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APPLICATION OF WORKABILITY TEST TO SPD PROCESSING

ZASTOSOWANIE TESTU OBRABIALNOŚCI DO INTENSYWNEGO ODKSZTAŁCENIA PLASTYCZNEGO

The aluminium alloy with chemical conception AlMgSi prepared by PM (powder metallurgy) technology was used.
The experiments such as a ring and compression test, ECAR (equal channel angular rolling) for determination of friction
coefficient, stress-strain curves and material workability based on analytical methods (Freudenthal, Cockcroft-Latham and
normalized Cockcroft-Latham criteria) were performed. Numerical simulations of sample processed by ECAR was carried out
by a software Deform 3D with focus on the description of stress, strain fields and workability criteria (Cockcroft-Latham and
normalized Cockcroft-Latham). The prediction of fracture formations in a real ECAR sample during processing conditions was
also done.
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Stop aluminium o składzie chemicznym AlMgSi przygotowano metodą proszkową. Wykonano badania takie jak próba
ściskania swobodnego pierścieni i walcowatych, ECAR (wyciskanie w kanale kątowym z walcowaniem) w celu wyznacze-
nia współczynnika tarcia, krzywych naprężenie-odkształcenie oraz podatności materiału na odkształcenie z użyciem metod
analitycznych (kryterium Freudenthal, Cockcroft-Latham i znormalizowane Cockcroft-Latham). Symulacje numeryczne dla
próbki poddawanej procesowi ECAR przeprowadzono przy pomocy oprogramowania Deform 3D z naciskiem na opis pól sił
i naprężeń oraz kryteriów obrabialności (Cockcroft-Latham i znormalizowane Cockcroft-Latham). Przeprowadzono również
symulację możliwości tworzenia się pęknięć w rzeczywistej próbce poddanej procesowi ECAR.

1. Introduction

The workability can be defined as an ability of a metal to
achieve a certain degree of deformation during metalworking
processes without creation of defects. The material workability
may be described through some criteria as are brittle and duc-
tile fracture criteria. As material fracture in bulk deformation
processing usually is as ductile fracture and rarely a brittle
fracture, brittle mechanism will not be discussed in present
work. The fracture mechanism mainly depends on plastic de-
formation conditions as a state of stress, strain, strain rate and
temperature. The most widely used approaches for evaluation
of material workability (ductile fracture) are based on:
– evaluation of dependence only on strains using fracture

forming limit diagram (FFLD)
– evaluation of dependence by mathematical description of

relationship between stress and strain.
The fracture observations based on FFLD need only in-

formation about relationship between tensile and compressive
strains. Mathematical equations based on relationship between
stress and strain describing ductile fractures are called work-
ability criteria.

Workability criteria are commonly used in a simplified
form considering room temperature, state of stress and strain

only. Those criteria are based on integral functions of stress –
strain states. The authors Atkins and Mai [1] showed that all
stress-strain criteria of ductile fracture are based on Freuden-
thal’s critical plastic work per unit of volume [2]. The Freuden-
thal’s equation has a form:

ε̄ f∫

0

σ̄ · dε̄ = C1 (1)

where:
σ̄ ≡ σe f [MPa] – effective stress according to the von

Mises
ε̄ ≡ εe f [-] – effective strain
ε̄ f ≡ εe f , f [-] – effective strain in fracture
εi [-] – principal strains (i=1,2,3)
C1 [MPa] – material constant (the threshold value of the

criterion at the instant of fracture initiation).
According to the von Mises, the effective stress is given

as follows:

σ̄ =
1√
2
·
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 (2)
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According to the von Mises, the effective plastic strain incre-
ment in a simplified form is given as follows:

dε̄ =

√
2
3
·
√

dε2
1 + dε2

2 + dε2
3 (3)

According to the von Mises, the total effective plastic strain
is given as follows:

ε̄ =

√
2
3
·
√
ε2

1 + ε2
2 + ε2

3 (4)

The relationship between effective stresses and strains in
a fracture point described by Freudenthal’s fracture model
should be considered with power hardening Ludwig – Hol-
lomon’s dependence σ̄ f = σ̄(ε̄ f ) which will be defined in a
fracture point as follows:

σ̄ f = K · ε̄n
f (5)

and Eq.(1) can be in a form:

ε̄ f∫

0

σ̄ · dε̄ =

ε̄ f∫

0

σ̄(ε̄) · dε̄ =

ε̄ f∫

0

K · ε̄n · dε̄ =K ·
ε̄n+1

f

n + 1
= C1 (6)

where:
σe f , f ≡σ̄ f [MPa] – effective stress in fracture, according

to the von Mises
K [MPa] – material strength coefficient
n [-] – strain hardening coefficient
Considering constant volume condition, relationship be-

tween strains can be described as follows:

dε1 + dε2 + dε3 = 0 (7)

From Eq.(7) is resulting:
−dε3 = dε1 + dε2 and dε2

3 = (−dε3)2 = (dε1 + dε2)2 =

dε2
1 + 2 · dε1 · dε2 + dε2

2

dε2
1 + dε2

2 + dε2
3 = dε2

1 + dε2
2 + (dε2

1 + 2 · dε1 · dε2 + dε2
2) =

2 · dε2
1 ·

(
1 + α + α2

)

(8)
where:

α =
dε2

dε1
=
ε2

ε1
(9)

α [-] – constant strain ratio of material when the strain depen-
dence is assumed to be linear.

If an Eq. (8) is appointed to an Eq. (3) consequently mod-
ified a von Mises equation of effective plastic strain increment
depends only on two strains and it is in a following form:

dε̄ =

√
2
3
·
√

dε2
1 + dε2

2 + dε2
3 = −2 · dε1√

3
·
√

1 + α + α2 (10)

The some other stress-strain criteria are described in refer-
ences [3,4,5]. According to the works [6], that should be con-
sidered as most precise stress-strain criteria derived by authors
Cockcroft-Latham and Oyane et al. for all sample shapes [7,8].

The Cockcroft-Latham (CL) criterion is described by a formu-
la:

ε̄ f∫

0

σ2,max · dε̄ =C2 (11)

where:
σ2,max [MPa] – largest principal tensile stress
The CL criterion doesn’t include influence of hydrostatic

stress (σm). The authors [9] implied that the largest princi-
pal stress (σ2) has to be considered because the distinction
between the levels of the largest principal stress and the hy-
drostatic stress is not very important.

The CL criterion Eq. (11) can be solved as follows:
– expressing of σ1 or σ2 and dε at strain ratio α =(dε2/dε1)
– integration of stress – strain curve in interval ε̄ ∈ <0;ε̄ f>

Oh et al. [10] have modified a CL criterion through nor-
malizing of maximum principle tensile stress for uni-axial
loading by the effective stress. This form was defined as a
normalized CL (nCL) criterion:

nCL =

ε̄ f∫

0

σ2,max

σ̄
· dε̄ (12)

where:
σ2,max [MPa] – largest tensile principal stress for uni-axial

loading
If power hardening Ludwig – Hollomon formula Eq. (5)

is considered, the Eq. (12) can be defined in a following form:

nCL =

ε̄ f∫
0

σ2,max

σ̄
· dε̄ =

σ2,max

σ̄

ε̄ f∫
0

dε̄ =
σ2,max

σ̄ f

ε̄ f∫
0

dε̄ =

σ2,max

K · ε̄n
f
· ε̄ =

σ2,max

K · ε̄n−1
f

(13)

The authors [11] defined a solution of Eq. (11) by formula as
follows:

C2 =
(1 + 2 · α)√

3 · (1 + α + α2)
·
K · ε̄(n+1)

f

(n + 1)
· ε1

|ε1| (14)

For better graphical visualization of space with fracture forma-
tion, the authors [12] derived an equation which transformed
the FFLD fracture locus to the space of the equivalent plastic
strain and stress triaxiality in a form:

ε̄,f =
C’

2√
3
· 3 · η +

√
12 − 27 · η2

2 + 2 · η ·
√

12 − 27 · η2
(15)

resp.

C’
2 = ε̄ f ·

√
3 · 2 + 2 · η ·

√
12 − 27 · η2

3 · η +
√

12 − 27 · η2
(16)

where:
C’

2 [-] – calibration constant which is needed to determine
experimentally

η = σm

/
σ̄ f [-] – parameter of stress triaxiality

σm = (σ1 + σ2)/3[MPa] − hydrostatic pressure for cylindrical
co − ordinates

(17)
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All methods mentioned above can be classified as analytical
mathematical methods for calculation of material fracture con-
ditions.

The main aim of the paper is to predict a materi-
al workability. According to the physical simulation carried
out through a compression test as well as numerical simu-
lation by means of ECAR process, damage conditions were
achieved. Consequently fracture criteria (FFLD, Freudenthal
and Cockroft-Latham criteria) were applied to analyse the re-
sults from both simulations. Moreover, proposed equations al-
low to predict the material workability for ECAR process of
studied aluminium PM (Powder Metallurgy) material.

2. Experimental material and methods

For the experiment, it was used an aluminium alloy with
chemical composition given in the TABLE 1.

TABLE 1
Local chemical analysis of ALUMIX 321 and EN AW 6062 (wt.%)

Material Mg Mn Si Cu Cr Zn Fe Al

ALUMIX 321 0,89 0 0,53 0,26 0 0,03 0,06 98,1

AW 6062-bulk
0,8-
1,2 0,15

0,4-
0,8

0,15-
0,4

0,04-
0,14 0,25 0,7 96,5

The material marked as an ALUMIX 321 was prepared
by PM (powder metallurgy) technology under the following
conditions: compacting pressure 400 MPa, dewaxing at 400◦C
for 60 min, sintering in a vacuum at 610◦C for 30 min and
cooling rate 6◦C/sec. The chemical composition of ALUMIX
321 is approximately identical to aluminium alloy EN AW
6062.

Stress-strain curves were drawn from low-speed com-
pression tests carried out on cylindrical samples with
height-to-diameter ratio of H0/D0 =10mm/10mm =1 at ambi-
ent temperature using hydraulic machine with maximal load-
ing 1MN. The frictional conditions on the anvil – sample in-
terface were determined by a ring compression test performed
at ambient temperature. Because of different surface’s state of
anvils, various friction conditions (f = 0, 05, 0, 06, 0, 1) were
obtained. Consequently, the test was stopped in the moment
when a first crack on a sample’s surface was seen. The strains
were measured according to the method shown in Fig. 1.

Numerical simulations of ECAR process were carried out
through a software product Deform 3D focused on a study of
stress, strain, strain rate and temperature progress as well as
on calculation of damage criteria in a sample during process-
ing. Also physical simulations on ECAR equipment at am-
bient temperature were made. The strain calculations were
performed as follows:

Axial strain:

ε1 = ln
H1

H0
or ε1 = ln

h1

h0
(18)

Fig. 1. The measurements of geometrical parameters for calculations
of strain

Circumferential strain:

ε2 = ln
D1

D0
or ε2 = ln

d1

d0
(19)

3. Results and discussion

a) Determination of a fracture forming limit diagram
(FFLD) – a compression test

The fracture criterion is based on the evaluation of strain
state when fracture occurs and effective strain ε̄ reaches a
critical value ε̄ f i.e. ε̄ = ε̄ f .

The deformation curves obtained from a compression
tests under different friction conditions are given at Fig. 2.

Fig. 2. Fracture forming limit diagram

The end values given on strain curves represent a fracture
on a sample’s free surface. If end values on strain curves were
approximated by a linear function then following regression
equations were derived as fracture criteria (IYX =0,98):

ε2, f = 0, 14373 − 0, 61446 · ε1, f (20)

ε1, f = 0, 234 − 1, 6275 · ε2, f (21)

The values which are involved in intervals ε1 ∈(0; ε1, f ) and
ε2 ∈(0; ε2, f ) can be defined as a set of points without fracture
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occurrence. If strain values are involved in intervals ε1 ∈<ε1, f
;∞) and ε2 ∈<ε2, f ;∞) i.e. lying on or above a line which
illustrates a fracture criterion, these values can be defined as
a set of points with fracture occurrence.

b) Determination of a CL criterion by expressing σ1
or σ2 and dε – a compression test

The effective strain on a sample in a moment when a
fracture occurs can be calculated for cylindrical co-ordinates
as follows:

– from von Mises equation:

ε̄ f =

√
2
3
·
√
ε2

1, f + ε2
2, f (22)

– from modified von Mises equation by a strain ratio α:

ε̄ f = −2 · ε1, f√
3
·
√

1 + α + α2 (23)

where:
α =

ε2, f

ε1, f
(24)

ε1, f and ε2, f [-] – logarithmic principal strains at cracks initi-
ation on a free surface

The strains ε1, f and ε2, f should be determined as follows:
– through measurement of network changes (before upset-

ting and in a moment of cracks initiation)
– through a calculation from regression Eqs. (20, 21)

If the Eqs. (20, 21) are substituted by the Eq. (22) con-
sequently a formula describing a fracture criterion is in a fol-
lowing form:

ε̄ f =

√
2
3
·
√
ε2

1, f + ε2
2, f =

√
2
3
·
√
ε2

1, f + (0, 14373 − 0, 61446 · ε1, f )2

(25)

Also, when the Eqs. (20, 21) are substituted by the Eq. (24)
consequently a strain ratio formula will be in a form:

α =
ε2, f

ε1, f
=

0, 14373 − 0, 61446 · ε1, f

0, 234 − 1, 6275 · ε2, f
(26)

A summary of the values calculated by different equations for
friction coefficient f = 0,1 is given in TABLE 2.

According to the TABLE 2, high conformity between cal-
culated data using different equations and data obtained from
processing of a network (which covers a sample surface) is
seen. In general, a CL criterion defines a relationship between
stress and strain. Therefore it is necessary to search this re-
lation using a mathematical theory of plastic deformations.
Stresses emerging on a free sample surface during a com-
pression can be defined by a Levi-Mises equation considering
increments of plastic strain to stress in an isotropic material.
These equations expressed in cylindrical co-ordinates and al-
so with application Ludwig – Hollomon law have following
forms:

σ1 = − σ̄√
3
· (α + 2)√

α2 + α + 1
= −K · ε̄n

√
3
· (α + 2)√

α2 + α + 1
(27)

σ2 = − σ̄√
3
· (2α + 1)√

α2 + α + 1
= −K · ε̄n

√
3
· (2α + 1)√

α2 + α + 1
(28)

If β =
σ2

σ1
so β =

σ2

σ1
=

2α + 1
α + 2

(29)

TABLE 2
An overview of values calculated by different equations for friction coefficient f = 0,1

No. Description ε1, f ε2, f α ε̄ f ∆[%]

1. Strains from network measurement -0,293 0,317 -

2.
Strains Eq. (20):
ε2, f = 0, 14373 − 0, 61446 · ε1, f

(-0,293) 0,324 2,2

3.
Strains Eq. (21):
ε1, f = 0, 234 − 1, 6275 · ε2, f

-0,282 (0,317) -3,8

4. Coeff. from measured strains Eq. (24): α = ε2, f

/
ε1, f (-0,293) (0,317) -1,082 -

5.
Coeff. from Eq. (26):
α = (0, 14373 − 0, 61446 · ε1, f )

/
(0, 234 − 1, 6275 · ε2, f )

(-0,282) (0,324) -1,148 5,7

6.
Effective strain- von Mises Eq. (22):

ε̄ f =
√

2/3 ·
√
ε2

1, f + ε2
2, f

(-0,293) (0,317) 0,352 -

7.
Effective strain Eq. (23) +α →Eq. (24):
ε̄ f = −((2 · ε1, f )

/√
3) ·
√

1 + α + α2 (-0,293) (-1,082) 0,353 0,3

8.
Effective strain Eq. (23) +α →Eq. (26):
ε̄ f = −((2 · ε1, f )

/√
3) ·
√

1 + α + α2 (-0,293) (-1,148) 0,366 3,8

9.
Effective strain Eq. (25):

ε̄ f =
√

2/3 ·
√
ε2

1, f + (0, 14373 − 0, 61446 · ε1, f )2
(-0,293) 0,357 1,4
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When the stress-strain curve was drawn through measur-
ing of geometrical parameter’s changes on cylindrical samples
during compression test and consequently measured values
were approximated using a Ludwig – Hollomon equation as
a regression, then derived regression equation is given in TA-
BLE 3.

TABLE 3
Regression of Ludwig – Hollomon equations for a friction

condition f=0,1

Friction
coeff.
[-]

Regression
equation:

σ̄ = K · ε̄n [MPa]

Point co-ordinates
for a first crack

(ε̄ f ;σ̄ f ) [- ; MPa]
Iyx Eq.(No.)

f=0,1 σ̄ = 299 · ε̄0,19 (0,352; 245,3) 0,98 (30)

Validity of regression equation depends on a last point in
co-ordinates (ε̄ f ;σ̄ f ) of the curve in which the first crack on
a sample surface was seen.

Considering cylindrical co-ordinate (σ3 =0), von Mises
equation for effective fracture stress will be in a following
form:

σ̄ f = 1√
2
·
√(
σ1, f − σ2, f

)2
+

(
σ2, f − σ3, f

)2
+

(
σ1, f − σ3, f

)2
=

√
σ2

1, f + σ2
2, f − σ1, f · σ2, f

(30)
When σ̄ f is substituted by Ludwig – Hollomon Eq. (30) and
appointed to Eq. (31), then a relationship between principal
stresses and effective fracture strain will be in a form:

ε̄ f =

[
1
K
·
√
σ2

1, f + σ2
2, f − σ1, f · σ2, f

]1/n

(31)

TABLE 4
The calculated values of essential parameters

No. Description f=0,1 Eq.(No.)

1. ε̄ f [-] 0,352 (22)

2. α [-] -1,0819 (24)

3. σ1, f [MPa] -124,6 (27)

4. σ2, f [MPa] 157,9 (28)

5. σm [MPa] 11,1 (17)

6. σ̄ f [MPa] 245,2 (31)

7. β [-] -1,2677 (29)

8. Freudenthal [MPa] 72,5 (6)

8. CL [MPa] 55,6 (11)

9. CL [MPa] 46,7 (14)

10. nCL [-] 0,23 (13)

The Eq. (32) describing a dependence between principal
stresses and effective strain in a fracture point is one of way
how to define a damage state. As mentioned above, the authors
[12] derived an Eqs. (15, 16) and consequently they trans-
formed the FFLD fracture locus to the space of the equivalent
plastic fracture strain and stress to a triaxial conditions. For

solution of Eqs. (15, 16), it is necessary to derive a calibration
constant C’

2 which was experimentally found for ALUMIX 321
and its numerical value is 0, 43. The steps describing calcula-
tions of numerical values are given in TABLE 4.

The graphical interpretation of Eq. (13) considering mea-
sured values for different friction conditions (f=0,1, 0,06, 0,05)
are given in Fig. 3.

Fig. 3. Comparison of prediction CL model with experimental values

All of the values lying on and above a curve describe the
states of material fracture. The measured points from com-
pression test realized under different friction conditions are
extremely well with fracture CL model.

c) Determination of CL damage criterion ECAR process
– numerical simulation

Damage criteria (CL and nCL) obtained from numeri-
cal simulations carried out in a software Deform 3D for first
ECAR pass are shown in Fig. 4 and Fig. 5.

Fig. 4. CL criterion for 1st ECAR pass

Fig. 5. nCL criterion for 1st ECAR pass
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More informations related to the ECAR simulation are
given in [13]. As CL and nCL values achieved from numeri-
cal simulations have not a predicative ability focused on their
fracture value, a next step was calculated these damage crite-
ria by analytic methods which were described in a previous
part. The calculated damage criteria for ECAR processing with
friction coefficient f = 0, 1 are given in TABLE 5.

TABLE 5
Damage criteria calculated by analytical methods for first ECAR

pass

Eq. (11) Eq. (6) Eq. (13)

CL [MPa] Freudenthal nCL [-]

154 177 0,53

According to the damage criteria calculated using ana-
lytical methods, it is possible to define the fracture’s start in
graphical dependences achieved from numerical simulation.
From graphical dependences which are given in Fig. 4 and
Fig. 5, it is obvious that cracks start to emerge on upper cor-
ners of sample’s cross section in the moment when the damage
criteria achieve the values calculated by analytical methods
given in TABLE 5.

The central sample part of sample cross section is less
sensitive to a fracture creation. All the numerical methods
which were used show that a material ALUMIX 321 prepared
by PM technology has limited workability and after process-
ing by one ECAR pass, fractures on upper corners of sam-
ple’s cross section occur. Similar results in terms of limited
workability were observed on identical material which was
processed by ECAP and ECAP-BP technology as is given in
literature [14, 15]. If results from numerical simulations were
inserted to a prediction of the CL model (Fig. 3) then it is
seen an evident deviation of ECAR point from a CL model
what defines an occurrence of fractures on samples.

4. Conclusions

According to the literature review, physical and numeri-
cal simulations carried out on aluminium alloy ALUMIX 321
prepared by PM, following conclusions should be defined:

– to determine the friction coefficients, stress – strain
curves in different friction conditions and fracture criteria de-
rived through analytical mathematical methods, physical sim-
ulations were being performed

– workability criteria resulting from compression test
were defined as follows:

– FFL diagram based on evaluation of strain state
when fracture occurs

– criteria based on analytical mathematical methods
(Freudenthal, CL, nCL)

– transformation of the FFLD fracture locus to the
space of the equivalent plastic fracture strain and
stress triaxiality

– calculation of workability criteria by numerical simula-
tion through a Deform 3D provides only their numerical values
which cannot be used for prediction of fracture formations

– for evaluation of numerical values obtained from nu-
merical simulations, it is necessary to perform physical simu-
lations on real samples with identical material characteristics

– according to the physical simulations, a method for
prediction of fracture formations in a real material processed
in ECAR conditions was developed which allows to predict
fracture formations during numerical simulation

– according to the physical and numerical simulations,
PM material ALUMIX 321 processed by one ECAR pass will
be failed by ductile fracture.
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