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ABSTRACT

Purpose: In the present paper an equipment applied in thermal conductivity measurements of metallic 
glasses was described.

Design/methodology/approach: The paper describes the design solution of a measuring station, 
components, and idea of measurements of thermal conductivity. In order to correct measurement 
the calibration of presented equipment was realized. It was realized by determination of power losses 
and resistance of contacts. Methods of thermal conductivity measurements were also described in 
theoretical description.

Findings: The suggested method of thermal conductivity measurement allows to avoid a procedure 
of solving complicated equations. The developed measuring station enables measurements of thermal 
conductivity of bulk metallic glasses in form of rod with diameter 3 mm.

Research limitations/implications: The relationship between the thermal conductivity and the 
diameter of metallic glass samples is an interesting issue. In the future the authors are going to test 
rods with another diameters (not only 3 mm).

Practical implications: The thermal conductivity of metallic glasses is necessary to calculate 
cooling rates during the fabrication of bulk metallic glasses. That are very important properties. These 
properties are indispensable for example in a computer simulation of a solidification process.

Originality/value: Up to now there is very poor knowledge about thermal conductivity measurements 
of metallic glasses. There is not many references about this matter. There is no information about the 
thermal conductivity dependence on samples dimensions of metallic glasses. 
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1. Introduction 
 
Thermal conductivity of metals is one of the most significant 

parameters characterizing its metallurgical properties. This 
parameter is needed to calculate cooling rates during the 
fabrication of this engineering materials. 

Bulk metallic glasses are newcomers materials which exhibit 
excellent physical and functional properties. In a fabrication 
process of this materials, very important problem is knowledge 
about glass forming ability of alloy [1-6]. Glass forming ability 
depends on various factors. Characteristic temperature such as 
liquid temperature (Tl), glass transition temperature (Tg) and 
crystallization temperature (Tx) are included in mathematical 
description of this factors. Among many of bulk metallic glasses 
systems, Fe-based are one of the most popular and exhibit good 
glass formability. The (Fe, Co, Ni)-B-Si-Nb system alloys 
exhibits high glass-forming ability, super-high fracture strength 
and high plastic strain. Moreover, these alloys exhibit good soft-
magnetic properties [7-13]. 

In order to better understanding of solidification process 
during bulk metallic glasses fabrication, computer simulation of 
casting process and temperature distribution can be realized. 
Computer programs such as FLUENT, ABAQUS etc. allow to 
realize an analyze of temperature distribution or calculate cooling 
rates. As an input data for computer simulation of casting process 
few important properties are necessary. The analyze of heat flow 
in mould casting requires knowledge about thermal properties of 
casting alloys (e.g specific heat, liquids temperature, thermal 
conductivity).  

Table 1 shows relationship between general thermal 
properties and others physical properties of metals, ceramics and 
polymers. 
 
Table 1.  
Characteristic main types of engineering materials [14] 

Properties Metals Ceramics Polymers 
chemical 
resistance 

low to 
medium excellent good 

creep resistance poor to 
medium excellent poor 

density high medium low 
electrical 

conductivity high very low very low 

hardness medium high low 
machinability good poor good 
malleability high - high 

melting point low to high high low 
stiffness high high low 
strength high very high low 

thermal 
conductivity 

medium to 
high 

medium but often 
decreasing rapidly 
with temperature 

very low 

thermal 
expansion 

medium to 
high low to medium very high 

thermal shock 
resistance good generally poor 

good within 
limited 

temperature 
ranges 

Among thermal properties the most important that we can 
determinate are [14]: 

Coefficient of linear thermal expansion (coefficient of linear 
expansion, or , coefficient of thermal expansion (CTE), 
linear expansion coefficient, linear thermal expansion 
coefficient, thermal coefficient of expansion, thermal 
expansion coefficient); 
Emmitance (emissivity, thermal emissivity); 
Liquidus temperature; 
Melting range and melting point; 
Solidus temperature; 
Specific heat capacity (C, Cp, Cv, heat capacity per unit mass, 
specific energy capacity, specific entropy, specific heat); 
Thermal conductivity (k, ). 
Figure 1 presents thermal conductivity of several materials 

and liquids.  
The measurement of thermal conductivity involves a set of 

parameters that are common to different techniques and  
methodologies. Aside from variations due to the nature and type 
of samples, all methodologies require determination of the actual 
amount of heat transferred through the sample along and 
perpendicular to the heat flow path in a given thermal 
environment. The calculated value is expressed in the same unit 
as that provided for a standard of the same material. Conductivity, 
as opposed to conductance, provides dimensional attributes to the 
calculated value. Thus, thermal conductivity is related to a 
material property that denotes a rate process of heat transfer. 
Conductivity is a function of diffusivity, density and heat 
capacity. Whereas through-thickness thermal conductivity for 
fixed-dimension solids is primarily measured under steady-state 
conditions, accompanying transient diffusivity in the radial 
direction is taken into account by using the ratio of sample 
thickness to the total sample area as the heat flow path. The 
relationship is expressed as (Equation 1)[15]: 
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where:  

 - thermal conductivity [W/mK], 
q - time rate of heat flow [W],  
L - thickness of sample in the heat flow direction [m], 
A - area of sample [m2], 
t1 - temperature of hot surface [K],  
t2 - temperature of cold surface [K]. 
 
In order to measurement thermal conductivity of bulk metallic 

glasses a measuring station, which is adapted for samples with 
diameter 3 mm, was proposed in this paper. 

Methods of thermal conductivity measurements can be 
classified as stationary and nonstationary. An equation of thermal 
conduction must be solved for indicate of thermal conductivity. 
For stationary methods there is condition (2) which must be 
performed [17-19] : 
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T - temperature [ºC], 
t - time [s]. 
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parameter is needed to calculate cooling rates during the 
fabrication of this engineering materials. 

Bulk metallic glasses are newcomers materials which exhibit 
excellent physical and functional properties. In a fabrication 
process of this materials, very important problem is knowledge 
about glass forming ability of alloy [1-6]. Glass forming ability 
depends on various factors. Characteristic temperature such as 
liquid temperature (Tl), glass transition temperature (Tg) and 
crystallization temperature (Tx) are included in mathematical 
description of this factors. Among many of bulk metallic glasses 
systems, Fe-based are one of the most popular and exhibit good 
glass formability. The (Fe, Co, Ni)-B-Si-Nb system alloys 
exhibits high glass-forming ability, super-high fracture strength 
and high plastic strain. Moreover, these alloys exhibit good soft-
magnetic properties [7-13]. 

In order to better understanding of solidification process 
during bulk metallic glasses fabrication, computer simulation of 
casting process and temperature distribution can be realized. 
Computer programs such as FLUENT, ABAQUS etc. allow to 
realize an analyze of temperature distribution or calculate cooling 
rates. As an input data for computer simulation of casting process 
few important properties are necessary. The analyze of heat flow 
in mould casting requires knowledge about thermal properties of 
casting alloys (e.g specific heat, liquids temperature, thermal 
conductivity).  

Table 1 shows relationship between general thermal 
properties and others physical properties of metals, ceramics and 
polymers. 
 
Table 1.  
Characteristic main types of engineering materials [14] 

Properties Metals Ceramics Polymers 
chemical 
resistance 

low to 
medium excellent good 

creep resistance poor to 
medium excellent poor 

density high medium low 
electrical 

conductivity high very low very low 

hardness medium high low 
machinability good poor good 
malleability high - high 

melting point low to high high low 
stiffness high high low 
strength high very high low 

thermal 
conductivity 

medium to 
high 

medium but often 
decreasing rapidly 
with temperature 

very low 

thermal 
expansion 

medium to 
high low to medium very high 

thermal shock 
resistance good generally poor 

good within 
limited 

temperature 
ranges 

Among thermal properties the most important that we can 
determinate are [14]: 

Coefficient of linear thermal expansion (coefficient of linear 
expansion, or , coefficient of thermal expansion (CTE), 
linear expansion coefficient, linear thermal expansion 
coefficient, thermal coefficient of expansion, thermal 
expansion coefficient); 
Emmitance (emissivity, thermal emissivity); 
Liquidus temperature; 
Melting range and melting point; 
Solidus temperature; 
Specific heat capacity (C, Cp, Cv, heat capacity per unit mass, 
specific energy capacity, specific entropy, specific heat); 
Thermal conductivity (k, ). 
Figure 1 presents thermal conductivity of several materials 

and liquids.  
The measurement of thermal conductivity involves a set of 

parameters that are common to different techniques and  
methodologies. Aside from variations due to the nature and type 
of samples, all methodologies require determination of the actual 
amount of heat transferred through the sample along and 
perpendicular to the heat flow path in a given thermal 
environment. The calculated value is expressed in the same unit 
as that provided for a standard of the same material. Conductivity, 
as opposed to conductance, provides dimensional attributes to the 
calculated value. Thus, thermal conductivity is related to a 
material property that denotes a rate process of heat transfer. 
Conductivity is a function of diffusivity, density and heat 
capacity. Whereas through-thickness thermal conductivity for 
fixed-dimension solids is primarily measured under steady-state 
conditions, accompanying transient diffusivity in the radial 
direction is taken into account by using the ratio of sample 
thickness to the total sample area as the heat flow path. The 
relationship is expressed as (Equation 1)[15]: 
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where:  

 - thermal conductivity [W/mK], 
q - time rate of heat flow [W],  
L - thickness of sample in the heat flow direction [m], 
A - area of sample [m2], 
t1 - temperature of hot surface [K],  
t2 - temperature of cold surface [K]. 
 
In order to measurement thermal conductivity of bulk metallic 

glasses a measuring station, which is adapted for samples with 
diameter 3 mm, was proposed in this paper. 

Methods of thermal conductivity measurements can be 
classified as stationary and nonstationary. An equation of thermal 
conduction must be solved for indicate of thermal conductivity. 
For stationary methods there is condition (2) which must be 
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