
Management and Production Engineering Review

Volume 6 • Number 3 • September 2015 • pp. 3–9
DOI: 10.1515/mper-2015-0021

EVOLUTIONARY ALGORITHM FOR MINMAX

REGRET FLOW-SHOP PROBLEM

Michał Ćwik, Jerzy Józefczyk

Wroclaw University of Technology, Department of Informatics, Poland

Corresponding author:

Michał Ćwik
Wroclaw University of Technology
Department of Informatics
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
phone: (+48) 71 320-29-79
e-mail: Michal.Cwik@pwr.edu.pl

Received: 1 June 2015 Abstract

Accepted: 30 July 2015 The uncertain flow-shop is considered. It is assumed that processing times are not given
a priori, but they belong to intervals of known bounds. The absolute regret (regret) is
used to evaluate a solution (a schedule) which gives the minmax regret binary optimization
problem. The evolutionary heuristic solution algorithm is experimentally compared with
a simple middle interval heuristic algorithm for three machines instances. The conducted
simulations confirmed the several percent advantage of the evolutionary approach.

Keywords

manufacturing, flow-shop, interval uncertainty, minmax regret, heuristic algorithms, evolu-
tionary algorithms, simulation.

Introduction

The flow-shop, being an important task schedul-
ing problem with many versions and a variety of vital
applications, has been investigated for many decades.
The vast literature exists in this area; see [1] as an
example. The basic version of the classic flow-shop
problem assumes the existence of a finite set of com-
plex tasks which undergo the performance by means
of a finite set of machines in such a way that each
machine contributes to the elaboration of each task.
A part of the task carried out by an individual ma-
chine is called an operation. So, each task consists
of the same number of operations which is equal to
the number of machines. The problem consists in the
determination of the solution (schedule) of tasks in
such a way to minimize the criterion evaluating the
solutions. The makespan as the completion time of
the last operation of the last task can serve as the
criterion. It is assumed for classical flow-shop prob-
lems that all execution times of the operations are
a priori known. This assumption occurs too restric-
tive for many real-world applications where it is ex-
tremely difficult to have exact values of these times.

Abandoning this presumption leads to so called non-
deterministic (non-classical) versions of the flow-shop
problem. Different knowledge representations can be
used to tackle with the non-fully known execution
times. Probabilistic and fuzzy approaches are the
most known (see [2, 3]). However, they require the
existence and the availability of probability distrib-
utions and membership functions, respectively. Both
characteristics imposed on the possible unknown val-
ues of execution times contain additional informa-
tion. This extra information can be difficult or im-
possible to reach for a number of real-world cases,
first of all for jobbing processes and activities. In the
paper, the representation of known execution times
in the form of intervals is supposed. It means that
values of each execution time belong to the interval
of known bounds. This interval representation of the
uncertainty can be considered as the basic knowledge
representation which does not require any additional
characteristics of the set of possible values of execu-
tion times.

It is not possible to evaluate directly a solution
for the uncertain version of flow-shop. In a conse-
quence, the form of criterion is a second important

3



Management and Production Engineering Review

issue which ought to be resolved for the uncertain
flow-shop problem. In fact, the majority of methods
and techniques encountered in literature use criteria
defined for deterministic versions and propose their
different determinization pertaining to uncertain pa-
rameters to have the deterministic criteria as a con-
sequence. The determinization can refer directly to
criteria for deterministic versions or to some terms
based on them. The absolute regret hereafter referred
to regret, as such expression, is used in the paper to
evaluate the uncertainty (see [4]). The determiniza-
tion consisting in taking into account the worst pos-
sible values of execution times for the particular so-
lution, performed by means of the operator ‘max-
imum’, gives, in a consequence, so called minmax
regret optimization problems which are not farther
on the uncertain problem. Many results, both gen-
eral and particular, have been developed since that
time. Let us only mention selected works: [5–9] where
some general results as well as those related to many
particular operations research optimization problems
are reported. Some results have been also achieved
for minmax regret flow-shop [10, 11]. However, the
authors failed to find any approaches solving general
flow-shop problem (or its permutation counterpart).

The reminder of the paper is organized as fol-
lows. Section 2 comprises the flow-shop problem for-
mulation both for deterministic and uncertain ver-
sion as well as presents some analytical properties of
the latter version. In Sec. 3 we discuss the evolution-
ary based algorithm developed to solve the problem.
Section 4 covers the algorithm tuning as well as its
comparison to one of the most common approach to
interval data uncertain problems. We conclude and
define directions of further research in Sec. 5.

Problem statement and its properties

The mathematical model of the permutation ver-
sion of flow shop problem is given in this section both
for deterministic and uncertain case. The analysis of
the worst-case scenario is also discussed.

Problem statement

Let us consider the flow-shop problem with a set
M = {M1, M2, . . . , Mi, ..., Mm} ofmmachines and
a set J = {J1, J2, . . . , Jj , ..., Jn} of n jobs. Indices i,
j denote the current machineMi, job Jj , correspond-
ingly. Every job Jj is composed of m operations be-
ing its parts and performed by consecutive machines.
Operation Oi,j refers to the part of job Jj , which is
performed by machineMi. Operations within partic-
ular job Jj are performed by machines in the fixed or-
der and constitute a sequence (O1,j , O2,j , . . . , Om,j).

The order of machines denoted as (M1, M2, . . . , Mm)
is given unlike the order of jobs undergoing the de-
cision. The permutation version of the problem with
unlimited buffers is considered. It means that every
machine processes tasks in the same order and after
being completed by the current machine any opera-
tion can leave it and wait if necessary for the service
by the next machine at the buffer located there. Exe-
cution times pi,j of operations Oi,j constitute matrix
p = [pi,j ] i = 1, 2, ..., m

j = 1, 2, ..., n

. Solving the considered flow

shop problem consists in the determination of per-
mutation of jobs π = (π1, π2, ..., πj , ..., πn) ∈ Π,
where πj ∈ {1, 2, ..., n} is the index of job per-
formed as the jth in turn, and Π = {π : πj 6=
πk, j, k ∈ {1, 2, ..., n}, j 6= k} is the set of
all n! permutations. The makespan Cmax(p, π), be-
ing the time moment when the last job is complet-
ed, evaluates the permutation π. It can be calculat-
ed recurrently. Let us denote by Ci,πj

(p, π) the time
moment when machine Mi completes the execution
of job πj . This time moment can be calculated for
i = 2, 3, ..., m and j = 2, 3, ..., n using the follow-
ing recursive formula:

Ci,πj
(p, π) = pi,πj

+ max[Ci−1,πj
(p, π), Ci,πj−1

(p, π)].
(1)

Moreover, for j =1 and i = 1, 2, ..., m:

Ci,π1
(p, π) =

i∑

k=1

pk,π1
. (2)

Similarly for i = 1 and j = 1, 2, ..., n:

C1,πj
(p, π) =

j∑

k=1

p1,πk
. (3)

So, Cmax(p, π) = Cm,πn
(p, π). In a consequence, the

deterministic version of the considered flow shop
problem consists in the determination of permuta-
tion of tasks π ∈ Π minimizing Cmax(p, π) for giv-
en matrix of execution times p. The solution in the
form of the optimal permutation π′ and the corre-
sponding optimal makespanC′

max(p)∆ = Cmax(p, π′)
is sought.
In the paper the uncertain version of this problem

is considered when it is assumed that the execution
times are not given, but they belong to the intervals
of known bounds. Namely, pi,j ∈ [p

i,j
, pi,j ], p

i,j
≤

pi,j . Matrix p with all specified values of pi,j is now
called a scenario. Each scenario is the element of
the Cartesian product P = [p

1,1
, pi,j ] × ... ×

[p
m,n

, pm,n]. To evaluate the decision π in the pres-

ence of uncertain processing times (parameters), the
determinization is applied basing on the regret

4 Volume 6 • Number 3 • September 2015



Management and Production Engineering Review

Cmax(p, π) − C′
max(p). (4)

The operator ‘max’ is used for the determinization
which leads to the performance index

z(π) = max
p∈P

[Cmax(p, π) − C′
max(p)]. (5)

The resulted discrete optimization problem can be
formulated as follows:
For given: M, J, p

i,j
, pi,j , i = 1, 2, ..., m,

j = 1, 2, ..., n, find: the optimal permutation π∗

for which

z(π∗) = min
π∈Π

(
max
p∈P

(Cmax(p, π) − C′
max(p))

)
. (6)

The problem (6) is at least NP-hard due to the
fact that its deterministic counterpart is NP-hard for
m > 2 (see [12]). The NP-hardness of (6) for m = 2
has been also proved in [13].
The NP-hardness of deterministic version of the

problem implies the lack of approximate algorithm
for (6). Indeed, let us assume that there exists k-
approximate solution algorithm for (6) giving as the
result the permutation π̃ and z(π̃). Then, z(π̃) ≤
kz(π∗) which is true also for a special-case where:
p

i,j
= pi,j for i = 1, 2, ..., m, n = 1, 2, ..., n.

For such scenario, z(π∗) = 0 and the uncertain prob-
lem (6) comes down to its deterministic counterpart
which would be solved in polynomial time. It is not
true unless P = NP.

Worst-case scenario analysis

SetP contains infinitely many scenarios. It is easy
to show that the scenario pπ fulfilling the maximiza-
tion in (5), referred to as the worst case scenario,
is an extreme point scenario holding the following
property:

∀i, j ; pi,j = p
i,j

∨ pi,j = pi,j . (7)

We can observe that for any p and π the problem of
finding Cmax(p, π) can be presented as the problem
of determining the longest path between vertexes v0,0

and vm,πn
in directed graph G(V, A) which is defined

as follows. Number of vertexes in set V is equal to
mn + 1. There is a vertex corresponding to each of
mn operations in the problem (vi,πj

is related to i-th
operation of job scheduled as j-th). A dummy ver-
tex v0,0 is added to set V . Number of arcs in set A is
(m−1)(n−1)+1. Graph G contains (m−1)(n−1)+1
arcs which weights in the form of the execution times
are defined in Table 1.
Let us denote S(p, π) as the set of tuples (i, j)

which identify the weights that sum up to the longest
path between vertexes v0,0 and vm,πn

(makespan of
schedule π) under scenario p. Then:

Cmax(p, π) =
∑

(i,j)∈S(P,π)

pi,πj
. (8)

Table 1
Arcs of graph G.

i j arcs weights
0 0 (v0,0, v1,π1

) p1,π1

1 ≤ i < m 1 ≤ j < n
(vi,πj

, vi,π1+1
)

(vi,πj
, vi+1,πj

)

pi,πj+1

pi,πj+1

m 1 ≤ j < n (vi,πj
, vi,π1+1

) pi,πj+1

1 ≤ i < m n (vi,πj
, vi+1,πj

) pi+1,πj

m n none n/a

We can denote the regret using (8):

Cmax(p, π) − Cmax(p, π′)

=
∑

(i,j)∈S(p,π)

piπ −
∑

(i,j)∈S(p,π′)

piπ′

j
.

(9)

Therefore, we can see that scenario pπ maximizing
the above difference has to be the extreme point sce-
nario.
Moreover, pπ has to have the following form:

∀(i, j) ∈ S(pπ, π)\S(pπ, π′) : piπj
= pi,πj

,

∀(i, j) ∈ S(pπ, π′)\S(pπ, π) : piπj
= pi,πj

.
(10)

Following the above considerations, no polynomial
algorithm of determining the worst-case scenario has
been identified. However, we can observe that the
worst-case scenario can be denoted as:

∀(i, j) ∈ S̃(p, π) : piπj
= pi,πj

,

∀(i, j) /∈ S̃(p, π) : piπj
= p

i,πj
.

(11)

where S̃(p, π) is a set that identifies weighs of one of
the possible paths between vertexes v0,0 and vm,πn

.
Since no polynomial algorithm of identifying this
path has been developed, all of the possible paths
need to be checked to determine the maximum regret
for each schedule. Looking at the structure of graph
G, we can observe that the number of paths that need
to be checked is ((m + n − 2)!) / ((m − 1)!(n − 1)!).
This number will grow exponentially according

to the size of the problem. However, it is significant-
ly smaller than 2mn as the number of all extreme-
point scenarios. For instance, for the problem with 3
machines and 4 jobs there are 4096 possible extreme-
point scenarios, while there are only 10 possible paths
between vertexes v0,0 and vm,πn

.

Lower bound and upper bound

for the maximum regret

As stated above, solving the deterministic case of
the flow shop problem is NP-hard. Therefore, we will

Volume 6 • Number 3 • September 2015 5



Management and Production Engineering Review

estimate the optimal value of z(π) using lower bound
zLB(π) and upper bound zUB(π) functions. To calcu-
late the lower bound of z(π), we use the NEH heuris-
tic elaborated for solving the deterministic permuta-
tion flow shop problem. NEH is the simple procedure
which constructs good quality solutions (see [14]) in
a time-effective manner.

Let us denote πNEH as the solution returned
by the above heuristic. Then we can see that the
Cmax(p, πNEH) is the upper bound of C′

max(p), and
we can define the lower bound of z(π):

zLB(π) = max
p∈P

(
Cmax(p, π) − Cmax(p, πNEH)

)
. (12)

In order to define the upper bound of z(π), we esti-
mate the lower bound of C′

max(p). We can observe
that for each machine k the following inequality
holds:

n∑

j=1

pk,j ≤ C′
max(p). (13)

Moreover, before the k-th machine starts processing
operation at least one job needs to be processed on all
machines indexed from 1 to k − 1, unless k = 1. The

processing time of these operations is minj

k−1∑
i=1

pi,j .

On the other hand, after the i-th machine completes
the processing, there is at least one job that needs to
be processed on machines indexed from k + 1 to m,
unless k = m. The processing time of these opera-

tions is minj

m∑
i=k+1

pi,j . Thus, we can observe that for

each k the following inequality holds:

min
j

k−1∑

i=1

pij+

n∑

j=1

pkj+min
j

m∑

i=k+1

pij ≤ C′
max(p). (14)

To obtain even tighter bound, we observe that the
job which is processed before the k-th machine must
not be the same as the job that will be processed
after the k-th machine completes processing opera-
tions. Secondly, as the fact that (14) holds for all
machines we can take the highest value. Therefore,
we can define the lower bound of the deterministic
flow-shop problem:

Cmax,LB(p) = max
k=1,m

·



min
j=1,n

(
k−1∑

i=1

pi,j

)
+

n∑

j=1

pk,j + min
l=1,n
l 6=j

(
m∑

i=k+1

pi,l

)

.

(15)
So, we can define the upper bound of z(π):

zUB(π) = max
p∈P

(Cmax(p, π) − Cmax,LB(p)) . (16)

Proposed solution method

In this section, we present the algorithm proposed
to solve the uncertain problem considered. All ele-
ments of the evolutionary approach are discussed in
detail and chosen subprocedures are also described.
The input of the algorithm is two matrices of size
n × m containing values of lower/upper bounds of
all uncertainty intervals. The output is a permuta-
tion of jobs πEVO. The problem is not only NP-hard,
but calculating the objective function for any so-
lution requires solving NP-hard deterministic prob-
lems. Therefore, it is impossible to efficiently solve
this problem using any exact algorithms e.g. solvers
or branch and bound methods even for small in-
stances. Because of that, the following evolutionary
algorithm has been proposed.

A solution is represented by a sequence of num-
bers from 1 to n. The order of these numbers implies
the permutation it represents.

A common approach to building evolutionary
based algorithms is using the objective function of
the problem as the fitness function. In this case, as
stated before, the objective function z(π) is too com-
plex to consider it as the fitness function. We use its
upper bound zUB(π) instead.

To generate the initial population, we generate
10 random permutations. In addition, we solve the
given problem using the MIH algorithm described
in Subsec. 4.3. The obtained solution undergoes 9
random mutations to obtain another 10 solutions.
Therefore, we obtain initial population composed of
10 random permutations, one MIH-solution and its
9 mutations.

Standard crossover algorithms cannot be applied,
because the permutation representation for chromo-
somes is used. Therefore, a well described in litera-
ture order crossover operator was chosen, see Golberg
(1989). This operator returns a pair of child chro-
mosomes for each pair of parent chromosomes given
and ensures that the children also represent a fea-
sible permutation. Therefore, no repair algorithm is
required. For the crossover operator, there is a Pcross

parameter defined being the probability of crossing
over two selected chromosomes. This parameter re-
quires tuning to ensure the best algorithm perfor-
mance.

A simple mutation operator has been introduced.
Firstly, it is randomly determined if the chromosome
undergoes the mutation. The probability of the mu-
tation Pmut is considered another parameter of the
algorithm which is tuned. If the chromosome is de-
cided to undergo the mutation, two random genes
are swapped.

6 Volume 6 • Number 3 • September 2015



Management and Production Engineering Review

All chromosomes from the population are select-
ed to generate a new generation. The population is
sorted by nonincreasing fitness function values. First
two chromosomes are removed from the list and the
result of their crossover is added to the new popula-
tion. This process is repeated until the list is emp-
ty.

The algorithm terminates when after 5 subse-
quent iterations no correction is being observed be-
tween the best chromosomes from each population.
The best chromosome of the last generation is re-
turned as the solution.

Computational

experiments

In this section, we introduce the method of gen-
erating random instances of the problem. Then, we
present the comparison of the evolutionary algorithm
(EVO) to the middle-interval heuristic (MIH).

Instance generation

There are no benchmark problems defined in the
literature. Problem instances are generated by us-
ing two constants. For each of mn uncertain para-
meters, the lower bound p

i,j
is randomly generated

from the finite interval [0,K] with uniform distribu-
tion. The upper bound pi,j is than generated from
the finite interval [p

i,j
, p

i,j
+ C] also with uniform

distribution.

Algorithm tuning

There are two parameters for this algorithm that
were tuned: crossover probability Pcross and muta-
tion probability Pmut. These parameters were tuned
one at a time with fixed value of the other. The algo-
rithm was tuned using small instances of the prob-
lem (m = 3 and n = 6). Values of K and C were
fixed to K = 100 and C = 50. All parameters were
tuned using 10 instances generated in the described
way. The proposed algorithm is random, therefore for
each problem instance and each fixed value of tuned
parameter, it was executed 5 times. Average values
of z(πEVO) are considered.

The probability of mutation was tuned first with
the Pcross fixed to 0.75. According to the obtained
results given in Fig. 1, Pmut = 0.15 was used as
the tuned value and a fixed value for tuning Pcross.
Taking into account the results presented in Figs. 1
and 2, the parameters of the evolutionary algorithm
were fixed to Pmut = 0.15 and Pcross = 0.85.

Fig. 1. Average z(πEVO) for different values of Pmut.

Fig. 2. Average z(πEVO) for different values of Pcross.

Algorithm evaluation

The proposed evolutionary algorithm was com-
pared to the middle-interval heuristic (MIH) which
is a common approach to deal with interval data un-
certainty [7]. The input of this algorithm is two ma-
trices of size n×m containing values of lower/upper
bounds of all uncertainty intervals. The output is a
permutation of jobs πMIH. This algorithm yields a
solution to any interval data uncertain problem by
solving the deterministic counterpart which is gener-
ated by substituting all uncertain parameters of the
problem with its intervals middle points:

pMIH
i,j =

p
i,j

+ pi,j

2
.

The resulted deterministic problem is also NP-hard.
Therefore, the NEH algorithm is applied as the solu-
tion tool. The solution of deterministic problem πMIH

is returned as the solution of the uncertain problem.
To compare the proposed evolutionary algorithm

with the MIH algorithm, we generated 10 random
instances with the manner described in Subsec. 4.1
for m = 3, n = 25, K = 100, C = 50. Instances of
the problem with less jobs were generated by consid-
ering only a fixed number of jobs from each gener-
ated instance. Problems with more than three ma-
chines were not considered in the experiments. We
did not also consider instances smaller than 6 jobs
(smaller instances can be solved with an exact algo-
rithm in reasonable time). Every instance was solved
using both algorithms. Because the evolutionary al-
gorithm is random, it was repeated 5 times for each
instance. Table 2 and Fig. 3 present obtained results.

Volume 6 • Number 3 • September 2015 7



Management and Production Engineering Review

As we considered 10 random instances of the prob-
lem for each value of n, we calculated through all
10 instances the average values of zLB(πMIH) and
zUB(πMIH) denoted respectively by zMIH

LB and zMIH
UB .

Due to the fact that the evolutionary algorithm was
additionally repeated 5 times for each instance, we
denote respectively by zEVO

LB and zEVO
UB the aver-

age value of zLB(πEVO) and zUB(πEVO) calculated
through all 5 executions of all 10 instances. We al-
so present the corresponding average running times
T MIH and T EVO in seconds. The other conducted ex-
periment consisted in finding out the relationship be-
tween uncertainty characteristic of the problem and
the difference in the quality of solutions. Therefore,
for a fixed value of n = 10, we generated 10 ran-
dom instances of the problem using different values
of C ∈ {10, 20, 30, ..., 200}. The C value is correlated
with the width of the uncertainty interval, therefore
instances generated with smaller values of C are con-
sidered as “less uncertain” than other ones.

Table 2
Computational results for different values of n.

n zMIH
LB

zMIH
UB

zEVO
LB

zEVO
UB

TMIH TEVO

6 52.9 91.7 41.2 68.0 <0.01 0.58
7 59.1 101.8 46.7 69.5 < 0.01 0.97
8 60.1 89.5 40.5 65.9 < 0.01 1.49
9 86.9 118.7 48.4 69.3 < 0.01 2.78
10 74.3 103.8 53.5 73.9 0.01 3.93
11 70.7 97.1 53.5 71.6 0.01 4.80
12 86.8 107.2 61.3 79.2 0.02 7.78
13 59.6 84.8 50.7 69.9 0.03 9.32
14 84.6 105.6 56.6 72.8 0.03 12.36
15 84.4 109.6 56.3 76.4 0.05 18.78
16 99.7 125.3 65.8 83.1 0.06 23.55
17 89.2 110.9 64.7 82.2 0.07 30.63
18 110.4 128.6 67.1 84.7 0.10 43.59
19 123.1 146.6 74.9 89.0 0.13 66.51
20 97.1 111.9 67.8 81.4 0.16 65.76
21 103.6 119.6 71.8 85.0 0.19 83.20
22 96.1 107.3 66.9 79.6 0.23 99.20
23 111.7 132.3 73.8 89.3 0.28 125.42
24 102.4 125.7 82.8 95.5 0.33 134.93
25 99.4 130.3 77.5 90.4 0.41 171.16

Fig. 3. Average upper and lower bounds of z returned by
MIH heuristic (triangles) and EVO algorithm (dots) for

different values of n.

The values of the lower and upper bounds of ob-
tained solutions were averaged in the similar manner
as previously. The results are given in Table 3 and
Fig. 4.

Table 3
Computational results for different values of n.

C zMIH
LB

zMIH
UB

zEVO
LB

zEVO
UB

TMIH TEVO

10 11.0 33.3 8.34 28.2 0.01 4.28
20 35.2 57.6 28.24 47.84 0.01 4.12
30 47.0 81.4 39.68 67.18 0.01 4.91
40 67.2 110.1 52.32 83.44 0.01 4.85
50 79.8 114.1 61.04 81.68 0.01 5.59
60 93.8 121.5 59.38 79.56 0.01 5.64
70 108.2 139.7 61.34 83.7 0.01 5.14
80 128.6 164.2 81.2 103.26 0.01 5.20
90 142.7 173.1 78.7 97.46 0.01 5.14
100 168.6 204.9 92.12 114.64 0.01 5.76
110 219.2 254.3 90.68 112.12 0.01 6.35
120 190.6 227.2 97.04 115.34 0.01 6.05
130 205.5 239.5 102.2 124.00 0.01 5.25
140 244.6 275 104.2 122.94 0.01 5.72
150 284.8 326.6 109.5 125.46 0.01 6.17
160 307.4 338.1 109.6 130.08 0.01 6.58
170 281 301.8 101.1 117.94 0.01 6.19
180 301.5 338.1 104.6 119.46 0.01 6.21
190 214.5 241.8 108.3 124.5 0.01 5.28
200 281.2 314.0 120.2 138.64 0.01 5.67

Fig. 4. Average upper and lower bounds of z returned by
MIH heuristic (triangles) and EVO algorithm (dots) for

different values of C.

Conclusions

The performed experiments confirmed the use-
fulness of the evolutionary algorithm for minmax
regret flow-shop with three machines (m = 3).
The algorithms were compared for the worst case
which means that the upper bounds for the EVO
algorithm and the lower bounds for the MIH algo-
rithm were taken into account. The average rela-
tive differences for both performed experiments are
equal 7% and 18% for different values of n and C,
respectively. These values are means of ((zMIH

LB −
zEVO

UB )/zEVO
UB )100% calculated for all n and C used

8 Volume 6 • Number 3 • September 2015



Management and Production Engineering Review

in the experiments. One can see also that EVO al-
gorithm works better for bigger uncertainty (Fig. 4).
Moreover, the lack of clear trends in Fig. 3 allows sus-
pecting that the performance of both algorithms is
highly dependent on specific problem instance char-
acteristics. The most important challenge for further
works deals with the effective determination of the
worst-case scenarios which will result in the develop-
ment of successful heuristic algorithms for m > 3.

References

[1] Pinedo M.L., Scheduling – Theory, Algorithms and
Systems, Springer, 2008.

[2] Dutt L.S., Kurian M., Handling of Uncertainty – A
Survey, International Journal of Scientific and Re-
search Publications, 3, 2250–315, 2013.

[3] Pinedo M.L., Schrage L., Stochastic shop scheduling:
A survey, Dempster M.A.H., Lenstra J.K., Rinooy
Kann A.H.G. [Eds.], Deterministic and Stochastic
Scheduling, Reidel, Dordrecht, 1982.

[4] Kouvelis P., Yu G., Robust Discrete Optimization
and its Applications, Kluwer Academic Publishers,
Dordrecht-Boston-London, 1997.

[5] Conde E., A 2-approximation for minmax regret
problems via a mid-point scenario optimal solution,
Operations Research Letters, 38 (4), 326–327, 2010.

[6] Averbakh I., Minimax regret solutions for minimax
optimization problems with uncertainty, European
Journal of Operational Research, 27 (2), 57–65,
2000.

[7] Kasperski A., Zielinski P., A 2-approximation algo-
rithm for interval data minmax regret sequencing

problems with the total flow time criterion, Oper-
ations Research Letters, 42, 343–344, 2008.

[8] Aissi H., Bazgan C., Vanderpooten D., Min-max
and min-max regret versions of combinatorial op-

timization problems: A survey, European Journal of
Operational Research, 197 (2), 427–438, 2009.

[9] Siepak M., Józefczyk J., Solution algorithms for un-
related machines minmax regret scheduling problem

with interval processing times and the total flow time

criterion, Annals of Operations Research, 222, 517–
533, 2014.

[10] Kasperski A., Kurpisz A., Zielinski P. Approximat-
ing a two-machine flow shop scheduling under dis-

crete scenario uncertainty, Journal of Operational
Research, 217, 36–43, 2012.

[11] Averbakh I., The minmax regret permutation flow-
shop problem with two jobs, Operations Research
Letters, 69 (3), 761–766, 2006.

[12] Garey M.R., Johnson D.S., Sethi R., The complexi-
ty of flowshop and jobshop scheduling, Mathematics
of Operations Research, 1, 117–129, 1976.

[13] Lebedev V., Averbakh I., Complexity of minimizing
the total flow time with interval data and minmax

regret criterion, Discrete Applied Mathematics, 154,
2167–2177, 2006.

[14] Nawaz M., Enscore Jr. E., Ham I., A heuristic algo-
rithm for the m-machine, n-job flow-shop sequenc-

ing problem, The International Journal of Manage-
ment Science, 11, 91–95, 1983.

Volume 6 • Number 3 • September 2015 9


