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Abstract 

An array consisting of four commercial gas sensors with target specifications for hydrocarbons, ammonia, 
alcohol, explosive gases has been constructed and tested. The sensors in the array operate in the dynamic mode 
upon the temperature modulation from 350°C to 500°C. Changes in the sensor operating temperature lead to 
distinct resistance responses affected by the gas type, its concentration and the humidity level. The 
measurements are performed upon various hydrogen (17-3000 ppm), methane (167-3000 ppm) and propane 
(167-3000 ppm) concentrations at relative humidity levels of 0-75%RH. The measured dynamic response signals 
are further processed with the Discrete Fourier Transform. Absolute values of the dc component and the first five 
harmonics of each sensor are analysed by a feed-forward back-propagation neural network. The ultimate aim of 
this research is to achieve a reliable hydrogen detection despite an interference of the humidity and residual 
gases. 
 

Keywords: gas sensor, sensor array, temperature modulation, dynamic response, feature extraction, neural 
networks. 

© 2015 Polish Academy of Sciences. All rights reserved

 

1. Introduction 

 

Gas sensors based on metal oxides are well known for their high sensitivity to reducing 

and oxidizing gases. However, the lack of a selectivity and – especially – an interference of 

the humidity are their largest drawbacks [1, 2]. Therefore, the discrimination between several 

chemicals - the presence of which is detected by metal oxide sensors - is difficult to perform, 

unless an array of sensors is used. On the other hand, the cross-sensitivity of these sensors is 

exploited in electronic noses [3] and sensor arrays [4‒6]. Typically, the performance of metal 

oxide gas sensors can be improved by their construction. This may involve using 

nanostructured materials which offer an increased sensitivity and selectivity [9‒11]. However, 

the overall performance of metal oxide gas sensors can be enhanced without a modification of 

the sensor construction. One of the techniques used is a modulation of the sensor temperature 

[5‒7]. It is well known that the gas sensitivity characteristics of metal oxide sensors, as well 

as the kinetics of adsorption reactions [7] at the sensor surface, are affected by the operating 

temperature. Therefore, a modulation of the operating temperature induces a dynamic 

response which is characteristic for a gas mixture composition and a humidity level [5, 6]. 

The pattern recognition plays an important role in the data processing of metal oxide gas 

detection systems and electronic noses [8].  

Gas sensors usually operate in the air at the environmental humidity. It is generally 

accepted that under these operating conditions various uncontrolled species such as oxygen, 

water and carbon dioxide are present. Essentially, the sensor response is strongly influenced 

by the humidity [12, 13], affecting the performance of metal oxide gas sensors. As a result of 

a temperature modulation and different sensing properties at various temperatures, changing 
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the sensor resistance depends on the applied temperature profile and the overall gas 

atmosphere composition. In order to improve the sensing performance the sensor dynamic 

responses are processed and examined by means of digital signal processing techniques. It 

was reported that it was possible to discriminate gases by processing the sensor response with 

the Fast Fourier Transform (FFT) [18‒21] coupled with neural networks [22‒24]. Artificial 

neural networks are dynamic and self-adapting systems that resemble the process of human 

learning and are capable of machine learning and the pattern recognition. Different types of 

neural networks  were used for data processing in electronic nose systems and metal oxide gas 

sensor arrays [14‒17, 22‒24]. 

In this work the performance of an array of metal oxide sensors operating upon the induced 

sinusoidal temperature profile is studied. The feature extraction from the dynamic response is 

performed with the Discrete Fourier Transform (DFT) and the pattern recognition is achieved 

by a feed-forward back-propagation neural network. The ultimate aim is to demonstrate that 

exploiting the cross-sensitivity and the temperature induced dynamic response combined with 

the feature extraction and the pattern recognition enables a reliable hydrogen detection in spite 

of an interference of the humidity and residual gases. Moreover, the presented method enables 

the evaluation of the humidity level. 

 

2. Experimental details 

 

An array consisting of four metal oxide gas sensors with different target gas specifications 

from UST (Umweltsensortechnik) was designed, constructed and tested [6]. Each sensor has 

an incorporated platinum heater which allows to measure and control its temperature. The 

sensors used in the array and their specifications are listed in Table 1. 

 
Table 1. The specification of the sensors used in the array. 

 

Sensor symbol Description 

GGS 1000 
a universal sensor for detecting leaks of combustible gases, such as hydrogen, methane and 
carbon monoxide 

GGS 3000 a sensor for hydrocarbons and hydrogen, optimized for hydrocarbons 

GGS 4000 a selective sensor for ammonia, with a low cross-sensitivity to CH4, CO and H2 

GGS 8000 a sensor for detecting C2H5OH, with a low sensitivity to CH4, CO and H2 

 

The array is connected to a measuring-control system; its block diagram is presented in 

Fig. 1. The system built by the authors consists of a four-channel gas flow controller with four 

MKS Instruments 1179A mass flow gauges, a humidity and temperature logger, a temperature 

controller, a resistance measuring unit and a PC computer for the data acquisition. 
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Fig. 1. A block diagram of the experimental setup. 

The sensors in the array operate in the dynamic mode upon the temperature modulation. 

The temperature of each sensor is deduced from the resistance of its platinum heater. Since 

the applied voltage and the current flowing through each sensor are measured, the heater 

resistance can be determined. The sensor operating temperature is derived from the equation 

(1) which describes the relationship [25] between the heater temperature  TH and its resistance 

RH: 
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where: RH0 – the heater resistance at 0 °C, A = 3.9083 x 10-3 °C-1, B= –5.775 x 10-7 °C-2. 

Based on measurement results of the sensor operating temperature a controlled sinusoidal 

temperature profile is imposed independently for each sensor. The temperature of each sensor 

is modulated from 350°C to 500°C in the period of 3 minutes. During the measurements the 

gas sensing atmosphere is created by mixing the synthetic air with the target gas (H2, CH4, 

C3H8) and argon. This is done in order to obtain the same oxygen concentration in the gas 

atmosphere. The flow of the synthetic air is kept constant (40 sccm) while the additional total 

gas flow of 20 sccm is produced by adjusting the gas flows of pure Ar and the target gas + Ar 

mixture. The target gas mixtures used during the experiments include 0.1% H2 in Ar, 1% H2 

in Ar, 1% CH4 in Ar and 1% C3H8 in Ar. Various humidity levels of 0-75%RH are set by 

mixing, at certain proportions, the dry synthetic air with the synthetic air flowing through a 

bubbler filled with water and thus saturated to 100%RH. The relative humidity is measured 

with a HIH-4602 sensor from Honeywell. The dynamic responses are studied as a function of 

the hydrogen (17–3000 ppm), methane (167-3000 ppm) and propane (167-3000 ppm) 

concentration at various humidity levels (0–75%RH). A detailed description of the gas 

sensing properties of the array operating at a constant temperature can be found in [6]. 
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3. Results and discussion 

 

In the experiment all sensors in the array operate upon an induced temperature profile in a 

so-called dynamic operation mode. In this mode of operation a controlled sinusoidal change 

of the operating temperature of each sensor is imposed. This leads to periodic changes in the 

electrical resistance of the sensors, as shown in Fig. 2. The periodic dynamic resistance 

changes induced by the temperature profile are described in [5, 6]. 

 

 

Fig. 2.  The dynamic response of an GGS 3000 sensor to 500 and 1000 ppm of CH4 at 0 %RH upon the sinusoidal 

temperature modulation (350 - 500°C). 

The dynamic resistance changes of metal oxide gas sensors depend on the target gas 

concentration, as presented in Fig. 2 for methane, and also on its type. These resistance 

changes over one temperature modulation cycle are further processed. 

 

3.1. Signal processing 
 

The duration of one temperature modulation cycle is set to 3 minutes and the resistance 

sampling frequency is 1 Hz. So, the resistance change over one temperature modulation 

period r consists of N = 180 samples: 

 [ ]
xNN

rrr
121

L=r . (2) 

These resistance changes over one temperature modulation cycle for different hydrogen, 

methane and propane concentrations at humidity levels of 0 and 75%RH are presented in 

Fig. 3.  

6



 
Metrol. Meas. Syst., Vol. XXII (2015), No. 1, pp. 3–12. 

 

 

 

Fig. 3.  The dynamic responses of an GGS 3000 sensor over one temperature modulation cycle                                                     

(350 - 500°C) to different concentrations of: a) hydrogen 0%RH, b) hydrogen 75%RH,                                                                        

c) methane 0%RH, d) methane 75%RH, e) propane 0%RH, f) propane 75%RH. 

As one can observe in Fig. 3, the response amplitude depends on the gas type and its  

concentration, as well as on the relative humidity level. Furthermore,  changes in the dynamic 

resistance response curve can be noticed. In order to compare these response curve shape 

changes, the sensor responses are pre-processed according to the following formula: 
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where: ri is the i-th element of the resistance change r over one temperature modulation 

cycle, sRi is the i-th element of the pre-processed normalized response sR, min(r) and max(r) 

are the minimum and the maximum values of r. The result of the performed pre-processing is 

the pre-processed normalized sensor response sR: 

 [ ]
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R
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In a consequence, the value of each sample sRi in the pre-processed normalized response sR 

is contained within the interval [0, 1]. Examples of normalized responses of an GGS 3000 

sensor over one temperature modulation cycle for different concentrations of hydrogen, 

methane and propane at  the humidity levels of 0 and 75%RH are presented in Fig. 4. 

 

7



 
 P. Gwiżdż, A. Brudnik, K. Zakrzewska: GAS DETECTION WITH AN ARRAY OF METAL OXIDE GAS SENSORS – SIGNAL … 

 

 

Fig. 4.   The dynamic normalized responses of an GGS 3000 sensor over one temperature modulation cycle                                   

(350 - 500°C) to different concentrations of: a) hydrogen 0%RH, b) hydrogen 75%RH,                                                                    

c) methane 0%RH, d) methane 75%RH, e) propane 0%RH, f) propane 75%RH. 

As one can observe in Fig. 4, for hydrogen and propane the shape of the normalized 

response curve depends on both the target gas concentration and the humidity level. 

Furthermore, for methane no changes in the normalized response curve shape are observed for 

an GGS 3000.  

In order to perform a feature extraction from the normalized response sR of each sensor the 

Discrete Fourier Transform (DFT) has been derived according to the formula: 
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where: Smk is the k-th element of the discrete spectrum Sm of the m-th sensor.  

   

In order to analyse the influence of subsequent harmonics on the response spectrum it is 

advantageous to use the values of Hmk being the k-th harmonic content of the m-th sensor in 

the response spectrum, defined as: 
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Using the values as a criterion we were allowed to conclude that only the first five harmonics 

and the dc component carry most of the information on the processed signal of each sensor. 
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Therefore, only the absolute values of those five coefficients from DFT and the dc component 

of each sensor response constitute an input sIN for the neural network, which is given by: 

 [ ]
mk
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151413121110
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where: smk is the k-th element of the discrete spectrum of the m-th sensor. The scheme of 

the described signal processing method applied to a four-element sensor array is summarized 

in Fig. 5. 

 

 

Fig. 5.  A diagram of the signal processing method used in the experiment. 

 

3.2. Gas detection and recognition  

 

In order to facilitate a selective and reliable hydrogen detection in spite of interfering 

factors like: methane, propane and a humidity, as well as the humidity level, a feed-forward 

back-propagation neural network has been applied and the Levenberg-Marquardt learning 

algorithm has been used. A feed-forward back-propagation neural network consists of an 

input layer, one or more hidden layers and an output layer. In a feed-forward neural network, 

neurons are connected forward and there are no connections backward. In other words, each 

layer contains connections only to the next layer. The term back-propagation corresponds to 

the training type of a neural network. The back-propagation algorithm is a form of supervised 

training for multilayer neural networks. When this type of learning is applied, the network 

must be provided with sample inputs and anticipated outputs. Using the anticipated outputs, 

the back-propagation training calculates the error (the anticipated outputs are compared with 

the actual outputs for a given input) and adjusts weights of  various layers backwards from the 

output layer to the input layer.  

In our research the performance of neural networks with various numbers of hidden layers 

was studied using the Matlab software. The measurements of the sensor response to 

hydrogen, methane and propane (using 1% mixtures of target gas with argon) were conducted 

for the following concentrations: 0, 167, 500, 1000, 1167, 1500, 2000, 2333, 2500 and 3000 

ppm. Moreover, using the mixture of 0.1% hydrogen in argon the sensor responses were 

recorded at the concentrations of 0, 17, 50, 100, 117, 150, 200, 233, 250, 300 ppm H2. The 

responses at each concentration were measured at the relative humidity levels of 0, 25, 50, 

75%RH. In total, the sensor responses have been measured at 160 different gas atmosphere 

compositions. The learning set consisted of 2240 input signals while the testing and the 

validation sets consisted of 480 signals each recorded at various hydrogen, methane and 

propane concentrations and humidity levels. Gas concentration and humidity level predictions 

of feed-forward back-propagation neural networks with 1 to 40 hidden layers were tested. At 

the beginning the influence of the number of analysed harmonics on the hydrogen and 

humidity prediction was studied. The average prediction error of all neural networks with 1 to 

40 hidden layers vs. the number of analysed harmonics is presented in Fig. 6.  
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Fig. 6.  An average gas concentration and humidity prediction error vs. the number of harmonics used as an input for the 

neural networks with 1 to 40 hidden layers. 

As presented in Fig. 6, the average hydrogen prediction error has the smallest value of 

15.2% when five harmonics of each sensor response are analysed. However, only slightly 

bigger error of 17.9% is obtained when four and six harmonics are analysed. In terms of the 

humidity prediction also the smallest average error (22.6%) is obtained when five harmonics 

are analysed. As one can observe, a certain number of harmonics has to be analysed. It is clear 

that if the analysed number of harmonics is either too small or too big, the neural networks 

tend to give bigger prediction errors of the hydrogen concentration and the humidity level. 

The relation between the number of analysed harmonics and the neural networks giving the 

best performance is illustrated in Fig. 7. As the best performance it is assumed that the neural 

network gives the lowest hydrogen prediction error but not necessarily the lowest humidity 

prediction error. 

 

 

Fig. 7.  An average gas concentration and humidity prediction error of the networks with 1 to 40 hidden layers giving the best 

performance vs. the number of analysed harmonics. 

As presented in Fig. 7, the lowest average hydrogen concentration prediction error of 

5.80% is achieved when five harmonics are analysed. However, only a slightly higher error is 

achieved when four or six harmonics are analysed. We assume that the best neural network 

should give the lowest humidity and gas concentration error.  

Finally, we can conclude that the best performance is achieved for a neural network with 

27 hidden layers analysing the absolute value of five harmonics and the dc component of the 

dynamic response spectrum of each sensor in the array. This neural network can predict the 

hydrogen concentration and humidity level with an average error of 5.80% and 11.48% 

respectively.  

At last, the influence of the learning and testing sets on the neural network performance 

has been studied. During the neural network training the measured data set is divided into 

three subsets (training, validation and testing). The training subset is used during the learning 

stage for computing the gradient and updating the network weights and biases. The validation 

subset is used to calculate the validation error during the training process. The testing subset 
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is not used during the training process, but in comparing the studied neural networks. The size 

of the testing subset is the same as the validation subset. The measured data are divided 

randomly into those three subsets. The initial set consisted of 3200 measured data at various 

gas atmosphere compositions. Initially, at each target gas concentration and humidity level 20 

responses were measured. Next, the initial set was systematically reduced in such a way that 

at each tested gas atmosphere composition the number of measured responses was reduced by 

two. Therefore, the smallest data set consisted of only two responses measured for each gas 

atmosphere composition. The results concerning the average prediction error for neural 

networks with 1 to 40 hidden layers versus the learning and testing sets are presented in 

Fig. 8. 

 

 

Fig. 8.  An average gas concentration and humidity prediction error. 

As one can see in Fig. 8, the neural network performance depends on the size of the 

learning set used during the network training stage. 

 

4. Conclusions 

 

The obtained results let us to conclude that the array of metal oxide gas sensors operating 

upon an induced sinusoidal temperature profile combined with a feature extraction and the 

pattern recognition enables a reliable determination of the hydrogen concentration with an 

average error below 5.8% despite an interference of the humidity and interfering gases, such 

as methane and propane. Moreover, the results of our work indicate that not only the gas 

detection can be achieved but also – simultaneously - the determination of the relative 

humidity level with an average error of 11.5%. 
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