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This paper introduces the most basic concepts of the compositional analysis of data with
a simple but real example form the Management and Production Engineering (MPE) field.
Compositional Data (CoDa) are vectors of positive elements that represent parts of a whole
and are widely found in MPE, i.e. production times, resource composition, percentage uti-
lization of work stands, waste components... The need for an analysis based on ratios of
components (or better log-ratios of components) is illustrated step by step, and findings are
compared to the corresponding standard methods applied to raw compositions. The paper
also exposes the principles of CoDa analysis and presents two basic descriptive tools suitable
for CoDa: the clr-biplot and the CoDa dendrogram. The example is a time series, from 1994
to 2013, of motor vehicle production in 8 countries and regions.
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Introduction

In Management and Production Engineering
(MPE) it is common to analyse multivariate data
which are frequently percentages. Typical examples
are data from surveys, among many others, such as
the distribution of employment by major industry
sector, profiles of consumer expenditure by purchas-
ing power, proportions of labour force by industrial
sectors, or distribution of world crude production.

Two typical examples found in the day-to-day
operations of MPE are the process yield and the
planned production time. In the former, the user
could be interested in the distribution of goods in
[defect-free, repaired, defective], whereas the latter
considers a vector in time such as [operating time,
equipment failures, process set-up and adjustments,
start-ups after shifts-breaks-lunch-weekends].

In all the above cases it is important to state
that, when the total sum of the vector is assumed

63

to be irrelevant, then the focus of the analysis has
to be on the relative distribution among the vari-
ables. In other words, this multivariate data may be
considered as Compositional Data (CoDa) because
they describe quantitatively the components of some
whole. The components in CoDa are usually termed
parts.

In the experimental field, CoDa appear as vectors
of percentages, parts per unit, parts per million, or
other non-closed units, like molar concentrations or
absolute frequencies. The units used are irrelevant,
because the total sum of the vector is not informa-
tive, i.e. the information is relative, rather than ab-
solute, and lies in the ratios of the parts.

There is a general agreement that the sample
space of CoDa is the simplex

D
sP= {X GRE: ijl Xj = k},

where the value of k is irrelevant, a popular choice is
k=1. When k = 3, the composition lies in an equilat-
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eral triangle in R? (Fig. 1 top), although it is more
common to represent the data in the ternary diagram
(Fig. 1 bottom), which is an equivalent representa-
tion.

X3

X2
/\
/
/ \
/
y - \
/ ' \
/

Fig. 1. Two Different but equivalent representations of
the Simplex with k = 3 in (top) R® and (bottom) in the
ternary diagram.

Standard statistical data analysis applied to Co-
Da may carry technical difficulties and may in-
duce misleading conclusions due to the scale invari-
ance property (i.e., relative information). The classic
monograph by Aitchison (1986) [1] introduces the
log-ratio methodology, the first consistent method-
ological proposal to deal with CoDa.

Nowadays there are numerous new ideas and
strategies to deal with CoDa analysis. Those ad-
vances were presented at the five CoDaWork meet-
ings (e.g. [2]) and collected in some special publica-
tions (e.g. [3]) where a review of the state of the art
is provided. The main point of this new methodology
is the statement of the properties of CoDa analysis.
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According to [3], log-ratio analysis can be reduced
to three steps, termed principles of working in coor-
dinates [4]: 1. represent CoDa in log-ratio type coor-
dinates; 2. apply standard statistical analysis to the
coordinates as real random variables; and 3. interpret
results in coordinates and/or in terms of the original
components.

In the engineering field, a control scheme suitable
for CoDa has been proposed in [5]. It is based on the
Mahalanobis distance, T2, and interpretation of the
CoDa out of control signals is discussed for the three
part case in [6] and for the general case in “unpub-
lished” [7].

The data analyses discussed in this work have
been conducted using our own R routines (8]
and the open-source CoDaPack [9]. Other use-
ful R packages to perform CoDa analysis are
“compositions”, “robCompositions” and “zCompo-
sitions”. Computer routines implementing these
methods, as well as other related composition-
al techniques, can be obtained from the website
http://www.compositionaldata.com.

The rest of this paper is organized as follows.
The difficulties of typical statistical methods when
applied to raw CoDa are illustrated in the follow-
ing section. Next, we introduce the basic properties
and geometric settings of CoDa analysis. Afterwards,
a typical MPE dataset is analysed using descriptive
elements and techniques of log-ratio analysis. Last
section concludes with some final remarks.

Usual Statistical Methods Applied
to Raw CoDa

Following [10], we consider the world motor
vehicle production where “interest focuses on the
proportions rather than the amounts’. The data
analysed (Table 3 in the Appendix) is available at
http://www.rita.dot.gov/ of the Bureau of Trans-
portation Statistics (U.S. Department of Transporta-
tion). Hereafter we will call WMVP to this data set.
To illustrate usual and log-ratio methods we consid-
er the motor vehicle production from 1994 to 2013
(N = 20) distributed in D = 8 parts representing
different countries or regions: China, United States,
Japan, Germany, Other Asia, Other America, Other
Europe and Rest. When the total sum of the vec-
tor equals k (e.g., 1) the data will be referred to as
full-composition. A subset of the parts is called a
sub-composition.

We follow by applying an example of standard
statistical method to the WMVP datasets. Fig-
ure 2 shows the ternary diagram for the three part
sub-compositional dataset involving [China, United

Volume 6 e Number 2 e June 2015
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States, Japan] = [X, Y, Z]. It can be seen clear-
ly that the large variability appears in the produc-
tion from China (X). The label of the first year
(1994) and the last year (2013) suggest the trend
of this sub-composition: China increases its rela-
tive percentage, whereas United States and Japan
decrease both in approximately the same propor-
tion. Dashed line in Fig. 2 represents the projection
from the sub-composition [X, Y, Z] in the simplex
S? to the sub-composition [sy, sz] in the simplex
S2, which shows small variability. Formally the sub-
composition [sy, sz] is obtained applying the clo-
sure operation ¢ to the raw parts [Y, Z], i.e. [sy,
sz)=C([Y, Z]) = [Y/(Y + Z), Z/(Y + Z)]. Similar-
ly to any projection in a Euclidean space, the sub-
composition operation generally produces a loss of
information.

0.25

0.432% 0.58

Y 095 0.75

Fig. 2. Sub-composition [China, United States, Japan] =

X, Y, Z] (o) from the WMVP dataset in the ternary

diagram. Labels 1994 and 2013 show the first and last

year respectively. Vertical dashed lines are the projection

to the sub-composition [sy, sz] = [United States, Japan]
(o), into the YZ edge.

This effect could be crucial in statistical analysis,
for example, cluster groups in the full-composition
may collapse in a sub-composition.

Observing the typical scatterplot of the raw parts
[Y, Z] (Fig. 3) we get to a misleading interpretation
indicating large variability in these parts. Empty cir-
cles in the ternary diagram are the sub-composition
[China, United States, Japan] = [X, Y, Z]. Vertical
dotted lines represent its projection to the plane of
the raw parts [Y, Z]. The sub-composition [sy, sz] is
represented in the edge of parts Y and Z. Note that,
due to the fact that X + Y 4+ Z = 1, when the raw
parts [Y, Z] are plotted, actually the information of
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the production of China (X) is also included in the
relationship.

Note that proportions Y and Z are obtained from
the closure of quantities Wy and Wy respectively,
against a total T production of the three countries,
ie. Y = Wy /T and Z = W5 /T. In our dataset, Wy
and Wy are the number of motor vehicles produced
by United States and Japan, respectively. Therefore,
the part X could be considered as a residual part,
X=1-Y —-7,and Wx =T - Wy — Wz, where
T = Wx + Wy + Wyz. Note that the raw parts
[Y, Z] = [Wy /T, Wz/T] include a spurious relation-
ship between Y and Z, a misleading effect known
from [11].
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Fig. 3. Sub-composition [China, United States, Japan|=

X, Y, Z] (o) from the WMVP dataset in the ternary

diagram. Vertical lines represent a typical projection on

the plane of the raw parts [United States, Japan]= [Y,

Z] (+). The sub-composition [sy, sz] (e) are represented
in the YZ edge.

In other words, the typical correlation coefficient
ryz= 0.8867 that measures the relationship between
the production in United States and Japan includes
the effect of the residual part X, the production in
China.

On the other

hand, the sub-composition

[S S ]7 Y 7z o Wy/T Wz/T

Y SZI = INFZ0Y+Z | T | Wy /T+W2 /T Wy /T+ W, /T
_ Wy Wz
T | Wy Wz Wy +Wz
ous influence of the residual part X. However, again

} is completely free of the spuri-
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because of the relationship induced by the closure,
it makes no sense to calculate the typical correlation
coefficient between both parts (rs,s, = —1; Fig. 3).

Standard variability statistics can be expressed in
terms of Euclidean distances. The Euclidean distance
is based on the subtraction of variables: Y — Z. The
ratio Y/Z = sy/sz = Wy /Wy provides the same
information in the full and in any sub-composition
unlike the differences Y — Z and syv-—sz. Note that
the closure € is not a necessary operation when ana-
lyzing a ratio and it suggests a way to analyze CoDa
avoiding spurious correlation.

As we stated before, the total sum of a CoDa vec-
tor is irrelevant, thus the information carried in any
D-composition x = [z1, xa,..., p] is the same as in
cx=[c-x1, - xa,. .., c-xp] Ve >0. In particular, when
¢ =1/xp, a composition X is completely determined
by the vector of D—1 ratios [x1/xp, z2/xp,...,
z(p-1y/*p, 1] = [21/2D, ¥2/TD;. .., T(D_1y/TD] [1].
In the example, the full-composition [X, Y, Z] is com-
pletely determined by the vector of ratios [Y/X, Z/X]
and the ratio Y/Z determines the sub-composition
[sy, sz]. Figure 4 shows the scatterplot of ratios
[Y/X, Z/X], where the cloud is very similar to the
cloud in the ternary diagram (Fig. 2). The boxplots
of the ratios are also plotted in the margins; its slight
skewness suggests taking logarithms to improve the
symmetry of the data.

Basic properties and geometric settings
of CoDa analysis

The analysis of CoDa introduced in [1] has
two main properties: scale invariance and sub-
compositional coherence. As we stated above, scale
invariance means that vectors with proportional pos-
itive components represent the same composition.

Therefore, the vector C(x)= x;j, 52% e ffz’J

or the vector [z1/xp, x2/xp,..., £(p_1)/zDp] can be
selected as representatives of any composition x. Ac-
cording to [1], it is stated that “all meaningful func-
tion of a composition can be expressed in terms of
a set of component ratios”. This property is crucial
when defining a distance function or a probability
density function on the simplex.

The property of sub-compositional coherence
means that the interpretation and results provided
by any analysis of a subset of parts does not depend
on the rest of parts. Typical statistical analysis based
on Euclidean distance or multivariate normal distri-
bution does not fulfil these properties when applied
to raw CoDa, e.g., [12, 13]. It is explained because
typical statistical techniques are based on measuring
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absolute differences using a subtraction: x—y, while,
on the other hand, working with differences based
on ratios x/y automatically involves scale invariance
and sub-compositional coherence.

©
o
o ©°
© 4 o
o
o
x
NI °
o
o
S <
o
)
%
T T T T
2 4 6 8
Y/X

Fig. 4. Scatterplot of vector of ratios [Y/X, Z/X] for
the sub-composition [X, Y, Z] = [China, United States,
Japan] from the WMVP dataset.

A first geometric setting is that the natural
movement from a composition x to another com-
position y should be based on a component wise
product. Aitchison [1] introduced this operation
called perturbation, and defined it as x®y =
C [z1y1,...,2pyp]; the perturbation difference is
x0y = C [z1/y1,...,2p/yp], and the neutral el-
ement is the composition n=[1,1,...,1]. The second
operation that forms the Aitchison geometry for Co-
Da is the powering of a composition x by a real num-
ber « defined as aGx = C [z§,...,2%)]. Perturba-
tion and powering define a vector space structure
of dimension D-1 [14]. The role played by both op-
erations in most common statistical models and its
usefulness in many applications from different fields
are illustrated in [3].

In MPE the change of the production distribu-
tion is a problem that can be modelled by a per-
turbation process. For example, let [Xi994, Y1994,
Z1994] = [560, 5069, 4371] and [Xgolg, Y2013,
Zoo13] = [51.66, 25.85, 22.49] be, respectively, the
first and last compositions in the WMVP dataset.
In a simple exercise, consider the last compositions
as the result of a continuous alteration of the initial
composition. In this case the non normalised/closed
perturbation difference vector is equal to [9.22, 0.51,
0.51], whose interpretation is that United States and
Japan reduced 50% its relative importance and Chi-
na increased 9 times its relative weight as regards to
the production of the three countries.

Volume 6 e Number 2 e June 2015
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By taking logarithm of a ratio (log-ratio), some
features are improved. Once a ratio x/y between two
positive values is calculated, the result is in the in-
terval [0, 400): the interval (0, 1) corresponds to the
“x < y” case and the interval (1, 400) to the opposite
“r > y”. This asymmetry on the length of the do-
mains recommends taking logarithms to extend the
domain to the full Real space. In addition, dealing
with log-ratios is more easy than with standard ra-
tios because a “ratio” means a multiplicative way
of thinking, while a “log-ratio” consists of the typi-
cal additive way of computation: In(z/y) = In(z) —
In (y). Let x = [z1, Z2,..., xp] be a D-composition.
In general, a log-ratio is defined as

D D
In H xfj = Z aj-In(x;),
=1 =1

where > a;= 0 to verify the scale invariant property.
The expression (1) is known as a log-contrast [1]. In
the literature, the most famous log-contrast is the i-
th centered log-ratio (clr;) whose expression applied
to a composition x is

(1)

clri(x) :ln(;l) +... +1n(%71) + (1 - D;)' In(z;) N
In(wiqq) +1n(acD) I ( i )
D o D gm(x) /)’

where gp,(x) is the geometric mean of x. When
clr; log-contrast is applied to all parts, the vector
of clr-coefficients [1] is obtained: clr(x)=(clr; (x),. ..,
clrp(x)). The expression € (exp(clr(x))) is its inverse
transformation, which gives the unitary representa-
tive of x.

The Aitchison distance, d,, is defined as
dq (x,y)=d(clr(x),clr(y)), where d(-,-) denotes the
Euclidean distance in RP”. The norm and inner
product, consistent with the Aitchison distance,

are respectively defined by |[x||,= da(x,n) and
D
<X,y >,= . clrj(x)-clrj (y), leading to a Euclid-
j=1
ean space structure [14]. With these metric elements
on hands, one can exploit the well-known proper-
ties of Euclidean spaces: orthonormal basis, orthogo-
nal projections, angles, ellipses, etc. In other words,
one can apply multivariate statistical techniques, like
cluster analysis, principal component analysis, lin-
ear regression or discriminant analysis. A state-of-
the-art of these techniques, including basic elements
of simplicial linear algebra and geometry, differen-
tial calculus and statistical modelling, are presented
in [3].
The statistical log-ratio analysis is based on the
principle of working in coordinates [4]. The first step
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consists in representing a composition x in log-ratio
type coordinates by the use of an orthonormal basis
in the simplex. Let e1, eo, ..., ep_1 be an orthonor-
mal basis in SP. The orthonormal coordinates of a
composition x are obtained using the isometric log-
ratio function ilr(x)=[ <x,€1 >4, .., <X,€p_1 >4
These ilr coordinates are log-contrasts (1) and iso-
metric, d,(x,y)= d(ilr(x),ilr(y)). In practice, it is
recommended to build the log-contrasts such that
they have an easy interpretation on the problem
studied.

A Sequential Binary Partition (SBP) [15] pro-
vides an orthonormal and its respective ilr coordi-
nates such that enhances the interpretability of the
representation of the parts of a composition. Authors
in [16] provide a practical implementation and a rep-
resentation in a dendrogram like structure. A SBP
consists of D-1 steps, where an orthonormal coordi-
nate, now called balance, is built in each step of the
partition. In a first step, the composition x is split
into two groups, which are indicated by +1 and —1.
In consecutive steps, each previously created group
of parts is split again into two groups. The partition
ends when the groups are made up of a unique part.
The coordinates created by a SBP are called bal-
ances because they have a very peculiar log-contrast
expression. In the j-th step of a SBP, let x+ be the
group of r parts marked with a +1 that are in the
numerator and by x— the group of s parts in the
denominator, marked with a —1. The corresponding
balance, b;, is

ey ()

where g, (+) is the geometrical mean of involved parts
of x. The balances are log-ratios of geometric means
of groups of parts and they have an easy interpreta-
tion. Table 2 shows the SBP used in the analysis of
the full composition in the WMVP dataset. Remem-
ber that the dataset provides the number of vehicle
production units in a composition of 8 countries and
regions for 20 years, from 1994 to 2013. The first step
in the SBP consists in separating the production in
China (41) from the rest (—1). In other words, the

balance by is
7 China
=i (T)

a® = United States - Japan - Germany - Other Asia

(3)

(4)

where

- Other America - Other Europa - Rest.

This balance informs about the relationship be-
tween the production in China and the production
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in the rest of countries and regions. In the next step,
the parts that are in the denominator of balance
by (4), are split into the groups [United States] and
[Japan, Germany, Other Asia, Other America, Other
Europe, Rest| to define balance b

by — \/§ In UnitedStates
2 — 7 \(yb—* )

b* = Japan - Germany - Other Asia - Other America
-Other Europa - Rest.

where

The analyst is completely free to decide how to
split the group variables and define the SBP based
on his or her expertise and on a previous exploratory
analysis of the dataset.

Basic exploratory log-ratio analysis

The basic elements of an exploratory analysis are
the mean and the variability. The variability of a ran-
dom composition X with respect to a composition x
is Var(X,x)= E(d?(X,x)), where Var and E are the
typical variance and expectation in Real space [17].

Furthermore, the expectation or centre of X is
Cen (X) = Ileléré d3(X, x),and the total variance of X

T

is totVar(X)=E(d?(X, Cen(X))). Centre and total
variance are calculated using the expressions

Cen (X) =ilr ™! (E (ilr(X)))
= C [exp(E(In X1)),....exp(E(In X ;,))],

2 PR (m—)

D— D
Z r (ilr(X Z ar (clr(Xj)),

where an estimate of eXp(E(ln(-)) is the geometric
mean of a part g(-). Therefore, Cen(X) is the uni-
tary representative of the geometric mean of X.
Aitchison in [1] introduced the variation array,
a very informative way to present log-ratio expec-
tations and variances. Table 1 shows the varia-
tion array for the WMVP dataset. The lower tri-
angle of the array contains the values of the sam-
ple means of the log-ratios of the corresponding
two parts (numerator by row, denominator by col-
umn). For example the value 0.83 corresponds to
E(In(UnitedStates/China)). The upper triangle of
the array contains the sample variances of the same
log-ratios. This array can be easily extended adding a

totVar (X

@ |
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right column collecting the values of the variances of
the clr-coefficients, and a bottom row for the Cen(X).
The sum of the right column equals totVar and is
0.9261. Note that Other America and Other Asia
are the regions showing the smallest relative vari-
ability, while China and United States have large
variability. When the log-ratios are analysed, the
Var(Iln(Japan/OtherEurope))= 0.01 is the smallest,
suggesting association between them and meaning
that the production in these regions is approximate-
ly proportional in the dataset. On the other hand,
the productions in China and United States have
the largest log-ratio variance, suggesting slight or no
association between them. Observe that the centre
in the bottom row suggests that the production in
the Rest regions is very small, whereas the produc-
tion in Other Europe shows the largest percentages.
We have seen that productions in Japan and Oth-
er Europe are approximately proportional and from
Table 1 we see that E(In(OtherEurope/Japan)) =
0.2879, thus one can assume that, in average, it
holds Other Europe ~ €%2879.Japan. Observe that
the sign of E(In(-/-)) indicates which element show
higher concentrations and a value close to zero sug-
gests that both elements are similarly present in the
artefacts. For example, E(In(Japan/UnitedStates))=
—0.06 indicates that, in average, the production in
United States and Japan is very similar, perhaps
is slightly more in United States. Moreover, the
small value of the corresponding log-ratio variance
Var(In(Japan/UnitedStates))= 0.03 suggests that
this similarity between productions holds in most of
years.

The relationships between pairs of countries and
regions are provided by the variation array. The bi-
plot of the clr-coordinates is an appropriate graphical
tool to analyse more complex associations. The clr-
biplot represents a bidimensional projection of the
clr-log-ratio coordinates of samples in the same plot
as the projection of the centred clr variables. The
coordinates of samples and variables in the plot are
calculated using elements provided by a Singular Val-
ue Decomposition (SVD) of the clr-coefficients data
matrix. Due to the fact that the order of the vectors
in the basis provided by SVD is decreasing according
to the singular value, by taking the first two vectors,
the proportion of variance retained by the clr-biplot
can be calculated. SVD has another useful property
when looking at the location of samples: the Euclid-
ean distance between two samples in the clr-biplot is
an approximation of the Aitchison distance between
the corresponding compositions in the simplex.

Volume 6 e Number 2 e June 2015
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Table 1
Variation array of the CoDaWMVPdataset. Lower triangle: log-ratio means; Upper triangle: log-ratio variances. The bottom
row contains the centre of the dataset; right column the clr-variances.

China [SJ?;EZS Japan | Germany %zlizr A(I)Ife}zlr?za E(]?J. z};e;e Rest | clrVar
China 1.26 1.03 0.84 0.48 0.66 0.93 0.45 0.59
United States 0.83 0.03 0.06 0.21 0.11 0.04 0.30 0.13
Japan 0.76 —0.06 0.02 0.12 0.05 0.01 0.18 0.06
Germany 0.15 —0.68 —0.62 0.07 0.02 0.01 0.13 0.03
Other Asia 0.11 —0.72 —0.65 —0.04 0.02 0.09 0.06 0.01
Other America 0.40 —0.43 —0.37 0.25 0.29 0.03 0.08 | 0.005
Other Europe 1.05 0.23 0.29 0.90 0.94 0.66 0.16 0.04
Rest —2.24 —3.06 —3.00 —2.39 —2.35 —2.64 -3.29 0.05
Cen(X) (%) 8.21 18.77 17.65 9.54 9.18 12.24 25.53 0.88

To illustrate these properties and some more, the
clr-biplot of the WMVP dataset is shown in Fig. 5.
The first two axis of the clr-biplot retain 93.79% of
variability. The squared length of a ray associated to
a part is proportional to the clr-variance of the cor-
responding part, thus we can check that the produc-
tion in China is the longest and the Other America
the shortest, in agreement with the values collect-
ed in Table 1. The variance of the log-ratio of two
parts (Table 1) is approximately equal to the squared
length of the link between the two corresponding
vertices of rays. In consequence, the closer are two
vertices in the clr-biplot, the higher proportionali-
ty have the production of the countries and regions.
Observe (Table 1; Fig. 5) that the closest vertices
are those of United States, Japan, Germany, Other
America and Other Europe. Moreover, the cosinus
of the angle between two links approaches the corre-
lation coefficient between the corresponding simple
log-ratios. Therefore, orthogonality of links in the
clr-biplot suggests uncorrelation of the correspond-
ing log-ratios. For example, the link between the
vertices of the rays clr(China) and clr(Japan) is ap-
proximately orthogonal to the link of clr(OtherAsia)

and clr(Rest). When the linear correlation coefficient
between In(China/Japan) and In(OtherAsia/Rest) is
checked the value 0.18 is obtained.

clgJapan —

c\r.Unitedc&gt‘gé‘

st
— cIr.China

nd 5
._005
-
2006
#2008
.2007
clr.Rest
— —_————
4 Americ clr.Other Asia 3 -
2010
So11
2012
.
2013
.
*

Fig. 5. Clr-biplot (1st and 2nd axis) of the WMVP
dataset. Red lines are the rays of the clr-variables. The
proportion of variability retained is 93.79% [colour on-
line].

Table 2
SBP of CoDa set WMVP, represented in Fig. 6 as a CoDa-dendrogram.
Balance China United States Japan Germany Other Asia Other America Other Europe Rest
by +1 —1 —1 —1 —1 —1 —1 —1
ba 0 +1 —1 —1 —1 —1 —1 —1
bs 0 0 +1 -1 -1 -1 -1 -1
by 0 0 0 +1 —1 -1 —1 —1
bs 0 0 0 0 +1 -1 -1 -1
be 0 0 0 0 0 +1 -1 -1
b7 0 0 0 0 0 0 +1 -1
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o

Rest Other Europe Other America Other Asia

Germany Japan United States China

Fig. 6. CoDa-dendrogram of the WMVP dataset.

The location of samples in the clr-biplot is in-
terpretable. In our dataset we can check that the
samples corresponding to years from 2005 to 2008
are near to the ray clr(Rest), which is explained by
the fact that, during those years, this region rela-
tive increased its production (Table 3). Analogously,
the first years of the sample are in the negative part
of the first axis and the last years in the opposite
side, which is consistent with the fact that the ray
associated to the Chinese production dominates this
axis.

The first axis, which retains 93.23% of variability,
can be expressed as the log-contrast

! (China8‘3 -OtherAsia’? -Rest!® )
n

c*

where
¢* = United States®® - Japan®® - Germany*°

- Other America®® - Other Europe®?

which has a difficult interpretation in terms of the
original parts. On the other hand, the particular
SBP created in Table 2 improves the interpreta-
tion of the log-ratios. To summarize the structure
of a SBP a useful tool is to represent the CoDa-
dendrogram which in addition represents the ilr de-
composition of the total variance and the mean and

70

dispersion of each balance. The CoDa-dendrogram
of the WMVP dataset following the SBP shown in
Table 2 is represented in Fig. 6. The lengths of ver-
tical bars, which connect two groups of parts, are
proportional to the variance of the balance. Ob-
serve that, in this case, the first balance has the
largest variance and is interpreted as the log-ratio
of the production in China against the geometric
mean of the production in the other countries and
regions (4).

The point where each vertical bar joins a hori-
zontal bar indicates the mean balance (coordinate of
the sample centre). In the first balance, the joining
point of the vertical bar is close to the middle of the
horizontal bar which is consistent with the mean of
this balance that equals —0.14. On the other hand,
the joining point of the last balance

b In Other Europe
~ Rest

is on the right hand and its mean equals 2.33. More-
over, on each horizontal bar a box-plot of quan-
tiles (0.05, 0.25, 0.50, 0.75, 0.95) of the correspond-
ing balance is represented to visualize the ilr dis-
persion. For instance, the shape of the box-plot of
the first balance suggests symmetry and large dis-
persion.
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Final remarks

Frequently MPE have to face analysis of CoDa.
Particular characteristics of CoDa require a coherent
statistical analysis in order to avoid misleading re-
sults and conclusions. The analysis of log-ratios is the
basis of a methodology free of spurious correlation.
In this sense, standard statistical methods can be ap-
plied to compositions (e.g., percentages) expressed in
terms of log-ratio orthonormal coordinates. The in-
terpretations of log-ratio coordinates are easier using
an appropriate SBP based on the expertise of the an-
alyst and on a previous exploratory analysis.

In some cases, the percentages in parts are very
small and are rounded to zero. In these situations, it
is necessary to use imputation strategies for the “ze-
ro” values in order to be able to compute log-ratio

Appendix

coordinates. In literature, this topic is also known
as rounded zero problem. The imputation strategies
are based on completing the data matrix by replacing
rounded zeros by reasonable estimates, allowing the
computation of any log-ratio. Authors in [18] provide
recent advances in this topic.

Log-ratio analysis and correspondence analysis
have some similarities where dimensionality reduc-
tion of a table of positive data is concerned. A com-
parison of both methods is discussed in [19].
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project “METRICS” Ref. MTM2012-33236, and the
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ca of the Generalitat de Catalunya under the project
Ref. 2009SGR424.

Table 3
World motor vehicle production (WMVP) available at http://www.rita.dot.gov/ of the Bureau of Transportation Statistics
(U.S. Department of Transportation)

Year China ISJEI;‘ESS Japan Germany (?Atgzr A(I)Ife}zlr?za E?l trtfl)?e Rest

1994 1353000 12239288 10554000 4356138 3346564 5434920 12020772 354000
1995 1435000 11995248 10196000 4667000 3732000 5258000 12432000 331000
1996 1466000 11830157 10346000 4843000 4117000 5735000 12837000 322000
1997 1578000 12130575 10975000 5023000 4225000 6442000 12751000 349000
1998 1628000 12002663 10050000 5727000 3006000 5657000 12025000 384000
1999 1805000 13024978 9905000 5688000 4167000 6240000 13192000 311000
2000 2009000 12773714 10145000 5198000 4571000 6896000 14641000 348000
2001 2331776 11424689 9777191 5691677 4401794 6423526 14292405 319375
2002 3251225 12279582 10257690 5144714 4376229 6386168 14084912 344063
2003 4443686 12087028 10286318 5506629 4725081 6124969 14198091 413261
2004 5070527 11960354 10511518 5569954 5411449 6734992 14568009 405314
2005 5668163 11946653 10799659 5757710 5787752 7375146 14715815 905453
2006 7566233 11260277 11484233 5819614 6101086 7831734 15081328 915455
2007 8885461 10752310 11596327 6213460 6619507 8361918 15834657 866729
2008 9233290 8672141 11563629 6045730 6325283 8202788 14732133 887083
2009 | 13648553 5709431 7934516 5209857 6381784 6861255 11041611 597277
2010 | 18264667 7743093 9625940 5905985 7825544 8887209 12989554 711492
2011 | 18418876 8655003 8398654 6311318 8597454 8891853 13972162 751921
2012 | 19271808 10332626 9942711 5797471 8706707 9704425 13322556 760648
2013 | 22116825 11066432 9630070 5877332 8417617 10061124 13228742 756451
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