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On Scientific Realism and Instrumentalism

in Manoeuvring Target Modelling and Tracking
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Abstract—The basic problem of tracking manoeuvring moving
objects (e.g. aircrafts, ships) lies in unpredictability of object
manoeuvres, with respect to the time of occurrence, duration
and the type of trajectory. In this paper most representative
methods of modelling and state estimation techniques applied
to Manoeuvring Target Tracking (MTT) are briefly reviewed.
Classification of existing approaches is made in the context of
realistic and instrumentalistic paradigms of the philosophy of
science. A practical example is also given that shows the impact
of selecting models and estimation methods on the performance
of the tracking filter for Air Traffic Control (ATC) radar.
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I. INTRODUCTION

D IFFERENT solutions to the problem of tracking manoeu-

vring targets have been proposed in the vast literature

on the subject. They are covered to varying degrees in major

books [4], [9], [10], [27] and surveys [26], [51], [53]. Rong Li

and Jilkov in their reviews [51]–[53] proposed a classifica-

tion of Manoeuvring Target Tracking (MTT) methods using

two criteria: filter mechanisation and manoeuvre modelling

methodology.

Clearly, modelling of aircraft trajectories is a key point in

the design of state estimators of any kind, because the quality

of the model significantly influences the resulting accuracy of

the estimator. On the other hand, it can be shown that state

estimation methods, especially those based on the Multiple

Model (MM) principle, can be based on models differing

strongly in both; the underlying philosophy and mathematical

complexity. What is more, essentially different MM estimation

methods can rely on the same set of models [36]. Therefore,

the classification presented here, which starts from discussing

target modelling problems, makes distinctions between the

presented filtering methods based exclusively on concepts and

mechanisation of the filtering process (e.g. adaptive vs. non-

adaptive, single-model vs. multiple-model).

The novelty of this review is related to the presentation

framework of modelling and filtering approaches, which is

based on the two opposite paradigms of realism and instru-

mentalism brought up by the philosophy of science.

A. Realistic versus Instrumental Models

The problem of modelling physical phenomena is a subject

discussed by philosophy of science [16]. Scientific realism is
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a view that our best scientific theories really refer to unobserv-

able entities, which exist independently of our minds, and that

the universe really is as science describes it. It holds that the

elements of the universe such as subatomic particles, microbes,

stars, electromagnetic force and so forth exist independently

of observation or perception. Instrumentalism (anti-realism)

in the philosophy of science, is any view which denies that

we may know that our theories refer to mind-independent

unobservable entities, because the eternal truth is not within

our grasp. It says that concepts and theories are merely useful

instruments whose worth is measured not by whether the

concepts and theories are true or false (or correctly depict

reality), but how effective they are in explaining and predicting

phenomena. Probably the most popular and successful instru-

mental approach to modelling is based on probability theory

[45]. An influence of the two opposite doctrines can be also

discerned in various approaches to the problem of modelling

aircrafts’ trajectories.

B. Basic Definitions

In order to make the presentation simple our discussion is

limited to discrete-time dynamic systems. Various types of

target motions can be described by the following linear state-

space model (system equation)

x[n+ 1] = Fx[n] +Bu[n] +Gw[n] (1)

where x[n] is a state vector, u[n] is a control input, w[n]
represents a process noise, F is a state transition matrix,

while B and G denote matrices projecting, respectively, the

control input and the process noise into the model state-space.

Matrix F in (1) usually describes a non-manoeuvring motion,

the control u[n] models a manoeuvre, while the noise w[n]
accounts for modelling errors.

The control input u[n] is primarily deterministic in nature

and typically unknown to the tracking algorithm [52]. Thus

a natural way is to model it as an unknown, deterministic

process. When the design of the model (the control input

and the respective projection matrix B) aims at imitating

the real geometry of the target movement in space using

known models of physical phenomenons, this methodology

can be referred to as realistic. Good examples of this approach

are the methods based on flight dynamics discussed at the

end of this section. Alternatively u[n] can be modelled as

a random process. Although the use of statistical methods

for describing deterministic phenomenons do not intend to

literally reflect them, it may lead to a convenient mathematical

foundation for effective numerical techniques (algorithms).

This approach, which aims at obtaining efficient algorithms
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rather than accurate models, can be viewed as an example of

the instrumental approach.

II. MODELLING OF MANOEUVRING AIRCRAFTS’

TRAJECTORIES

Dynamic models of manoeuvring targets’ movements are,

in general, non-stationary regarding both their structure and

parameters. Although any real target is characterised by its

shape and dimensions, due to observability conditions in radar

tracking problem it is usually treated as a point object. As

a result, target motion models describing the evolution of the

target state with respect to time are in fact kinematic models.

An important issue related to movement modelling is the

choice of a coordinate system, which constitutes basic frame-

work for mathematical models. Depending on the selected

coordinate system, the resulting model can be simple or

sophisticated, linear or non-linear, coordinate coupled or un-

coupled, and finally, can lead to a well or poorly conditioned

state-estimation problem.

Limited discussion has been devoted to modelling non-

manoeuvring (uniform) motions of aircrafts. Because the

majority of the considered models neglect the Earth’s cur-

vature, practical models of uniform motion usually rely on

a straight-line constant-velocity principle, commonly referred

to as a Constant Velocity (CV) models [6], [58]. The CV model

is usually formulated in a suitable radar-related Cartesian

coordinate system, in which it is uncoupled and linear.

The comprehensive review of modelling techniques used for

the MTT applications was given by Rong Li and Jilkov [52].

In this section a short survey of major aircraft’s manoeuvre

modelling techniques is made which constitutes a necessary

background for presentation of the MTT techniques in the

subsequent part of this paper.

A. Instrumental Stochastic Models

Stochastic models of manoeuvres can be roughly classified

into the following groups [52]. White noise acceleration

models assume that the target acceleration is an independent

process (white noise). It differs from the non-manoeuvring

target model (CV) only in noise intensity, which must be

sufficiently high in order to account for a manoeuvre. In

the third group the control input is modelled as a Markov

process, as in the Singer model [58], which assumes that

the target acceleration is a zero mean first-order stationary

Markov process (coloured noise) characterised by exponential

autocorrelation function. The third group utilises semi-Markov

jump process models for describing the control input, which is

equivalent to modelling the acceleration as a stochastic process

with a switched mean. The noise itself can be either white [28]

or coloured [42] in this case.

Stochastic models of manoeuvres usually do not reflect any

geometry of the manoeuvre. As a result, they neglect the fact

of coupling among target coordinates, which is very attractive

from the computational aspect and makes allowances for

separating the tracking problem into two or three simultaneous

scalar tracking processes. On the other hand, the statistical

model of trajectory is not applicable for making prediction of

target positions during manoeuvres. Therefore, a great effort

has been devoted to model manoeuvring trajectories using

analytical (deterministic) models.

B. 2D (Planar) Models

Basic types of aircrafts’ movements are those, which can

be approximated by straight lines, including the CV model

already introduced. When a target moves along a straight line

with a constant longitudinal acceleration, the motion can be

described by a constant acceleration (CA) model.

In the Cartesian coordinates the CA model can be described

as a 2-rd order polynomial of time. This results in a linear

and uncoupled model, which is often used to model uniform

changes of the aircraft’s speed. Because the Kalman filter

based on the CA model can be characterised by relatively

short memory, it is sometimes used for tracking all kinds

of manoeuvres [1]. Clearly, the use of the CA model as

a foundation for tracking, for instance, circular turns, is an

example of the instrumental use of this model.

Aircraft turns can be modelled as circular target motions

with the constant turn rate occurring (usually but not nec-

essarily) in a horizontal plane. The resulting trajectory has

a constant curvature, while acceleration and velocity vectors

are perpendicular. Such a model is referred to as a coordinated

turn (CT) model, while an effective acceleration modelling all

forces acting on the aircraft body during CT is called normal or

transversal. Various versions of this constant-speed, horizontal

CT model were proposed for tracking.

Laňka [37] derived his circular manoeuvre model in the

Cartesian coordinates directly from the circle equation. The

resulting model, describing the evolution of target positions

during horizontal turns, was used for a circular-manoeuvre

detection and classification using a bank of matched filters. It

is not well suited for the use as a design basis for recursive

state estimation, though.

Roecker and McGillem [46] proposed a CT model in a po-

lar, manoeuvre-centred coordinate system. Such model seems

to be natural because of its linearity. On the other hand, the

manoeuvre-centred coordinates used are inconvenient due to

difficulties in integrating filters operating in such coordinates

with other filter(s) using models expressed in the Cartesian

coordinates, which are common for modelling straight-line

movements. Therefore, the Cartesian coordinate systems are

useful in modelling coordinated turns, even though the result-

ing models are coordinate-coupled and non-linear.

Early CT models in the Cartesian coordinates shared the

assumption of the constant and known angular speed [21].

Although this approach results in convenient linear models,

much work has been devoted to more practical variants of the

CT model that make allowances for estimating unknown angu-

lar speed on-line [48]. These works were devoted to modelling

coordinated turns in state space, using purely Cartesian frames,

i.e. with the state vector consisting of Cartesian positional and

velocity coordinates. It is possible, however, to use another

set of “Cartesian” coordinates, which describe the position

of the target in the Cartesian coordinates and its velocity

in target originating polar coordinates, including speed and

course. It was observed [29] that the Extended Kalman Filter

(EKF) using such a “mixed Cartesian” CT model offers better
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performance when tracking coordinated turns, as compared to

the one based on the “purely Cartesian” coordinates.

C. 3D Models

Each of the presented 2D horizontal models can be applied

to 3D tracking of civilian aircraft in ATC systems, because

such targets usually manoeuvre in a horizontal plane and

perform only limited vertical manoeuvres. Thus the altitude

changes of civilian aircrafts are often modelled independently

by a CV model or a random walk model along the vertical

direction, decoupled from the horizontal movement model. On

the other hand, when the problem of tracking a military aircraft

is considered, capable of performing evasive manoeuvres in

the 3D space, such decoupled models may be inadequate.

Much effort has been devoted to the problem of modelling

aircrafts’ movements in the 3D space [52]. A 3D-CT model

proposed by Watson and Blair [66] is not confined to any

arbitrary plane and offers an improvement in accuracy as

compared to the horizontal CT model if the manoeuvre plane

is tilted with respect to the horizontal one. Nabaa and Bishop

[43] proposed a non-constant speed 3D-CT model and vali-

dated it, together with the constant-speed ones and with the

Singer model [58], against real radar measurements of a mil-

itary aircraft. The performed tests confirmed that the fighters’

manoeuvres occur mostly in a plane (usual assumption of CT

models), however, the speed of the target is non-constant.

D. Models Based on Flight Dynamics

The basic idea behind the movement models based on

flight dynamics is to enhance modelling accuracy by using

a rigid-body principles, known flight dynamics relationships

(including the influence of aerodynamic lift, drag and gravity),

as well as by explicitly accounting for aircrafts’ controls.

Berg [7] derived a model for predicting future target positions

for a radar-based antiaircraft gun-fire control application. The

model describes planar (though not necessarily horizontal)

movements of a manoeuvring aircraft and requires computing

the aircraft thrust and lift accelerations, which are assumed

constant during the manoeuvre.

The movement models based on flight dynamics relation-

ships offer substantial improvement in modelling accuracy,

however, at the price of a significant increase in non-linearity,

state dimension, and number of uncertain design parameters.

III. NON-ADAPTIVE STATE ESTIMATORS

Early techniques applied to MTT, including a two-point

extrapolator, Wiener filter, finite memory filter, or an α − β
filter [19], [30], [59], [60] were based on a single-model, fixed-

gain approach. Since the end of sixties tracking filters are

principally supported by the Kalman filtering theory [19].

Let the kinematic model of the non-manoeuvring (uniform)

motion of a target is described by

x[n+ 1] = Fx[n] +Gw[n] (2)

which is a simplified form of (1). In the following we will

assume that the state transition matrix F reflects the straight-

line constant-velocity (CV) motion model. Under certain con-

ditions a Kalman filter (KF) based on model (2) gives the

optimum estimate of the state x[n]. If the target starts to

manoeuvre the model (2) becomes no longer valid. As a result,

the estimation process performed by such mismatched (non-

optimal) filter leads to a biased estimation and, when the

duration of such operation is long, even to the filter divergence.

The basic method to overcome these limitations of the

KF with regard to non-stationarity of the manoeuvring target

model is to find the intensity of an equivalent noise w
∗[n]

that quantifies the error of the model (2) in describing all

the target motions, in particular, manoeuvres. This equivalent

noise w
∗[n] is then used in (2) to replace the original process

noise w[n]. In practice, the equivalent noise can be either

white or coloured. Singer [58] proposed to model the object

acceleration as a first-order auto-regressive process, which is

integrated into the state space model by state augmentation.

In fact all such simple methods ignore the nature of targets’

manoeuvres and lump all modelling errors introduced by the

manoeuvres with the equivalent process noise term w
∗[n].

If the estimator’s only concern is to maintain the track (i.e.

to acquire and correlate subsequent measurements) and the

radar data is free of false alarms, this method may work

reasonably well. On the other hand, it is clear that satisfactory

performance of such filters during manoeuvres is achieved at

the price of estimation accuracy during non-manoeuvring parts

of the target trajectory. It is thus expected that better results

can be obtained by means of adaptive state estimators.

IV. SINGLE-MODEL ADAPTIVE STATE ESTIMATORS

Various adaptive methods were studied to solve the MTT

problem [26], [51]. Such filters can adapt themselves to vary-

ing conditions by detecting changes or estimating unknown

parameters of state equations (1) or (2), while extracting the

available information from the radar data.

A. Hard-Decision Approach

It seems reasonable to use the observation residuals (in-

novation process) available in the Kalman filter algorithm

based on non-manoeuvring motion model, so as to detect

the manoeuvre. It is known that the innovation (measurement

prediction errors) sequence of the optimal linear filter is

a random white Gaussian sequence with zero mean. If the

target undergoes a manoeuvre beginning at a certain moment

(manoeuvre onset time), the innovation process of the filter is

characterised by a nonzero mean value (bias).

The non-adaptive methods presented in the previous section

attempted to remove (or diminish) the bias by appropriately

increasing the filter bandwidth for the whole period of oper-

ation. In the hard-decision adaptive approach a bias is being

detected in the innovation process in order to adapt (modify)

the estimation process so as to lessen negative effects of the

manoeuvre solely during its occurrence.

Various techniques were proposed to solve the problem of

manoeuvre detection in tracking filters [54]. McAulay and

Denlinger [40] considered a bias detector based on a bank

of filters processing the residuals of the Kalman filter, each

one matched to a certain type of manoeuvre. Each manoeuvre

model is described by its onset time and constant intensity

(acceleration), and describes an exponential growth of the
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bias in the innovation sequence. The filter that matches the

given residual sequence produces the highest output. When the

maximum output value exceeds a suitably chosen threshold,

the known model of the maximum-output filter provides the

characteristics of the manoeuvre. Similar approach was also

followed in [37] to account for coordinated turns.

Many practical MTT algorithms are based on a chi-square

significance test [51]. They employ statistics that is truly or

approximately χ2-distributed. Such statistics is usually based

either on measurement residuals (innovation) [1] or on the es-

timated value of the control input signal (Input Estimation, IE)

[17]. Simple detectors usually use a fixed-length window of

observation over which the decision regarding the manoeuvre

presence is being made. The Extended Input Estimation (EIE)

algorithm [14], [44] is a recursive procedure based on the

Generalised Least Squares (GLS) analysis of the innovation

process in multiple sliding windows of different lengths. This

approach, similar to the use of the bank of matched filters

proposed in [40], makes allowances for the detection of the

manoeuvre occurrence and the estimation of its onset time

and intensity. The chi-square test is the most popular one

because of its simplicity, even though it is not necessarily

optimal in any sense. In fact, the validity of chi-square tests

relies on the assumption that individual terms are Gaussian

and independent, which is not always valid in practise [51].

A manoeuvre detector can also be based on a Generalised

Likelihood Ratio (GLR) test [67]. In a GLR-based algorithm

the estimates of the control input are computed for all pos-

sible manoeuvre onset times. Then, the one that maximises

a suitable (generalised) likelihood ratio function, is taken as

the input estimate and the corresponding onset-time as the

onset-time estimate [67]. The GLR ratio detector does not

presume any distribution of the random processes of interest

and declares the detection of a manoeuvre if the likelihood

ratio exceeds a given threshold. While providing an analytical

framework for change detection, the GLR method has its

major drawbacks placed in heuristically choosing the detection

threshold and a heavy computational burden [51].

Descriptions of less popular manoeuvre detection tech-

niques can be found in [26], [27], [51]. It is worth noticing,

that the manoeuvre detection problem is similar to the problem

of failure detection in stochastic dynamic systems, and the

methods developed in both areas can be easily cross-applied

[32].

After a manoeuvre detection procedure completes, another

problem arises: How to modify the state estimation algorithm

to account for the manoeuvre? A simple method is to drop

the current (biased) estimates immediately after the manoeuvre

detection and to reinitialise the state estimator using the most

recent radar measurements [40]. After such procedure, an

effective memory of the Kalman filter becomes short for

a certain period of time, and if the manoeuvre ends before

the filter gain becomes close to its steady state value (long

effective memory), the estimation process can be smoothly

continued. If not, the manoeuvre will be detected again and

the above procedure repeats.

In [17], after the detection of a manoeuvre based on the

estimated value of control input, the estimate and an approxi-

mation of its uncertainty (i.e. the covariance of the estimation

error) are used to correct the state estimate and the respective

covariance matrix of the Kalman filter based on the CV model.

Then, the estimation process is performed based on the same

filter, as if the manoeuvre has definitely ended. The major

drawback of this (as well as the previous) approach is that

during manoeuvres of long duration the estimation process

will be characterised by a repeatedly increasing estimation

error (bias due to manoeuvre) which is successively reduced

by subsequent manoeuvre corrections.

A more elegant approach was proposed in [37]. Using the

innovation process sequence taken from the Kalman filter

based on CV model, manoeuvre classification is based on

a bank of filters, matched to coordinated turns of different

durations and intensities. If the manoeuvre is detected and

classified, its parameters are used to correct current estimates

produced by the filter and to compensate the model mismatch

during the manoeuvre using the control input u[n].
Adaptation of the Kalman filter to a detected manoeuvre can

also be done using the equivalent noise principle, described

in section III. In this case, after detecting the manoeuvre, an

equivalent noise w
∗[n] of a suitably chosen intensity can be

introduced instead of the original system noise w[n]. The use

of the equivalent noise method jointly with the manoeuvre

detection approach avoids the major disadvantage of non-

adaptive tracking filters, i.e. a poor estimator accuracy during

non-manoeuvring motion parts.

Another group of tracking filters based on detection of

manoeuvres use the mechanism of switching among state

estimators based on different models of target movements.

A closer view on these algorithms is given in section V.

B. Soft-Decision Approach

The adjustment of a KF based on a non-manoeuvring model

to a sudden manoeuvre can be done by adapting the filter

bandwidth. Such an adaptive filter may use either a noise

identification technique, which explicitly identifies the process

noise statistics used in the filter, or an adaptive gain approach,

which accounts for the effect of the uncertainty in the noise

characterisation on state estimation indirectly without explicit

identification of the noise statistics [51].

Four approaches to the identification of unknown covari-

ances can be recognised [41]: Bayesian approach, where the

Bayes’ rule is used to update the a-priori distribution of

noise statistics; maximum likelihood estimation, where the

noise statistics are estimated by maximising their likelihood

functions; correlation methods, where the noise statistics are

related to and determined by an estimated autocorrelation

function of the measurement residual sequence; and covari-

ance matching, where the noise statistics are estimated based

on matching between theoretical and estimated covariances

[51].

In the context of MTT a noise-level adjustment approach is

often used, which relies on a process noise compensation [19].

A representative application of this approach is given in [15].

Measurement residuals (innovations) in each coordinate are

normalised, and then filtered in a single-pole filter. The mag-

nitude of the output of this filter, when exceeds a threshold, is
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used to vary the process noise covariance in the KF. In [23]

a scale factor is used, calculated from measurement residuals,

which represents the current magnitude of process noise co-

variance. The scale factor level increases during manoeuvres

to provide improved tracking.

Relatively few techniques were developed for the gain

adaptation approach, which is based on the analysis of mea-

surement residuals (e.g. biasness or orthogonality) and makes

allowances for adapting the filter gain according to a certain

rule [51].

Note that all the methods described above implement var-

ious adaptive versions of the equivalent noise approach de-

scribed earlier and offer similar advantages as the manoeuvre-

detection-based (or hard-decision) methods. Note, however,

that it is not obtained by carefully modelling target trajectory,

but by suitable adjustment of the filter bandwidth.

V. MULTIPLE-MODEL STATE ESTIMATORS

From amongst many techniques of adaptive tracking,

Multiple-Model (MM) methods became quite popular during

the last 20 years. In the MM approach it is assumed that the

system obeys one of a finite number of modes. Such systems

are called hybrid because they have both continuous (noise)

uncertainties and discrete (model or mode) uncertainties [5].

Hybrid estimation is the estimation of a quantity (a parameter

or process) which has continuous and discrete components

[53]. A continuous component will be referred to as a base

state or state, while a discrete component will be called

a modal state. An MM tracking filter is based on a set of

kinematic models (modes), which describe certain types of

trajectories and constitute a basis for the applied set of state

estimators, called partial or mode-matched filters.

For a suitable description of the most important principles

of the MM estimation, a simple classification of the existing

approaches can be made. Principal rules of a given MM

estimation method can be easily recognised by answering

two basic questions: (1) How do partial estimators work?

(2) How is the final estimate computed? The first question

leads to a distinction between competitive and cooperative

estimation schemes and to the issue of exchanging information

between the component estimators. The other question refers

to the problem of combining several estimates obtained from

the mode-matched filters into one estimate. This problem is

usually solved by selecting the estimate of the most likely filter

(an exclusive approach) or by appropriately combining (mix-

ing) all component estimates (a non-exclusive approach). In

view of this classification, the following four basic approaches

to the MM estimation problems can be recognised: coopera-

tive, exclusive [1], [44], [46], cooperative, non-exclusive [12]

competitive, exclusive [22], competitive, non-exclusive [38],

[62].

Note that the above classification, although general, is not

very useful for a systematic presentation of the practical

approaches existing in the literature on the subject. This is

due mainly to the fact that the four distinctive approaches

are not equally attractive for the considered problem of state

estimation in non-stationary systems. Actually, the competitive

(or autonomous) MM approach, originally proposed by Mag-

ill [38] for uncertain but stationary systems, has been followed

rather rarely with regard to the MTT problem. Therefore,

the following presentation of practical MM state estimators

proposed for tracking manoeuvring aircrafts, will be given

within the class of cooperative MM estimators. The MM filters

for the MTT problem can be practically based on either the

two following basic techniques of managing the architecture

of multiple mode-matched filters: operating multiple filters in

parallel or switching to the most likely one.

A. Switched/Sequential MM (SMM) filtering

In this approach, several (usually non-manoeuvre and ma-

noeuvre) movement modes are considered, constituting a set of

possible modes. Tracking is performed by a single filter based

on a selected model at one time. The decision, which model

should be used at a given time instant, is made simultaneously

with the current state estimation process using information

derived from incoming measurements, estimation results (e.g.

the current filter innovation) or prior information. Based on

this decision the estimation process can be continued using the

current filter or another filter based on a more likely model

selected from the considered set of possible models.

The SMM approach has three aspects: modelling, decisions,

and filtering [51]. Generally, all the models of target’s motion

discussed in section II can be potentially incorporated into an

SMM filtering scheme. Moreover, different filters may be used

for different models so as to take advantage of the properties

of each model. Decision procedures are usually based on

manoeuvre detection techniques, typically those referenced in

section IV. Therefore the SMM filtering approach can be also

referred to as a hard-decision MM technique.

A popular example of the SMM approach is the vari-

able dimension filter [1]. It uses two models: CV for non-

manoeuvring and CA for manoeuvring portions (modes) of

a target trajectory. Because in the applied Cartesian coordinate

system both the CV and CA models are linear polynomial

models of different order, the two Kalman filters based on

these models are characterised by state vectors of different

dimensions. Hence, switching between those filters can be

interpreted as the change of the order (dimension) of the

current filter. The transition from the CV to the CA model

is done on the basis of a chi-square manoeuvre detector. The

estimation process based on the CA model is initiated with the

use of most recent measurements, and terminated when the

values of the acceleration components of the estimate become

sufficiently small. Note that, in fact, the CA model describes

a uniform change of the target speed moving along a straight

line. In order to cope with circular manoeuvres the bandwidth

of the CA filter must be increased to account for prediction

errors caused by the CA model mismatch during the turn.

Based on the same principle, Roecker and McGillem [46]

proposed a two-model SMM filter based on the CV model for

uniform movements and the CT model in polar manoeuvre-

centred coordinates for circular turns. It uses the same chi-

square manoeuvre detector as proposed in [1] and an addi-

tional log-likelihood ratio test in order to determine if the

circular manoeuvre has occurred. If both tests are passed, the
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radius and the coordinates of the centre of the manoeuvre

circle are estimated from recent measurements using non-

linear least squares, and then a new Kalman filter in polar

coordinates is initiated. Major drawbacks of such an approach

are related to several additional non-linearities introduced into

the mechanism of switching between the Cartesian and polar

filters, as well as into the measurement equation associated

with the manoeuvre-centred CT model. Moreover, it was

observed that the filter based on this model becomes unstable

when used during non-circular movements. Obviously, such

scenario may happen in a real tracking system, given the

“random nature” of radar measurements.

It is worth noticing that all algorithms based on detection

of manoeuvres (and filters switching) are characterised by

common weaknesses. Namely, it was observed that such

algorithms usually produce significant estimation error during

transitions from the non-manoeuvring to the manoeuvring

mode of operation [3], which is due to the fact that the de-

tection threshold preserves the unchanged estimation process

scheme until an assumed confidence regarding the manoeuvre

presence is achieved. If the threshold is set high, a long delay

of detection causes a large estimation error before it can be

corrected. A low threshold causes false manoeuvre alarms

which can degrade the resulting accuracy, as well. This prob-

lem is highly dangerous in the case of intensively manoeuvring

targets (e.g. military aircrafts). The choice of a proper setting

for the detection threshold is a difficult task. The threshold

optimised with respect to typical target manoeuvres may cause

the detector to be insensitive to manoeuvres of long duration

and low intensity. Moreover, manoeuvre detectors are sensitive

to system modelling errors, e.g. to unexpected changes in

radar measurement accuracy. In case of such changes (e.g. due

to varying radar environment characteristics) the number of

false manoeuvre alarms reported by the detector can suddenly

increase, and degrade the estimation quality [35].

In order to enhance the performance of the variable di-

mension filter its original algorithm [1] can be integrated

with the EIE technique, as proposed in [44]. Application

of the EIE algorithm to the detection of manoeuvres in an

SMM filter improves the reaction time and reliability of the

manoeuvre detection process with regard to manoeuvres of

various durations and intensities. Another useful methodology

introduced in [20] aims at decreasing the level of false

manoeuvre alarms. This method, called a two-stage decision

logic, consists of two decision logics used in a series. The first

decision logic is used to detect any abnormality in the current

filter (measurement residuals) to determine a possible manoeu-

vre onset or termination by comparing a certain measure with

the corresponding threshold. If the abnormality is declared,

then a “new” (manoeuvre matched) filter is initiated, which

runs in parallel with the “current” filter. Then, the second

decision logic based on a maximum likelihood test indicates

which of the two filters is the most likely one. It can thus

be concluded that an improvement of the performance of the

hard-decision methods can be reached by taking into account

multiple hypotheses in parallel and applying certain “softer”

decision mechanisms.

B. Parallel/simultaneous MM (PMM) filtering

The category of PMM includes those MM state estimation

algorithms that operate all the considered mode-matched filters

in parallel. Solid surveys of such techniques are available

[5], [53]. PMM techniques are usually formulated within the

Bayesian framework. Starting with a-priori probabilities of

each model being correct (i.e. that the considered system is in

a particular mode), the corresponding a-posteriori probabilities

are obtained during the filtering step.

The Bayesian approach to the PMM estimation was in-

troduced by Magill [38] for an unknown stationary dynamic

system. The system is assumed to obey one mode of an M -

element set during whole considered period of time. The goal

is to calculate an optimum estimate of state of such a system

without having any a-priori knowledge about the “true” mode.

If the models used are linear and Gaussian, the optimal filter

consists of a bank of M Kalman filters working independently

in parallel on their own estimates. Their likelihood functions

are used to update model probabilities. The latter model

probabilities are used to combine model-conditioned estimates

and respective covariances into an overall state estimate [5].

Due to the fact that the partial filters in this approach work

simultaneously and independently, such a structure can be

referred to as the Autonomous/competitive MM (AMM) es-

timator.

If the assumed set of models includes a correct one and

there are no jumps among the models, then the probability of

the true mode converges to unity and the AMM filter is able to

yield optimal estimates of the system parameters. If the AMM

estimator is used in the case of switching modes, certain ad

hoc modifications have to be done to prevent the estimation

errors of mismatched filters’ from growing to unacceptable

levels, for instance, by periodic re-initiation of the filters [22].

In order to cope with non-stationary systems it can be

assumed that the considered system undergoes switching in

time within the assumed set of M modes. Due to possible

jumps from one mode to another, a set of possible mode

histories (sequences of modes) has to be taken into account.

Moreover, the number of mode histories grows exponentially

with the discrete-time instant n and is equal to Mn. It

is usually assumed that the mode-switching is governed by

a Markov process (Markov chain) with known time-invariant

mode transition probabilities. Based on these basic assump-

tions and on the total probability theorem, the conditional

probability density function of the base/system state is a Gaus-

sian mixture (sum) with the exponentially increasing number

of terms [5]. Since each possible mode sequence has to be

assigned a corresponding filter, it is clear that the exponentially

growing number of partial filters is needed to estimate the base

state, which makes the optimum approach impractical. In order

to avoid such an increasing system complexity, suboptimal

techniques are used in practise.

A Generalised Pseudo-Bayesian (GPB) approaches com-

bine the histories of modes that differ in modes older than

an assumed insight backward into mode histories. This is

usually denoted as GPBi, where i denotes the number of

the considered backward steps. The most common approaches

include: the GPB1 (first-order GPB) [28], [42], where only the
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possible modes in the last sampling period are considered, and

GPB2 (second-order GPB) [18], which considers all possible

modes in the last two sampling periods. These algorithms

require, respectively, M and M2 mode-matched filters that

operate in parallel.

Another approximation of the optimal PMM estimation was

introduced by Blom an Bar-Shalom [12] that is called an Inter-

acting Multiple-Model (IMM) filter. In such an IMM estimator

the state estimate is computed for each possible current model

using M filters, and each filter uses a different combination

of the previous model-conditioned estimates called a mixed

initial condition [5], [49]. The input to any of the M partial

filters at the beginning of a new filtering cycle is obtained by

the interaction among M filters, which consists of “mixing”

of the partial estimates from the previous cycle.

It was observed that the IMM estimator is characterised by

accuracy similar to GPB2 techniques and with numerical com-

plexity comparable to GPB1 algorithms. The IMM approach

has been successfully applied to solve various technical prob-

lems [39], [61] such as: state estimation, system identification,

MTT, filtering and smoothing, fault detection and isolation,

multi-sensor data fusion, robust speech recognition and multi-

rate processing. When applied to the MTT problem, IMM-

based tracking filters were shown to outperform virtually all

techniques known before, including those based on IE, EIE

and on the SMM principle [3].

A further improvement of the IMM estimation accuracy

can be obtained by using various higher-order IMM (IMMi)
techniques [11], [61], although at the expense of the increased

computational burden. In [61] for instance, state estimates of

a linear hybrid system are obtained by using mode switching

modelled by an i-th order Markov chain on the basis of all

possible mode hypotheses over the i most recent sampling

periods and requiring M i filters running simultaneously.

The PMM techniques described above, using the same set of

models at all times, can be referred to as a fixed structure MM

or fixed model-set approach. A major issue in the design of

such estimators is the method of selecting a right (or sufficient)

set of models [47], [50]. To have reliable results the set of

models must “cover” in some sense the possible system modes

and at least one of the models must be “close” enough to

the system mode in effect at any time. The fixed structure

MM algorithms usually perform well for problems that can be

handled with a small set of models, however, in many practical

situations this requirement is not satisfied. Moreover, as it was

shown theoretically in [50], the use of too many models is

as bad as the use of too few models. The major reason of

the unsatisfactory behaviour of the MM algorithms based on

a large model set is that many models in this set are so different

(mismatched) from the true system mode (at a particular time)

that excessive “competition” among the mismatched models

degrades the performance of the estimator and unnecessarily

increases its computational burden.

It is easy to point out certain practical tracking problems for

which the number of modes that must be matched by the model

set within a certain time periods, can be smaller than the set

of all possible modes. Representative applications include, for

instance, the problem of tracking long range ballistic missiles,

which are able to manoeuvre only during boost and final

(re-entry) phases of their flight, and the problem of tracking

ground moving targets aided by topography information. Such

problems can be approached with the recently introduced

technique called Variable-Structure MM (VSMM) estimation

[2], [50].

The VSMM estimator has a two-level structure: multiple

model-set sequences at a higher level and multiple model

sequences at a lower level. It uses model-set adaptation

techniques. which may utilise a-priori knowledge (e.g. most

likely mode sequences) originating from a general targets

characterisation, external aids (e.g. road maps [33]), as well

as a-posteriori information about the system modes derived

from measurements.

VI. EXAMPLE – AIR TRAFFIC CONTROL

Traditionally, tracking algorithms applied within Air Traffic

Control (ATC) systems were based on fixed-gain or adaptive

KFs [4], [9], [26], [27]. Growing air traffic intensity and the

related problem of safety of air navigation result in increasing

interest in reliability of air surveillance systems. This is closely

related to the performance of the ATC radars and associated

RDP systems with respect to the estimation accuracy of

aircrafts’ motion parameters.

In 1990’s many efforts were aimed at designing novel radar

tracking algorithms for future ATC systems. Various solutions

were proposed to take advantage of: new discrete-time models

of aircraft turns [48], [64], [65], multi-sensor data fusion [13],

[64], [65], [68] and modern MM estimation techniques [13],

[48], [64], [65], [68].

A. Recommendations for ATC Radar Data Processing

Certain standards and recommendations for European ATC

systems are formulated by the European Organisation for the

Safety of Air Navigation EUROCONTROL. The EUROCON-

TROL Standard Document [24] which was issued in 1997, de-

scribes requirements for radar surveillance in the provision of

ATC systems in En-Route Airspace (ERA) and Major Terminal

Areas (MTA). Particularly, this document defines the technical

requirements for Primary (PSR) and Secondary Surveillance

Radars (SSR), as well as the accuracy requirements for related

RDP systems in various configurations, including: single PSR

(MTA), combined PSR and SSR (MTA), and single or double

SSR (ERA). We focus here on the first problem of radar

tracking in the MTA using a single PSR.

Based on the presumed characteristic of civil aircrafts [24],

it is assumed that their trajectories may consist of travel path

motions and some manoeuvres that include:

• a Uniform Motion (UM) at a constant velocity,

• a Uniform Speed Change (USC) with a constant longitu-

dinal acceleration,

• a Standard Turn (ST) with a constant normal acceleration.

Expected accuracies of estimated trajectory parameters are

defined in [24] for certain testing scenarios in terms of a Root

Mean Squared (RMS) error, with respect to: along-trajectory

(ALE), across-trajectory (ACE), ground speed (GSE) and

course (COE) errors. Let x, y, v and ψ denote, respectively,
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two positional coordinates, ground speed and course of the

target, while x̂, ŷ, v̂ and ψ̂ their respective estimates. These

four errors are illustrated in Fig. 1.

x̂

ŷ

v̂

N

E

v

^

x

y
ψ

ψ

ALE

ACE

GSE COE

Fig. 1. Geometric illustration of errors: ALE, ACE, GSE and COE.

The required accuracies are described by maximum RMS

error defined for steady-states of the three types of motions

(UM, USC, ST). During the transitions between different types

of motions, the system performance is described by the peak

RMS value of the error and the time required for the error to

decrease to a reference value that is the fraction of the peak

RMS error defined for this type of motion. The values of the

maximum and peak RMS errors can be found in [24], [56].

EUROCONTROL recommendation increased the difficulty

of designing tracking filters for ATC systems. Traditional

requirement of achieving accurate estimates during UMs while

maintaining tracks during manoeuvres has changed. Now

accuracy requirements are defined for all phases of track life,

including manoeuvres, which cannot be met neither by single-

model nor by MM filters based on instrumentally increasing

filter bandwidth during manoeuvres. Instead, MM methods

based on analytical/physical models, describing realistically

trajectory shape, must be used.

B. Multiple-Model Approach with Analytical Models

It was often supposed that tracking civilian aircrafts can

be successfully performed using a two model IMM estimator

based on CV and CT models [31], in which a properly tuned

CV model covers UMs and USC manoeuvres, or based on

CV/CA models [68], in which the wide band CA model covers

USC and ST manoeuvres. Uruski and Sankowski [63] exam-

ined three tracking filters based on the IMM technique and:

CV and CA models [68], CV and CT models [31] and a new

one based on the CV, CA and CT models. The simulation tests

showed that it was impossible to tune parameters of either of

the two-model IMM estimators to fulfil the EUROCONTROL

requirements. Only the three-model IMM filter was close to

meet all these requirements.

Similar conclusions were reported by Besada and Gar-

cia [8] who compared two-model IMM filters against the

performance requirements for the ARTAS system developed

by EUROCONTROL. Then they approached the problem of

carefully tuning two- and three-model IMM estimators using

evolutionary strategies – a global optimisation technique.

The promising results of applying analytical models of

manoeuvres [63] resulted in development of a family of filters

based on MM estimation using soft- and hard-decisions [34],

a set of trajectory models (CV, CA, CT) and various coordinate

systems [36], [56].

Selected results taken from [36], [56] are shown in Fig. 2

and 3 that describe the accuracy of aircraft course estimation

for reference trajectories using a three-model IMM filter.
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Fig. 2. RMS COE errors for the USC manoeuvre, flat Earth model.
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Fig. 3. RMS COE errors for the UT manoeuvre, flat Earth model.

Each of two testing trajectories consist of three parts of

equal durations of 150 [s]: (1) UM, (2) USC with longitudinal

accel. 1 [m/s2] or UT with normal accel. 4 [m/s2], (3)

uniform motion. Figs. 2 and 3 show the RMS COE errors

for a given manoeuvre (USC or CT) based on 500 statistically

independent realisations of measurement errors. In figures the

thick horizontal lines describe the limiting maximum RMS

and peak RMS accuracies, while thick vertical lines indicate

the time interval required for decreasing the errors from the

peak RMS to the reference RMS value. One can observe that

accuracy requirements are met.

C. Modelling the Earth Shape Influence

The above experiment was performed using radar-related

Cartesian coordinates for both: simulating the reference trajec-

tory and for estimating the state. It seems obvious, however,

that aircrafts navigate by determining their own attitude param-

eters relatively to the Earth clod, and not with the reference to

the radar. In practice, the World Geodetic System 1984 (WGS-

84) is widely accepted as a common reference framework for

space/airspace navigation and surveillance systems [25].
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In Figs. 4 and 5 performance estimates are presented, which

describe course RMS errors of the same IMM filter evaluated

against trajectory simulated in geodetic coordinates [56].
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Fig. 4. RMS COE errors for the USC manoeuvre, geodetic Earth model.
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Fig. 5. RMS COE errors for the UT manoeuvre, geodetic Earth model.

The reference aircraft movement model is based on the

WGS-84 framework and employs loxodromic UM model,

models of UT and USC manoeuvres [56], [57].

One can observe in the figures that now the course esti-

mates suffer from movement models mismatch between the

trajectory simulator (geodetic model) and the state estimator

(flat Earth Cartesian model). The result of this mismatch is

a bias depending on the position of the target with respect to

the radar [56]. For some radar coverage regions the value of

the bias may exceed the maximum RMS error requirement,

which can be observed in the last part of the RMS COE curve

in Fig. 4. This bias can [55] and must be corrected in order

to reduce the values of the RMS COE error to an acceptable

level.

VII. CONCLUSIONS

Concluding this review two observations can be made. First,

that the improvement in the state estimation quality of the

PMM filters can be obtained by exploiting additional exter-

nal information. Although the VSMM estimator constitutes

a straightforward way of doing this, such knowledge can

be also introduced into the fixed model-set MM estimation

schemes. It can be done by applying an additional, high-

level adaptation mechanism based on tuning the parameters

of the Markov chain that describe a-priori knowledge on the

likelihoods of certain jumps between the modes.

The second observation is related to the evolution of the

SMM and PMM approaches. Though the PMM methods gen-

erally follow the soft decision scheme of adaptive estimation,

the VSMM estimator introduces the hard decision mechanism

of the model-set adaptation. On the other hand, an improve-

ment in the performance of the SMM methods can be achieved

by considering competing mode hypotheses in parallel (e.g.

two mode-matched filters running simultaneously for some

time) and making the model-switching decisions “softer”. It

can thus be concluded that the two distinctive hard (SMM)

and soft (PMM) approaches somehow converge to a pragmatic

method which tries to take advantage of both. Namely, the

VSMM filter combines the precise mathematical formulation

and the inherent robustness of the PMM techniques, as well as

the rationale that real moving objects do not follow trajectories

justified by mixing all their possible behaviours (modes), but

result rather from a more or less known deterministic sequence

of these modes, which is the foundation of all SMM methods.
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Gdańsk, Poland, May 2005.

[57] ——, “Reference model of aircraft movements in geodetic coordinates,”
in Proc. Int. Radar Symp., Leipzig, Germany, Sep. 2011, pp. xx–xx, To
appear in.

[58] R. Singer, “Estimating optimal tracking filter performance for manned
maneuvering targets,” IEEE Trans. Aerosp. Electron. Syst., vol. 6, no. 4,
pp. 473–483, Jul. 1970.

[59] R. Singer and K. Behnke, “Real-time tracking filter evaluation and
selection for tactical applications,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 7, no. 1, pp. 100–110, Jan. 1971.

[60] R. Singer and P. Frost, “On the relative performance of the Kalman and
Wiener filters,” IEEE Trans. Autom. Control, vol. 14, no. 4, pp. 390–394,
Aug. 1969.

[61] P. Suchomski, “High-order interacting multiple-model estimation for
hybrid systems with Markovian switching parameters,” Int. J. of System
Science, vol. 32, no. 5, pp. 669–679, 2001.

[62] J. Thorp, “Optimal tracking of maneuvering targets,” IEEE Trans.
Aerosp. Electron. Syst., vol. 9, no. 4, pp. 512–519, Jul. 1973.

[63] P. Uruski and M. Sankowski, “Application of analytical models of target
motion in state estimation for air traffic control,” in Proc. of Conf.
on Autom. Control in Radar and Flying Objects, vol. 1, Jelenia Góra,
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