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Petri Net Based Specification in the Design of Logic
Controllers with Exception Handling Mechanism

Michał Doligalski and Marian Adamski

Abstract—Hierarchical Petri nets beside UML state machine
diagrams, sequentional function charts (SFC) and hierarchical
concurrent state machines are common solution for specification
of logic controllers. These specification formats provide both
concurrency and modeling on multi levels of abstraction (hi-
erarchic approach). But only state machine diagrams supports
exceptions handling in direct way. Program model presented in
form of state machine diagram may be later transformed into a
program in the SFC language or transformed in the Petri Net
and implemented in the FPGA structure. Similarity between SFC
language and Petri Nets give us lot of tools for analysis such
control system. Article presents new approach for exceptions
handling in hierarchical Petri nets as formal specification for
logic controllers. Proposed method of specification can be used
independently or as a part of dual specification (correlated state
machine diagram and hierarchical configurable Petri Net).

Keywords—Logic controller, dual specification, hierarchical
Petri net, UML, state machine diagram.

I. INTRODUCTION

THE application of reconfigurable logic controllers in the
form of FPGA systems or PLCs is the most commonly

used solution in the field of controllers development [1].
Commercially manufactured reprogrammable systems are

much cheaper than the dedicated solutions – designed specially
for an individual production line or a particular controlling
process. Logic controllers can exist as autonomous industrial
process control equipment or as a part of embedded system
(SoPC). Example of the manufacturing process was shown in
Fig. 1. The process task is to mix two liquid substances in
the reactor tank. Two additional tanks (A and B) are used
to measure proper quantities of substrates. Mixed product is
poured into containers. There is six discrete sensors (x1, x2, ..,
x6) responsible for level measuring, four momentary switches
on the operator panel (start, resumption, defect, failure), six
normally closed solenoid valves responsible for liquid flow
control (y1, .., y4, y6), agitator relay (y5) and emergency
reactor emptying valve (EV1).

The operator panel buttons are responsible for the initial-
ization of the manufacturing process, emergency stop and
resumption. Two emergency buttons perform critical (failure)
and noncritical (defect) exception notify. In a real industrial
process such exceptions are reported by the operator (emer-
gency button) or safety circuits.
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Fig. 1. The manufacturing process.

Process consists of two main steps: first – measuring
substances and second – mixing it in the reactor. Presented
process is simplified in comparison to real industrial processes,
also possible exceptions were simplified to better clarify the
exceptions handling mechanism. In the first step, exception
events are noncritical and after it the process should be
continued. In the second step, when two substrates are mixed
in reactor, exceptions events are critical. After this kind of
exception continuation of the work is not possible, the system
should be stopped and started the emergency procedure. These
two kinds of exceptions correspond to following scenario: first
when the task was inspected by the operator (defect exception)
and second when final product was contaminated (emergency
exception).

The presented textual specification describes both behavior
of the control system and structure of controlled industrial ob-
ject. However, even the best textual specification is an informal
specification that can be interpreted in different ways. While
maintaining the diligence and compliance with the standard,
formal methods provide unambiguous interpretation of the
specification. The paper is focused on two formal behavioral
method: Petri nets and UML state machine diagram.
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II. INTERPRETED CONTROL PETRI NETS

Interpreted control Petri nets are widely used form of logic
controller specification [2], [3]. Besides a clear description
Petri nets provide wide range of formal method and algorithms
for formal verification.

Interpreted control Petri Net can describe a binary control
algorithm but only on one hierarchy level. This net can be
extended in a simple way with the possibility of medeling
at different abstraction levels through the introduction of
macroplaces (Pm):

Hierarchical interpreted Petri Net is defined as:

PNCTRL = 〈P, T,A,M0, µ, C,X, Y, δ, λ, θ〉, (1)

where :
P is a finite non-empty set of places, P ⊆ Po;
Po is a finite non-empty set of net operational places,

Po ⊆ Ps ∪ Pm;
Ps is a finite non-empty set of simple places,

Ps = {p1, . . . , pm};
Pm is a finite set of macroplaces, Pm = {m1, . . . ,ml};
T is a finite non-empty set of transitions, T ⊆ To;
To is a finite non-empty set of operational transitions,

To = {t1, . . . , tn};
A is a finite non-empty set of arcs, A ⊆ Ao;
Ao is a finite non-empty set of operational arcs,

A ⊆ AoPT ∪AoTP ;
AoPT is a finite non-empty set of operational arcs,

Po −→ To,
AoPT = (Po × To);

AoTP is a finite non-empty set of operational arcs,
To −→ Po, AoTP = (To × Po);

M0 is an initial net marking, M0 : P → Z+;
µ is a number of tokens in each place,

µ : P → K, K ∈ N.
X is a finite non-empty set of inputs,

X = {x1, . . . , xp};
Y is a finite non-empty set of outputs,

Y = {y1, . . . , yk};
C is a finite non-empty set of logic conditions in the

Boolean algebra, C = {c1, . . . , ci};
ci is a function in the Boolean algebra:

B = (X,∩,∪,∼, 0, 1); (2)

δ is a function of transitions conditions defined as:

δ : T → C; (3)

λ is a function of outputs in such a way that:

λ : P → 2Y ; (4)

θ is a function of hierarchy in such a way that:

θ : Pm → PNCTRL; (5)

and

a, b ∈ Pm,∀a 6= b =⇒ θ(a) 6= θ(b), (6)
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Fig. 2. Interpreted Petri net.
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Fig. 3. Interpreted Petri net with exceptions handling.

The above definition was oriented towards the possibility of
its configuration through distinguishing operational (simple)
places and transitions – executing the control algorithm.

The behavioral description of logic controller was shown
in Fig. 2. It represents only main control process and omits
both kinds of exceptions. For interpreted Petri nests exceptions
handling and resumption mechanism should be described indi-
rectly by means of places and transitions (Fig. 3). Transitions
(t9, ..., t16) are responsible for token expropriation after
an exception, one transition for each place in net. These
transitions have a higher priority than transitions of the control
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Fig. 4. UML state machine diagram.

process (t2, .., t8). In order to achieve better transparency,
it has been omitted from the diagram but each transition
condition for (t2, .., t8) should be extended by the !defect con-
dition. Otherwise the non-deterministic transition firing will
occur. Expropriated tokens are moved to synchronizing places
(p10, p11 and p13, p14), one place for each parallel path.
Tokens are merged by means of transitions (t17, t19) then will
exception handling process. Places p12, p16 generate alarm
signal and place p15 perform emergency reactor emptying by
means of ev1 valve. Indirect exceptions handling implementa-
tion increase number of additional transitions and places. The
presented net does not have a mechanism of resumption – to
execute the mechanism it is necessary to include additional
places and transitions which would allow to keep a token
for the time of expropriation. This method is analogical to
the one presented in dissertation [4]. Considerable increase in
the number of places and transitions entails not only worse
transparency of the diagram but also the increase in the use
of the FPGA device hardware resources.

III. BEHAVIORAL SPECIFICATION BY MEANS OF UML
STATE MACHINE DIAGRAM

The Unified Modeling language (UML) supports exceptions
handling mechanism, that is strictly connected with object-
oriented programming. In particular, the state machine dia-
grams allow state oriented behavioral specification with native
exceptions handling mechanism. These diagrams are also
suitable for logic controllers specification [5]. For given indus-
trial process the UML state machine diagram was elaborated
(Fig. 4). The state machine diagram consists of two levels of
abstraction. Two composite states that distinguish submachines
for which exception handling is performed. Composite states:
CS2 and CS3 perform substrates measuring and mixing final
product, respectively. According to textual specification two
exceptions were also included. Placed shallow history states
indicate that exceptions defect, handled from CS2 state is
noncritical and after the resumption, the proces will continue.

In proposed dual specification [6] of logic controllers, the
UML state machine diagram is the user interface and the hier-
archical configurable Petri net is used for formal verification
and synthesis.

IV. HIERARCHICAL CONFIGURABLE PETRI NETS

Hierarchical configurable Petri Net is defined as follows:

HCfgPN = 〈PNCTRL, Pc, Tc, Ac〉, (7)

where :
Pc is a finite non-empty set of net configurable places,

Pc = {pinit, pa, pi}, P ⊆ Po ∪ Pc;
Tc is a finite non-empty set of net configurable transi-

tions, Pc = {tinit, ta, ti, tw, tfin}, T ⊆ To ∪ Tc;
Ac is a finite non-empty set of net configurable arcs,

Ac = {〈pinit, tinit〉, 〈tinit, pa〉, 〈pa, ti〉, 〈ti, pi〉,
〈pi, ta〉, 〈ta, pa〉, 〈pa, tw〉, 〈tw, pinit〉, 〈pa, tfin〉,
〈tfin, pinit, 〉}, A ⊆ Ao ∪Ac;

pinit is an initial net place; and

M0(p
init) = 1,∀p ∈ P \ {pinit},M0(p) = 0; (8)

AoPT is a finite non-empty set of arcs Po −→ {To, Tfin},
AoPT = (Po × {To, Tfin});

AoTP is a finite non-empty set of arcs {To, Tinit} −→ Po,
AoTP = ({To, Tinit} × Po);

pa is an active configuration place;
pi is an idle configuration place;
tinit is the net initial transition with net activation value

of δ(tinit) = cinit,cinit ∈ C ;
tfin is the net final transition with net activation value of

δ(tfin) = cfin,cfin ∈ C ;
ta is an active configurable transition with reactivation

value of δ(ta) = ca, ca ∈ C;
ti is an idle configurable transition with the net deacti-

vation value of δ(ti) = ci, ci ∈ C;
tw is a expropriation final transition with the net expro-

priation value of tδ(tw) = cw, cw ∈ C.
The name characterizing presented new class of Petri nets

is quite complex and, this is why, this net class was named in
short as hierarchical configurable Petri Net and was given the
following acronym: HCfgPN.

Configurable transitions tinit, tinit, ta, tw are fired when the
following conditions for a specific transition are fulfilled at the
same time:
• transition is enabled,
• condition of the transition execution assumes the follow-

ing value 1.
The tfin configurable transition is fired when the following

conditions are fulfilled at the same time:
• transition is enabled,
• condition of the transition execution assumes the value

of 1,
• execution condition of the tw transition assumes the logic

value of 0.
• execution condition of the ti transition assumes the logic

value of 0.
In case of the net which executes a resumption (reactivation)

mechanism, a expropriation condition should be assigned
to an idle transition. Firing of the ti transition will cause
running into an idle state: operational transition execution
and output signal generation will be withheld. Resumption
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of a net takes place after firing of the ta active configurable
transition to which the resumption condition of an idle net was
assigned. An idle ti configurable transition is fired when the
following conditions are simultaneously fulfilled in respect of
the transition:
• the ti transition is enablied,
• execution condition of the ti transition assumes the logic

value of 1,
• execution condition of the tw transition assumes the logic

value of 0.
The tn ∈ To operational transition is fired only when the

following conditions are fulfilled simultaneously in respect of
the transition:
• the tn transition is enabled,
• execution condition of the tn transition assumes the logic

value of 1,
• execution condition of the ti transition assumes the logic

value of 0,
• execution condition of the tw transition assumes the logic

value of 0,
• the active configuration place pa is marked.
In case of the interpreted control Petri Net an output

function assumes output subsets to places. For example, in
respect of a place p1 ∈ P there are two specified output signals
x1, x2 ∈ X,λ(p1) = x1, x2. If the p1 place is marked with
µ(p1) ≥ 1 then the signal value at the outputs x1, x2 will
equal to 1.

Condition of the y ∈ Y input signals in case of the
interpreted control Petri Net is specified by the function
γ : Y → {0, 1}:

∀y ∈ Y, γ(y) = 1,∃p ∈ P : λ(p) 3 x ∧ µ(p) ≥ 1. (9)

In case of the HCfgPN the generation of output signals is
additionally conditioned by the configuration in which it exists.

Condition of the y ∈ Y output signal generation in the
HCfgPN is specified by the function φ : Y → {0, 1}:

∀y ∈ Y, φ(y) = 1,∃p ∈ Pc : λ(p) 3 y∧µ(p) ≥ 1∧µ(pa) ≥ 1.
(10)

If the HCfgPN is not to enable the resumption of the activity
after previous expropriation then the expropriation condition
should be assigned to a tw transition and the condition in the
form of a logic value should be assigned to a ,,0” preempting
condition (false); Execution of this transition is given a priority
before other configurable and operational transitions. Target
net marking after firing of the tw preempting transition is
specific: all operational places are deprived of tokens and
the return to initial marking takes place. Firing of a tw

expropriation transition causes the return to the net initial
marking and it is defined as:

µ′(pinit) = 1,∀p ∈ Pc : µ
′(p) = 0; (11)

Simultaneous assignment of conditions to the tw and ti
transitions is possible. Simultaneous execution of these tran-
sitions is forbidden but at the same time the tw expropriation
transition is given a higher execution priority. This is why,
it is permissible to specify the same execution conditions in
respect of both transitions: δ(tw) = δ(ti).
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Fig. 5. Top level net.

The task of configurable places is to supervise the execution
of the net operational block of the HCfgPN through block-
ing or permitting the transition execution and output signals
generation. If the pa configurable place is marked then the
net is in active mode: transitions execution and output signals
generation is permissible.

Execution of the ti transition is the reason for the fact
that an active configurable place loses a token in favor of an
idle pi configurable place. When the pi place is marked then
the net is in an idle mode (frozen mode). Despite the fact
that operational places are marked transition execution in the
operational subnet and output signals generation are withheld.

Resumption of the net is executed through the ta transition:
token is transferred to the pa place, execution of operational
transitions and generation of a signal is possible again as the
net is active.

The ti,ta, tf in, tw transitions, as opposed to operational
transitions and the tinit transitions, have a default logic
condition which is ,,0” (false). Otherwise, the net would
operate incorrectly and just after its activation it would be
preempted.

V. HCFGPN BASED LOGIC CONTROLLER SPECIFICATION

In the dual specification hierarchy is maintained at every
stage of the design process. The top level state machine and
two composite states CS2 and CS2 were transformed into
hierarchical configurable Petri nets: Net1, Net2 and Net3,
respectively.

The Net1 (Fig. 5) contains two macroplaces:
• Mp2 corresponding to subnet Net2 (Fig. 6) with noncriti-

cal exception defect caught by T5 transition and handled
by place p3,
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• Mp3 corresponding to subnet Net3 (Fig. 7) with critical
exception failure caught by T7 transition and handled by
places p4, p5.

The logic condition ,,0” (false) have been assigned to Net1
transitions T a, T i, Tw and T f in. At the highest level of
abstraction there is no exception handling, listed transitions
have been intentionally left in order to ensure coherence of
HCfgPN diagrams.

Transitions T1 and T2 are treat as global variable [7] and
were used as firing conditions for transitions T init for subnet
2 and 3. Transitions T5 and T7 also are treat as global variable
and were used as firing conditions for transitions T i for subnet
2 and Tw for subnet 3.

Firing of Net2 T i transition perform subnet freezing, as
it was described in previous section. Transitions T10 and
T11 become freezed and output signal generation from places
P6, .., P9 was disabled. Reactivation of Mp2 macroplace
executed by the T6 transition firing, perform Net2 reactivation:
transition T6 is a firing condition of Net2 T a transition.

Transition T7 is a firing condition of Net3 Tw transition and
is responsible for the Net3 expropriation. After Tw firing all
tokens from places P10, .., P17 are removed (killed) and the
subnet goes to the initial marking.
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TABLE I
IMPLEMENTATION RESULTS OF LOGIC CONTROLLER

Net1 Net2 Net3 RLC
Slices 12 8 13 33
LUTs 18 14 22 54
FFs 9 7 10 26
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Fig. 9. In-circuit verification block diagram.

VI. SYNTHESIS, IMPLEMENTATION AND IN-CIRCUIT
VERIFICATION

Subnets were described by means of Verilog HDL [8]:
separated module (block) for each subnet. The logic controller
top level diagram was presented in Fig. 8.

Global variables were specified as output signals. Synthesis
and implementation steps were carried out using third party
tolls (Xilinx ISE). Implementation results were presented in
Tbl. I.

One-hot encoding results one flip-flop to one place as-
signment. Places P i from Net1 and Net3 were automatically
omitted during synthesis because transitions T i from these
subnets are impossible to be fired.

For simulation and in-circuit verification purpose stimulus
generator was elaborated. The stimulus block was imple-
mented using synthesizeable Verilog constructs. This makes
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it useful not only during the simulation, as was the case in the
testbench blocks, but also during the in-circuit verification.
Stimulus generator connected with logic controller bloc was
presented in Fig. 9. The application of the same stimulus
generator during simulation and verification simplify failures
detection and speeds up the comparison of the results of both
processes.

Simulation results (Active-HDL) were presented in Fig. 10,
in particular subnet configuration is presented (as merged
bus).The scenario included both a critical and noncritical
exceptions handling. Simulation results (Fig. 10) are consistent
with prototype verification by means of Tektronix TLA 5204
logic analyzer (Fig. 11).

VII. CONCLUSION

In the paper approach to exceptions handling in hierarchical
configurable Petri nets based specification for logic controllers
was presented. Redefined semantic for new Petri net class
was formally defined. Example show how handle critical and
noncritical exceptions.

Fig. 11. In-circuit verification waveform.
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