gathered.

The equation (6) is used to prove the three basic properties
of the Preisach operator: minor loop closure, congruency and
rate-independence [5]. It is also used to prove the characteristic
theorem for the Preisach operator. It states that for each
hysteresis operator with the properties mentioned above, there
exists the Preisach operator with the same input-output map, as
the hysteresis operator [5], [6]. In other words, these properties
are essential and sufficient for the hysteresis operator to be
realized by the Preisach operator. The inversion of a Preisach
operator is used to compensate the effects that the hysteresis
has on the system. The general approach to control the systems
with hysteresis consists in combining the inverse compensation
with the feedback loop [7].

V. THE PREISACH DENSITY FUNCTION IDENTIFICATION

In order to use this type of the model it is necessary to use
a certain Preisach density function (which is the case in all
parametric methods). In this paper three such functions were
tested: factorized Lorentzian, Gauss-Gauss and lognormal-
gaussian [8]. These functions are the most often used in
modeling hysteresis with the Preisach operator. The unknown
parameters of the density functions must be estimated (iden-
tified).

a) Factorized-Lorentzian distribution function

p(α, β) := N [1 + (
α−H0

σ ·H0
)2]−1[1 + (

β +H0

σ ·H0
)2]−1 (7)

b) Gauss-Gauss distribution function

p(α, β) := Nexp[−
(α−β2 −H0)

2

2σ2 ·H2
0

]exp[−
(α+β2 )2

2σ2 ·H2
0

] (8)

c) Lognormal-Gauss distribution function

p(α, β) := N(
2

α− β
)exp[−

ln2(α−β2H0
)

2σ2
]exp[− (α+ β)2

8σ2 ·H0
2 ]

(9)

Fig. 4. An example of probability density functions, achieved for σ = 1 and
H0 = 1. a) Gauss-Gauss density function; b) Factorized-Lorentzian density
function; c) Lognormal-gauss density function.

where N is a normalization factor, σ is a standard deviation
and H0 is a bias field. In this case the normalization factor is
used to increase the number of relays on the Preisach plane. In
fact, it increases the size of the hysteresis loop that is obtained
on the system output. The maximum values of H0 and σ are
unknown.

The integration of the Preisach plane is a two-dimensional,
numerical process that produces result for each pair of (β, α)
values. The most popular method of integrating the half-plane
(a triangle), along the α = β line is the least squares method.
Unfortunately, it requires a significant amount of time and
computer resources, depending on the degree of accuracy.
Therefore, an attempt to improve the process of integration
of Preisach plane was made. It consists in integrating the
transformed distribution functions in one dimension only,
which is less computationally demanding. The transformations
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of the original functions were made using the Gauss-Gauss
and factorized-Lorentzian functions. The obtained results were
compared to the ones from the least squares method and its
more generalized version - the characteristic function of the
integrated area.

In order to transform the Gauss-Gauss function, a substitu-
tion based on a gaussian error function was performed:

erf(β) =
∫ β
−1 e

−y2dα =
∫ β+1

0
e−(α−1)

2

dα(∗)
t = α+ 1,dt = dα, (∗) =

∫ β+1

0
e−t

2

dα =
√
π
2

(10)

thus obtaining the transformed Gauss-Gauss function:

p(α, β) := N · e
−1

2σ2 · (
∫ β
−1(e

−β
8σ2H2

0 · 12 ·
√
8πσ2H2

0 ·

·(erf( β√
8πσ2H2

0

)− erf( −1√
8πσ2H2

0

)) · e
−β

8σ2H2
0 · e

−β·H0
8σ2H2

0 ·

· 12 ·
√
8πσ2H2

0 · (erf(
β√

8πσ2H2
0

)− erf( −1√
8πσ2H2

0

)))

(11)
A similar process was performed in the case of lorentzian

density function transformation. Here the following substitu-
tion was used:

t = (
α−H0

σ ·H0
) (12)

thus obtaining the following transformed function:

p(α, β) := N · σ ·H0 · (
∫ β
−1[1 + (β+H0

σ·H0
)2]−1dβ)·

·[arctg(β)− arctg(−1)]
(13)

An easier method of integrating the Preisach plane uses the
characteristic function of the integration area. This method
consists in multiplication of the probability density function
by the characteristic function, that assumes one of two values:

XD =

{
1 for (α, β) ∈ D
0 for (α, β) /∈ D (14)

where D is a function domain (all of the values gathered in
the triangle of the Preisach plane).

According to (14), the value of the characteristic function
outside of the triangle of the Preisach plane is zero. Therefore
this area is negligible. In this case the area in which positive
relays are collected, can be calculated from the equation:∫

D

ρ(α, β)dα · dβ =

∫
R2

XDρ(α, β)dα · dβ (15)

where ρ(α, β) is any probability density function.

VI. PROPOSED PREISACH OPERATOR MODEL

For the purposes of this paper a program in Matlab was
written to efficiently calculate the hysteresis loops for the given
sine input signal. The process of Preisasch plane integration
was based on quad functions, provided by the programming
environment. The number of iterations in which the program
executes the integrations was associated with the number of
samples constructing the input signal. In each iteration the
program executes an algorithm that computes the output of the

Preisach operator based on the current shape of the Preisach
Memory Curve. It is a single curve on a plane (β, α) that
determines the state of the Preisach operator in each instant, by
dividing the plane into areas where positive and negative relays
are gathered [5]. Therefore, if the input signal was constructed
out of 100 samples, the program calculates the system output
for 100 samples as well. In each iteration a current value of the
output is calculated. The sum of the output values, obtained
in iterations creates a hysteresis loop depending on the input
signal. If the latter is sinusoid, the answer of the system is a
major hysteresis loop. If the signal is a fading function, the
answer is a minor hysteresis loop. Depending on the given
Preisach probability density function provided by the user,
the hysteresis loop varies in shape. Thus the user controls
the size and shape of the output hysteresis loop, by setting
the parametrized values, such as σ and H0. The process of
integrating the Preisach plane, which is based on the equation
(6), focuses on calculating the difference between the part of
the plane, in which positive relays are accumulated, and the
one where negative relays are accumulated.

VII. SIMULATIONS

In order to analyze the usefulness of the parametric methods
in modeling the Preisach hysteresis loops, it is necessary
to compare the calculated simulations with experiments ob-
tained experimentally. With the help of Henze and Rucker
[9] publications, concerning co-coated Fe2O3 ferromagnetic
material, the authors were able to compare the methods used in
simulations with results acquired experimentally, by construct-
ing a physical system coupled with the actual ferromagnetic
material. In Fig. 5 three examples of major hysteresis loops,
generated using the (7), (8) and (9) density functions are
presented. They are compared to already measured major loop,
obtained experimentally. The assumed values of unknown
parameters (σ and H0) are as follows (according to [9]):

Factorized-Lorentzian distribution: σ = 0.614152,
Ho = 0.427471

Gauss-Gauss density distribution: σ = 0.582933,
Ho = 0.425094

Lognormal-gaussian distribution: σ = 0.601153,
Ho = 0.454492

Results obtained for the major hysteresis loop when using
a set of transformed probability density functions (11), (13)
and the characteristic function of integration area are identical.
Thus Fig. 5 can be applied to each case. It can be stated
from Fig. 5, that the parametric method of modeling using a
Preisach operator is not very accurate. In the presented case,
the best results were obtained with methods based on Gaussian
distribution functions, which provide better approximation of
the major hysteresis loop than the Lorentzian distribution.
The coercivity problem can also be observed. When using
parametric methods, a hysteresis model is obtained, which
does not reflect the actual phenomenon accurately. It can be
seen clearly when we overlap the hysteresis from simulations
on the obtained from the physical system. In such a case the
minor loops also won’t overlap. Fig. 6 and Fig. 7 present
simulations of such loops obtained using both Preisach plane
integration methods. The loops calculated for each of the
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Fig. 5. Major hysteresis loop obtained experimentally (black-colored line)
and the loop calculated using the probability density functions: a) Gauss-Gauss
for parameters N = 1, σ = 0.582933, Ho = 0.425094; b) lognormal-
gaussian for N = 1, σ = 0.601153, Ho = 0.454492; c) factorized-
Lorentzian for N = 1, σ = 0.614152, Ho = 0.427471.

probability distributions clearly differ from loops obtained
experimentally.

The other problem is that the twice-measurable density
function has to be solved numerically. This is a complex,
computationally demanding task. Analyzing Fig. 6 and Fig.
7 it can be seen that, although the results have been ob-
tained using two different integration methods, the results
differ only slightly. It is hard to determine which integration
method is mathematically more effective. The program was
examined in terms of estimating the time of its execution.
The measurements were performed on a computer equipped
with 2GHz Pentium(R) T4200 Dual-Core processing unit. The
system input signal was constructed using 1600 samples. The
acquired results are presented in Fig. 8. The time of program
execution for increasing threshold value using transformed
density functions and characteristic function of the integration
area is visible there.

Fig. 6. The minor hysteresis loop obtained experimentally (black-colored
line) and a loop obtained using the probability density functions (blue-
colored line): a) Gauss-Gauss for parameters N = 1, σ = 0.582933, Ho =
0.425094; b) lorentzian for N = 1, σ = 0.614152, Ho = 0.427471;
c) lognormal-gaussian for N = 1, σ = 0.601153, Ho = 0.454492. The
calculations were made using the transformed probability density functions.

As it is observed in Fig. 8, measurements done using the
transformed functions (11) and (13) are less time costly than
the ones using the least squares method. The latter takes
around 400% longer to calculate the integral of the same area
as transformed functions method. The characteristic function
of integration area is the fastest method of integrating the
Preisach plane. It is about 20% percent quicker than the
method based on transformed functions. Unfortunately, it is
also the least accurate method. Therefore it may be insufficient
to accuratly model the histeresis phenomenon.

VIII. CONCLUSIONS

The paper presented various methods of calculating the
Preisach operator for modeling the hysteresis phenomenon. As
the latter requires two-dimensional integration, which is time
consuming, fast and accurate methods must be identified.

The method using the Preisach probability density func-
tion has significant advantages. The system response depends
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Fig. 7. The minor hysteresis loop obtained experimentally (black-colored
line) and a loop obtained using the probability density functions (blue-
colored line): a) Gauss-Gauss for parameters N = 1, σ = 0.582933, Ho =
0.425094; b) lorentzian for N = 1, σ = 0.614152, Ho = 0.427471;
c) lognormal-gaussian for N = 1, σ = 0.601153, Ho = 0.454492. The
calculations were made using the characteristic function of the integration
area.

only on the character of the input signal, while any ad-
ditional measurements are redundant. However, considering
results presented in the paper, it is obvious that parametrical
methods of Preisach hysteresis modeling are insufficient for
fully portraying the actual hysteresis measurement conditions.
Therefore it is rational to focus on more precise methods
of modeling (perhaps nonparametric methods) which do not
assume any type of density function. Another option is to
find density functions that are more accurate than the ones
presented in the paper.

It is also important to select the proper method of integrating
the Preisach plane. Simpler methods, using the characteristic
function of the integration area are faster comparing to the
methods using transformed density functions. The great advan-
tage of the presented methods is that they can be used for any
density function. It is important, as some probability density

Fig. 8. Program evaluation time dependence on increasing value of threshold
using a) three transformed probability density functions; b) characteristic
function of integration area. Black color marks the Gauss-Gauss density
function, blue - Lorentz density function and red marks the lognormal-
gaussian density function.

functions (like lognormal density function) are impossible to
transform.

Regardless the selected integration method, it is necessary to
say that the time spent on calculating areas over and under the
Preisach Memory Curve is long and requires large processor
toil. Therefore reducing the amount of measurement points for
the input signal should be considered. It may have a negative
effect on the precision of the calculated hysteresis loop. The
compromise between the time of calculations and accuracy
should be found.
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