
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 1, PP. 43–48
Manuscript received December 31, 2011; revised March 2012. DOI: 10.2478/v10177-012-0006-6

Petri Net Based Specification in the Design of Logic
Controllers with Exception Handling Mechanism

Michał Doligalski and Marian Adamski

Abstract—Hierarchical Petri nets beside UML state machine
diagrams, sequentional function charts (SFC) and hierarchical
concurrent state machines are common solution for specification
of logic controllers. These specification formats provide both
concurrency and modeling on multi levels of abstraction (hi-
erarchic approach). But only state machine diagrams supports
exceptions handling in direct way. Program model presented in
form of state machine diagram may be later transformed into a
program in the SFC language or transformed in the Petri Net
and implemented in the FPGA structure. Similarity between SFC
language and Petri Nets give us lot of tools for analysis such
control system. Article presents new approach for exceptions
handling in hierarchical Petri nets as formal specification for
logic controllers. Proposed method of specification can be used
independently or as a part of dual specification (correlated state
machine diagram and hierarchical configurable Petri Net).

Keywords—Logic controller, dual specification, hierarchical
Petri net, UML, state machine diagram.

I. INTRODUCTION

THE application of reconfigurable logic controllers in the
form of FPGA systems or PLCs is the most commonly

used solution in the field of controllers development [1].
Commercially manufactured reprogrammable systems are

much cheaper than the dedicated solutions – designed specially
for an individual production line or a particular controlling
process. Logic controllers can exist as autonomous industrial
process control equipment or as a part of embedded system
(SoPC). Example of the manufacturing process was shown in
Fig. 1. The process task is to mix two liquid substances in
the reactor tank. Two additional tanks (A and B) are used
to measure proper quantities of substrates. Mixed product is
poured into containers. There is six discrete sensors (x1, x2, ..,
x6) responsible for level measuring, four momentary switches
on the operator panel (start, resumption, defect, failure), six
normally closed solenoid valves responsible for liquid flow
control (y1, .., y4, y6), agitator relay (y5) and emergency
reactor emptying valve (EV1).

The operator panel buttons are responsible for the initial-
ization of the manufacturing process, emergency stop and
resumption. Two emergency buttons perform critical (failure)
and noncritical (defect) exception notify. In a real industrial
process such exceptions are reported by the operator (emer-
gency button) or safety circuits.

This work was supported by the Ministry of Science and Higher Education
of Poland. Research grant no. N516 513939 for years 2010-2013.

M. Doligalski and M. Adamski are with the Computer
Engineering & Electronics Department, University of Zielona
Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland (e-mails:
{m.doligalski, m.adamski}@iie.uz.zgora.pl).

X1

X2

X3

X4

X6

X5

Y6

Y3 Y4

Y2Y1

Y5

Tank A Tank B

Start

Resumption

Defect

Reactor

Failure

EV1

Fig. 1. The manufacturing process.

Process consists of two main steps: first – measuring
substances and second – mixing it in the reactor. Presented
process is simplified in comparison to real industrial processes,
also possible exceptions were simplified to better clarify the
exceptions handling mechanism. In the first step, exception
events are noncritical and after it the process should be
continued. In the second step, when two substrates are mixed
in reactor, exceptions events are critical. After this kind of
exception continuation of the work is not possible, the system
should be stopped and started the emergency procedure. These
two kinds of exceptions correspond to following scenario: first
when the task was inspected by the operator (defect exception)
and second when final product was contaminated (emergency
exception).

The presented textual specification describes both behavior
of the control system and structure of controlled industrial ob-
ject. However, even the best textual specification is an informal
specification that can be interpreted in different ways. While
maintaining the diligence and compliance with the standard,
formal methods provide unambiguous interpretation of the
specification. The paper is focused on two formal behavioral
method: Petri nets and UML state machine diagram.



44 M. DOLIGALSKI, M. ADAMSKI

II. INTERPRETED CONTROL PETRI NETS

Interpreted control Petri nets are widely used form of logic
controller specification [2], [3]. Besides a clear description
Petri nets provide wide range of formal method and algorithms
for formal verification.

Interpreted control Petri Net can describe a binary control
algorithm but only on one hierarchy level. This net can be
extended in a simple way with the possibility of medeling
at different abstraction levels through the introduction of
macroplaces (Pm):

Hierarchical interpreted Petri Net is defined as:

PNCTRL = 〈P, T,A,M0, µ, C,X, Y, δ, λ, θ〉, (1)

where :
P is a finite non-empty set of places, P ⊆ Po;
Po is a finite non-empty set of net operational places,

Po ⊆ Ps ∪ Pm;
Ps is a finite non-empty set of simple places,

Ps = {p1, . . . , pm};
Pm is a finite set of macroplaces, Pm = {m1, . . . ,ml};
T is a finite non-empty set of transitions, T ⊆ To;
To is a finite non-empty set of operational transitions,

To = {t1, . . . , tn};
A is a finite non-empty set of arcs, A ⊆ Ao;
Ao is a finite non-empty set of operational arcs,

A ⊆ AoPT ∪AoTP ;
AoPT is a finite non-empty set of operational arcs,

Po −→ To,
AoPT = (Po × To);

AoTP is a finite non-empty set of operational arcs,
To −→ Po, AoTP = (To × Po);

M0 is an initial net marking, M0 : P → Z+;
µ is a number of tokens in each place,

µ : P → K, K ∈ N.
X is a finite non-empty set of inputs,

X = {x1, . . . , xp};
Y is a finite non-empty set of outputs,

Y = {y1, . . . , yk};
C is a finite non-empty set of logic conditions in the

Boolean algebra, C = {c1, . . . , ci};
ci is a function in the Boolean algebra:

B = (X,∩,∪,∼, 0, 1); (2)

δ is a function of transitions conditions defined as:

δ : T → C; (3)

λ is a function of outputs in such a way that:

λ : P → 2Y ; (4)

θ is a function of hierarchy in such a way that:

θ : Pm → PNCTRL; (5)

and

a, b ∈ Pm,∀a 6= b =⇒ θ(a) 6= θ(b), (6)

p1

Start

p2 p4

p3 p5

t2 t3

t4

Y1

X1 X3

p6p8

!X5

X5 * X6

t7

t5

p7

p9

t6

Y6

!X2 * !X4

t8

t1

Y2

Y3, Y4

Y5

!X6

Fig. 2. Interpreted Petri net.

Start

p2 p4

p3 p5

t2 t3

t4

y1

x1 x3

p6p8

!x5

x5 * x6

t7

t5

p7

p9

t6

Y6

!x2 * !x4

t1

y2

Y3, y4

Y5

!x6

p1

t8

t19

t10 Defectt9 Defect

t13 Failure

t15 Failure

t14 Failure

t16 Failure

t12 Defectt11 Defect

p13 p14

alarm

t17

p10 p11

p12

t18

alarm

EV1p15

t20

alarmp16

t21

!x6

resumption

resumption

Fig. 3. Interpreted Petri net with exceptions handling.

The above definition was oriented towards the possibility of
its configuration through distinguishing operational (simple)
places and transitions – executing the control algorithm.

The behavioral description of logic controller was shown
in Fig. 2. It represents only main control process and omits
both kinds of exceptions. For interpreted Petri nests exceptions
handling and resumption mechanism should be described indi-
rectly by means of places and transitions (Fig. 3). Transitions
(t9, ..., t16) are responsible for token expropriation after
an exception, one transition for each place in net. These
transitions have a higher priority than transitions of the control



PETRI NET BASED SPECIFICATION IN THE DESIGN OF LOGIC CONTROLLERS WITH EXCEPTION HANDLING MECHANISM 45

CS2[Start]Waiting

[x3]Filling B

do/y2

[x1]Filling A

do/y1

Defect Resumption

H

H

Defect alarm

do/Alarm

CS3

Emergency epmptying

do/Alarm

do/EV1

[!x6]

Failure alarm

do/Alarm

Resumption

Failure

[!x2]Emptying A

do/y3

[!x4]Emptying B

do/y4

Waiting Mixing

do/y5

Delay[x6]
[x5]

[!x5]

[!x2*!x4]

Reactor emptying

do/y6

[!x6]

Fig. 4. UML state machine diagram.

process (t2, .., t8). In order to achieve better transparency,
it has been omitted from the diagram but each transition
condition for (t2, .., t8) should be extended by the !defect con-
dition. Otherwise the non-deterministic transition firing will
occur. Expropriated tokens are moved to synchronizing places
(p10, p11 and p13, p14), one place for each parallel path.
Tokens are merged by means of transitions (t17, t19) then will
exception handling process. Places p12, p16 generate alarm
signal and place p15 perform emergency reactor emptying by
means of ev1 valve. Indirect exceptions handling implementa-
tion increase number of additional transitions and places. The
presented net does not have a mechanism of resumption – to
execute the mechanism it is necessary to include additional
places and transitions which would allow to keep a token
for the time of expropriation. This method is analogical to
the one presented in dissertation [4]. Considerable increase in
the number of places and transitions entails not only worse
transparency of the diagram but also the increase in the use
of the FPGA device hardware resources.

III. BEHAVIORAL SPECIFICATION BY MEANS OF UML
STATE MACHINE DIAGRAM

The Unified Modeling language (UML) supports exceptions
handling mechanism, that is strictly connected with object-
oriented programming. In particular, the state machine dia-
grams allow state oriented behavioral specification with native
exceptions handling mechanism. These diagrams are also
suitable for logic controllers specification [5]. For given indus-
trial process the UML state machine diagram was elaborated
(Fig. 4). The state machine diagram consists of two levels of
abstraction. Two composite states that distinguish submachines
for which exception handling is performed. Composite states:
CS2 and CS3 perform substrates measuring and mixing final
product, respectively. According to textual specification two
exceptions were also included. Placed shallow history states
indicate that exceptions defect, handled from CS2 state is
noncritical and after the resumption, the proces will continue.

In proposed dual specification [6] of logic controllers, the
UML state machine diagram is the user interface and the hier-
archical configurable Petri net is used for formal verification
and synthesis.

IV. HIERARCHICAL CONFIGURABLE PETRI NETS

Hierarchical configurable Petri Net is defined as follows:

HCfgPN = 〈PNCTRL, Pc, Tc, Ac〉, (7)

where :
Pc is a finite non-empty set of net configurable places,

Pc = {pinit, pa, pi}, P ⊆ Po ∪ Pc;
Tc is a finite non-empty set of net configurable transi-

tions, Pc = {tinit, ta, ti, tw, tfin}, T ⊆ To ∪ Tc;
Ac is a finite non-empty set of net configurable arcs,

Ac = {〈pinit, tinit〉, 〈tinit, pa〉, 〈pa, ti〉, 〈ti, pi〉,
〈pi, ta〉, 〈ta, pa〉, 〈pa, tw〉, 〈tw, pinit〉, 〈pa, tfin〉,
〈tfin, pinit, 〉}, A ⊆ Ao ∪Ac;

pinit is an initial net place; and

M0(p
init) = 1,∀p ∈ P \ {pinit},M0(p) = 0; (8)

AoPT is a finite non-empty set of arcs Po −→ {To, Tfin},
AoPT = (Po × {To, Tfin});

AoTP is a finite non-empty set of arcs {To, Tinit} −→ Po,
AoTP = ({To, Tinit} × Po);

pa is an active configuration place;
pi is an idle configuration place;
tinit is the net initial transition with net activation value

of δ(tinit) = cinit,cinit ∈ C ;
tfin is the net final transition with net activation value of

δ(tfin) = cfin,cfin ∈ C ;
ta is an active configurable transition with reactivation

value of δ(ta) = ca, ca ∈ C;
ti is an idle configurable transition with the net deacti-

vation value of δ(ti) = ci, ci ∈ C;
tw is a expropriation final transition with the net expro-

priation value of tδ(tw) = cw, cw ∈ C.
The name characterizing presented new class of Petri nets

is quite complex and, this is why, this net class was named in
short as hierarchical configurable Petri Net and was given the
following acronym: HCfgPN.

Configurable transitions tinit, tinit, ta, tw are fired when the
following conditions for a specific transition are fulfilled at the
same time:
• transition is enabled,
• condition of the transition execution assumes the follow-

ing value 1.
The tfin configurable transition is fired when the following

conditions are fulfilled at the same time:
• transition is enabled,
• condition of the transition execution assumes the value

of 1,
• execution condition of the tw transition assumes the logic

value of 0.
• execution condition of the ti transition assumes the logic

value of 0.
In case of the net which executes a resumption (reactivation)

mechanism, a expropriation condition should be assigned
to an idle transition. Firing of the ti transition will cause
running into an idle state: operational transition execution
and output signal generation will be withheld. Resumption



46 M. DOLIGALSKI, M. ADAMSKI

of a net takes place after firing of the ta active configurable
transition to which the resumption condition of an idle net was
assigned. An idle ti configurable transition is fired when the
following conditions are simultaneously fulfilled in respect of
the transition:
• the ti transition is enablied,
• execution condition of the ti transition assumes the logic

value of 1,
• execution condition of the tw transition assumes the logic

value of 0.
The tn ∈ To operational transition is fired only when the

following conditions are fulfilled simultaneously in respect of
the transition:
• the tn transition is enabled,
• execution condition of the tn transition assumes the logic

value of 1,
• execution condition of the ti transition assumes the logic

value of 0,
• execution condition of the tw transition assumes the logic

value of 0,
• the active configuration place pa is marked.
In case of the interpreted control Petri Net an output

function assumes output subsets to places. For example, in
respect of a place p1 ∈ P there are two specified output signals
x1, x2 ∈ X,λ(p1) = x1, x2. If the p1 place is marked with
µ(p1) ≥ 1 then the signal value at the outputs x1, x2 will
equal to 1.

Condition of the y ∈ Y input signals in case of the
interpreted control Petri Net is specified by the function
γ : Y → {0, 1}:

∀y ∈ Y, γ(y) = 1,∃p ∈ P : λ(p) 3 x ∧ µ(p) ≥ 1. (9)

In case of the HCfgPN the generation of output signals is
additionally conditioned by the configuration in which it exists.

Condition of the y ∈ Y output signal generation in the
HCfgPN is specified by the function φ : Y → {0, 1}:

∀y ∈ Y, φ(y) = 1,∃p ∈ Pc : λ(p) 3 y∧µ(p) ≥ 1∧µ(pa) ≥ 1.
(10)

If the HCfgPN is not to enable the resumption of the activity
after previous expropriation then the expropriation condition
should be assigned to a tw transition and the condition in the
form of a logic value should be assigned to a ,,0” preempting
condition (false); Execution of this transition is given a priority
before other configurable and operational transitions. Target
net marking after firing of the tw preempting transition is
specific: all operational places are deprived of tokens and
the return to initial marking takes place. Firing of a tw

expropriation transition causes the return to the net initial
marking and it is defined as:

µ′(pinit) = 1,∀p ∈ Pc : µ
′(p) = 0; (11)

Simultaneous assignment of conditions to the tw and ti
transitions is possible. Simultaneous execution of these tran-
sitions is forbidden but at the same time the tw expropriation
transition is given a higher execution priority. This is why,
it is permissible to specify the same execution conditions in
respect of both transitions: δ(tw) = δ(ti).

P
a

P
i

T
a

T
i

T
init

T
w

P1

T1

T2 t
fin

2

start

T
fin

Net1

0

0

0

0

Mp2

Mp3

P2

T4

T3

P4

P3

P
init

P5

T5

T6

T7

T8

T9

t
fin

3

!x6

defect

resumption

failure

!x6

resumption

y6 EV1, alarm

alarm

alarm

Fig. 5. Top level net.

The task of configurable places is to supervise the execution
of the net operational block of the HCfgPN through block-
ing or permitting the transition execution and output signals
generation. If the pa configurable place is marked then the
net is in active mode: transitions execution and output signals
generation is permissible.

Execution of the ti transition is the reason for the fact
that an active configurable place loses a token in favor of an
idle pi configurable place. When the pi place is marked then
the net is in an idle mode (frozen mode). Despite the fact
that operational places are marked transition execution in the
operational subnet and output signals generation are withheld.

Resumption of the net is executed through the ta transition:
token is transferred to the pa place, execution of operational
transitions and generation of a signal is possible again as the
net is active.

The ti,ta, tf in, tw transitions, as opposed to operational
transitions and the tinit transitions, have a default logic
condition which is ,,0” (false). Otherwise, the net would
operate incorrectly and just after its activation it would be
preempted.

V. HCFGPN BASED LOGIC CONTROLLER SPECIFICATION

In the dual specification hierarchy is maintained at every
stage of the design process. The top level state machine and
two composite states CS2 and CS2 were transformed into
hierarchical configurable Petri nets: Net1, Net2 and Net3,
respectively.

The Net1 (Fig. 5) contains two macroplaces:
• Mp2 corresponding to subnet Net2 (Fig. 6) with noncriti-

cal exception defect caught by T5 transition and handled
by place p3,



PETRI NET BASED SPECIFICATION IN THE DESIGN OF LOGIC CONTROLLERS WITH EXCEPTION HANDLING MECHANISM 47

P
a

P
i

T
a

T
i

T
init

T
w

T
fin

Net2

t6

t5

0

P
init

t1

P8

x3

P9

x1

P6

T10

P7

T11

y2y1

Fig. 6. Subnet 2 (macroplace 2).

P
a

P
i

T
a

T
i

T
init

T
w

T
fin

Net3

0

0

t7

P
init

!x2 !x4

P10

T12

P11

P12

T13

P13

P14

T14

P15

T17

P17

T15

P16

x6

x5

!x5

!x1*!x4

t2

y3 y4

y5

T16

Fig. 7. Subnet 3 (macroplace 3).

• Mp3 corresponding to subnet Net3 (Fig. 7) with critical
exception failure caught by T7 transition and handled by
places p4, p5.

The logic condition ,,0” (false) have been assigned to Net1
transitions T a, T i, Tw and T f in. At the highest level of
abstraction there is no exception handling, listed transitions
have been intentionally left in order to ensure coherence of
HCfgPN diagrams.

Transitions T1 and T2 are treat as global variable [7] and
were used as firing conditions for transitions T init for subnet
2 and 3. Transitions T5 and T7 also are treat as global variable
and were used as firing conditions for transitions T i for subnet
2 and Tw for subnet 3.

Firing of Net2 T i transition perform subnet freezing, as
it was described in previous section. Transitions T10 and
T11 become freezed and output signal generation from places
P6, .., P9 was disabled. Reactivation of Mp2 macroplace
executed by the T6 transition firing, perform Net2 reactivation:
transition T6 is a firing condition of Net2 T a transition.

Transition T7 is a firing condition of Net3 Tw transition and
is responsible for the Net3 expropriation. After Tw firing all
tokens from places P10, .., P17 are removed (killed) and the
subnet goes to the initial marking.

clk y6

reset alarm

start EV1

defect

failure

resumption

tfin2

tfin3

x6

T1

T2

T7

T5

T6

U1

Net1

clk Tfin

reset

t1

t5

t6

x1

x3

y1

y2

U2

Net2

clk Tfin

reset y3

y4x2

y5x4

x5

x6

t2

t7

U3

Net3

clk

reset

start

defect

failure

resumption

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

alarm

EV1

clk

reset

Fig. 8. Logic controller block diagram.

TABLE I
IMPLEMENTATION RESULTS OF LOGIC CONTROLLER

Net1 Net2 Net3 RLC
Slices 12 8 13 33
LUTs 18 14 22 54
FFs 9 7 10 26

clk

alarm

y1

reset

y2

start

y3

y4

y5

x1

y6

x2

x3

x4

x5

x6

defect

failure

resumption

EV1

U1

rlcTop

CLK trigger

RESET

x1

x2

x3

x4

x5

x6

failure

resumption

defect

start

U2

test_driver

CLK

reset

trigger

EV1

alarm

y1

y2

y3

y4

y5

y6

Fig. 9. In-circuit verification block diagram.

VI. SYNTHESIS, IMPLEMENTATION AND IN-CIRCUIT
VERIFICATION

Subnets were described by means of Verilog HDL [8]:
separated module (block) for each subnet. The logic controller
top level diagram was presented in Fig. 8.

Global variables were specified as output signals. Synthesis
and implementation steps were carried out using third party
tolls (Xilinx ISE). Implementation results were presented in
Tbl. I.

One-hot encoding results one flip-flop to one place as-
signment. Places P i from Net1 and Net3 were automatically
omitted during synthesis because transitions T i from these
subnets are impossible to be fired.

For simulation and in-circuit verification purpose stimulus
generator was elaborated. The stimulus block was imple-
mented using synthesizeable Verilog constructs. This makes



48 M. DOLIGALSKI, M. ADAMSKI

Name
ns

0 50 100 150 200 250 300 350 400 450 500

CLK

reset

trigger

start

EV1

defect

failure

resumption

x1

x2

x3

x4

x5

x6

Net1

Net2

Net3

y1

y2

y3

y4

y5

y6

alarm

1 M2 M2 M3 4

inactive 6,8 7,8 inactive

inactive 10,12,14 inactive

6,8ns

Name
ns

03

3 M25 1

6,8

Name
ns

Fig. 10. Simulation results.

it useful not only during the simulation, as was the case in the
testbench blocks, but also during the in-circuit verification.
Stimulus generator connected with logic controller bloc was
presented in Fig. 9. The application of the same stimulus
generator during simulation and verification simplify failures
detection and speeds up the comparison of the results of both
processes.

Simulation results (Active-HDL) were presented in Fig. 10,
in particular subnet configuration is presented (as merged
bus).The scenario included both a critical and noncritical
exceptions handling. Simulation results (Fig. 10) are consistent
with prototype verification by means of Tektronix TLA 5204
logic analyzer (Fig. 11).

VII. CONCLUSION

In the paper approach to exceptions handling in hierarchical
configurable Petri nets based specification for logic controllers
was presented. Redefined semantic for new Petri net class
was formally defined. Example show how handle critical and
noncritical exceptions.

Fig. 11. In-circuit verification waveform.

REFERENCES

[1] M. Adamski, A. Karatkevich, and M. Wgrzyn, “Formal logic design of
reprogrammable controllers,” in Design of embedded control systems,
M. Adamski, A. Karatkevich, and M. Wgrzyn, Eds. New York: Springer
Publishing Company, Incorporated, 2005, pp. 15–26.

[2] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and design
of embedded systems. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1994.

[3] D. Andreu, G. Souquet, and T. Gil, “Petri net based rapid prototyping of
digital complex system,” in Proceedings of the 2008 IEEE Computer
Society Annual Symposium on VLSI. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 405–410, DOI: 10.1109/ISVLSI.2008.54.

[4] G. Bazydło, “Graphical specification of programs for reconfigurable logic
controllers using uml,” Ph.D. dissertation, University of Zielona Góra,
2010.

[5] F. Basile, P. Chiacchio, and D. Del Grosso, “A two-stage modelling archi-
tecture for distributed control of real-time industrial systems: Application
of uml and petri net,” Comput. Stand. Interfaces, vol. 31, pp. 528–538,
March 2009, DOI: 10.1016/j.csi.2008.03.021.

[6] M. Doligalski and M. Adamski, “Exceptions and deep history state
handling using dual specification,” Electrical Review, vol. 9, no. 9, pp.
123–125, 2010.

[7] G. Łabiak and M. Adamski, “Concurrent processes synchronisation
in statecharts for fpga implementation,” in Design Test
Symposium (EWDTS), 2008 East-West, oct. 2008, pp. 59–64,
DOI: 10.1109/EWDTS.2008.5580158.

[8] M. Doligalski and M. Wgrzyn, “Partial reconfiguration-oriented design
of logic controllers,” Proceedings of SPIE : Photonics Applications in
Astronomy, Communications, Industry, and High-Energy Physics Exper-
iments 2007, vol. 6937, p. [10], 2007, DOI: 10.1117/12.784663.


