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Abstract: This paper contains a characterization of certain aspects of bipartite quantum entanglement.
We discuss relationship between entropy and entanglement, as well as qualitative and quantitative aspects
of entanglement. Qualitative characterization of entanglement concerns the criteria: reduction criterion,
positive partial transpose, positive maps, entanglement witness and majorization criterion. Measures of
entanglement have been discussed as the quantitative aspects of entanglement.
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1. Introduction

In 1935 Einstein, Podolsky and Rosen designed a thought experiment to demon-
strate the incompleteness of quantum mechanics [1]. The presented thought experiment
assumed the principle of locality and reality of quantum mechanics. The logic of the
experiment of Einstein, Podolsky and Rosen was as follows. If we consider a system of
two particles in state [¢p~) = %(|01> — |10)), then the measurement made on the first
particle has an impact to a outcome on the second particle. After measurement of the
first subsystem, the first particle is in state |0) or |1) with probability % The same results
are obtained for the second particle. Suppose that the particles are separated from each
other in millions of light years. By measuring the first particle if it is obtained state |0),
then it is known that second one is in state |1). It looks like, the knowledge on the state
of second particle came to the observer the first particle faster than the speed of light. It
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follows that it is not satisfied at least principle of quantum mechanics. Einstein, Podol-
sky and Rosen came to the conclusion that some quantum effects travel faster than light,
which is contradiction to the theory of relativity. The presented experiment is called
the EPR paradox. In response to the EPR paradox, Irish physicist John Stewart Bell
performed a thought experiment showing that at least one of the quantum mechanics
assumptions must be false [12]. Bell introduced inequalities that satisfy the assumptions
of local realism, and then showed that for certain quantum states they are violated. Ex-
perimental violation of Bell’s inequalities was confirmed repeatedly by some quantum
systems [18, 24]. EPR paradox has become the basis to define the term entanglement of
states, which is a type of correlation between particles that have no classical counterpart
[7].

The recent development of quantum information theory showed wide practical ap-
plications of entanglement. Entanglement became the basis for quantum information
processing and is used in quantum cryptography, quantum teleportation, quantum error
correction codes and quantum computation.

This paper is organized as follows. Section 2 contains definition of pure states and
entanglement of pure states. Similarly, section 3 presents the definition of entanglement
of mixed states. Section 4 shows relationship between entropy and entanglement. Sec-
tion 5 presents some methods of identifying entanglement for bipartite pure and mixed
states. Finally, section 6 describes the axioms of measure of entanglement and presents
chosen measure of entanglement.

2. Entanglement of pure states

A pure quantum state can be represented by a vector in a complex Hilbert space with
unit length. Thus for each pure state |¢)) and any basis {|u1), ..., |u,)} the state |¢) can
be extended to

|¢> :a1|u1>+"'+an|un>a (D

where Y7 |a;|* = 1. Now we consider the entanglement of pure states. Let {|u;),i =
1,2,...,n} and {|v;),j = 1,2,...,m} be orthonormal bases of n — dimensional Hilbert
space 'H,, and m — dimensional Hilbert space H,, respectively. Denote by H,,,, a Kro-
necker product of spaces H,, and H,,. Thus H,,, = H, ® H,, is a nm — dimensional
Hilbert space with orthonormal basis {|u;) ® |v;),i = 1,2,...,n,j = 1,2, ..., m}, where
|ui) @ [vj) = lug)vy) = D20y S5y viglua)lvg) and 30 ST [yisl® = 1.

Definition 1 A pure state |x) € Hyn, is called separable if and only if it can be written
as Kronecker product of states |1) =3Iy a;lu;) € Hy and [¢) =377, Bilvi) € Hin

X) = [¥) @19). 2)

Otherwise |x) is entangled.
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Consider a pure state 1) = %(\OO} +[11)) from Ho ® Ha. Let |¢1) = «|0) + G]1),

|p2) = 7|0) + 6|1) be states from Hilbert space Hz, where |a|?> + |8|> = 1 and
|| + |6]? = 1. Suppose that [¢)T) is separable, thus it can be written in form

[¥F) =161) @ |p2) = (2]0) + BI1)) ® (7]0) + 3[1)). 3)

Hence
1

V2

There are no values «, 3,7, 6 that ay = 85 = % and a0 = [ = 0 thus we obtain

(]00) + [11)) = ay|00) + ad|01) + B|10) + B6|11). 4)

W) # |o1) ® |o2) )

so the state |1)™") is entangled.

3. Entanglement of mixed states

Any pure state 1)) can be identified with the density operator expressed as
p = |1)(¥|. Mixed states are statistical mixture of density operators of pure states. Each
density operator for pure state p is a projection operator into one-dimensional space thus
satisfies the property p? = p.

Consider statistical mixture of pure states {p; = |1;)(¢;],7 = 1,2, ..., n} with prob-
abilities {p;,7 = 1,2, ...,n}. Then the density operator for the system is expressed as

n
p= Zpipi- (6)
i=1

Density operator has characteristic properties and they are follows: p is Hermitian,
positive and has a trace equal to 1.

Definition 2 Let H 4 and Hp be Hilbert spaces. Denote by p a density operator of state
from Hy ® Hp. Operator p is called separable if there exist a sequence {p;}7_, of
positive real numbers summing to 1, a sequence density operators {pf‘ i, correspond-
ing with states from H 4 and a sequence density operators { pZB i, corresponding with
states from Hp such that

n
p=> pini @p}. @)
i=1

In other words, if the mixed state can be written as a convex combination of Kronecker
product of density operators then the state is separable. For the first separability of mixed
states was raised by Werner [10]. Equality (6) is more restrictive than Bell’s inequalities,
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thus each separable state satisfies Bell’s inequalities [5]. The condition (6) is also true
for pure states. The decomposition state p into (6) is not unique. Entanglement detection
is a difficult problem except in the case of pure states. In special cases it is possible to
detect entanglement and it is described in section (5).

4. Entropy of entangled states

In information theory, Shannon entropy is a measure of expected value of the infor-
mation contained in a message [25]. The quantum counterpart of Shannon entropy is the
von Neumann entropy. In classical information theory entropy of a single random vari-
able is never greater than the entropy of joint random variables. In the case of quantum
systems, von Neumann entropy for the joint system can be smaller than the entropy of
its subsystems [3]. This fact is useful for detection of entanglement of quantum states.

Definition 3 ([11]) Let p be a density operator of a quantum system, then von Neumann
entropy is defined as

S(p) = —tr(plogp). (8)

Using the spectral decomposition, function log can be extended on operators. Thus
the von Neumann entropy can be written as

S(p) == Ailog ;. ©)
=1

Here after we assume that default logarithm base is equal to 2.
Any pure state has a spectrum of the form A\; = 1, A2 = 0,..., A\, = 0. Thus, the
von Neumann entropy of the system is equal to

S(p) =—1logl=0. (10)

Mixed state is called maximally mixed if it is represented by the density operator
p= % 1 € 'H, where N is a dimension of space H. Von Neumann entropy for this states
takes the highest value equal to

1 1
S(p) =— —log — = .
(p) Z nlogn logn (11)
=1
Von Neumann entropy can be interpreted as a measure of the unpredictability of
measurement of a quantum state.
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Conditional and joint quantum entropies are defined similarly as in the classical in-
formation theory. It is necessary to introduce the reduced operators and partial trace. For
any separable state pB = p4 ® pP the partial traces are defined as

tra(p™?) = tr(p")p” and trp(p??) = tr(p”)p. (12)
Since p? and p? are density operators, thus tr(p?) = 1 and tr(p?) = 1. Hence, the

reduced density operators can be expressed as

pt =trp(p??) and p” = tra(p?”). (13)

We extend the definition of partial trace for all state by trace linearity.
Definition 4 ([11]) Let p?, p? and pAP be the density operators of quantum systems

A, B and composite system AB respectively. The joint von Neumann entropy of the
quantum systems A and B is defined as

S(p?, p%) = S(p"P). (14)

Definition 5 ([11]) Let p* and p? be the density operators of quantum systems A and
B. The conditional von Neumann entropy is given by

S(p1p") = S(p*, ") = S(pP). (15)

Conditional quantum entropy can be negative which is not possible in the classical theory
of information [2].
Consider the entangled state |[¢)) = %UOO} + [11)) of the system .AB. The matrix

form of the density operator p*Z for the state [¢)T) is given by

AB

pP = (16)

o oo O
o oo O

VR

NIROON|=

NIROONI=
SN—

The spectrum of the operator p is the sequence {1, 0,0, 0}, thus conditional entropy of
the state p47 is

S(pB) = —log1 = 0. (17)
By equations (9) shows that p4 = trg(pA?) and p?® = tr(p*P), thus
1
pt=p" = 5 (10){0] + [1)(1]). (18)
Sequence {%, %} is a spectrum of the operators p” and p”. Hence the entropy of opera-
tors p and p? is equal to
1 1 1 1
S(p*) =S(pP)=—-log= — ~log -~ = 1. 19
(p%) = 5(p7) = —5log 5 — S log 5 (19)
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Thus, we obtain the inequality S(p?) > S(p?P), which shows that the entropy of the
subsystem A is greater than the entropy of the joint systems AB. Hence, knowledge of
the joint system is greater than knowledge of the subsystem. This property occurs only
in the case of entangled states [26,27]. Thus the von Neumann entropy can be a tool
used for the detection of entanglement.

Von Neumann entropy is applied in the research of mixed states in many aspects,
such as quantitative measure of entanglement [9] or a necessary condition for the non-
violation of Bell’s Inequalities [13].

5. Separability criteria

Generally the problem of deciding whether the state is separable or entangled is
difficult. In the case of bipartite pure states, there exists an effective method for detecting
entanglement. The criteria for checking whether the state is entangled exists for mixed
states, but they are effective only for low dimensional cases.

5.1. Separability criterion for pure states

Let Hap = Ha ® Hp be a Hilbert space defined as a Kronecker product of two
Hilbert spaces H 4 and H p. For any pure state |¢)) from H 4p there exist orthonormal
bases {|a;),i = 1,...,n} and {|b;),i = 1,...,m} respectively in spaces H 4 and Hp
such that

k
) = VAila:) @ [bi), (20)
=1

where & < min(n, m), Zle A; = 1 and ); are positive coefficients called Schmidt co-
efficients [14]. For a pure state |¢)) the Schmidt coefficients are equal to the eigenvalues
of pA = trg(|b)(1|) [15]. The state |1)) is separable if and only if it has unique Schmidt
coefficient that \; is equal to 1 [4, 11].

5.2. Peres-Horodecki criterion

The Peres-Horodecki criterion is also called positive partial transpose (PPT). The
Peres-Horodecki criterion is a necessary condition for separability of mixed states. Let
M x N dimensional state be a state from Hilbert space H 4 ® Hp, where dim H4 = M
and dim’Hpg = N. For 2 x 2 and 2 x 3 dimensional states, the PPT criterion is also
sufficient condition for separability [6].

Let p be a density operator of composite system .A8B. Matrix element of an operator
p is given by

P = (ml{alplm)|), @1
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where Latin letters describe first subsystem and Greek letters describe second subsystem.
The partial transposition of operator p is defined in [4, 6] as

pgﬁtﬂw = Pmyv,np and pz;{;;,ny = Pnumv- (22)
Hence the operation (2) for any separable state p = p* ® p” can be expressed as
p? = pt @ (pP)" and p™ = (p")" @ p”. (23)

Theorem 1 (Peres [5]) If a state p is separable, then p™ and p'® are positive opera-
tors.

Theorem 2 (Horodecki [6]) Composite states p of dimension 2 x 2 and 2 X 3 is sepa-
rable if and only if p' is positive operator.

A M x N dimensional Hilbert space Hq ® Hp, where M = 2. N > 3or M > 3
contains entangled states [16], so partial transpose criterion is effective only for low
dimensional states.

Consider an entangled state |¢™) = %(\Ol) +110)). The matrix form of the density

operator p*B for the state [¢) is given by

0000
ollo
— 2 2
p_<0;§0>' (24)
0000
Hence, the density matrix for operator p”2 is in the form
000 3
1
T | 0300
S (25)
1000

The spectrum of the operator p’2 is the sequence {—%, %, %, %} One eigenvalue is

smaller than 0, thus p”? is not positive and the state p is entangled.

5.3. Entanglement and positive maps

Let B(H4) and B(Hp) be spaces of bounded operators on Hilbert spaces H 4
and Hp. The space of the linear maps from B(H,4) to B(Hp) is denoted by
L(B(Ha),B(Hp)). A linear map A € L(B(Ha),B(Hp)) is called positive if
p > 0 implies A(p) > 0. Map A is completely positive (CP), if extended map
1A :BM®Has) — B(M® Hpg) is positive for any space M.
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Consider completely positive map A and state p4 ® pp. The state p4 ® pp is positive
thus (1®A)(pa®pp) = pa®A(pp) is positive. Map A is positive for all states also for
entangled ones, hence A cannot be used for the detection of entanglement. The above
property is important for the recognizing entangled states. For any entangled state p
there exist a positive but not CP map A such that (1 ® A)(p) is not positive.

Theorem 3 ([4, 6]) Let p be a density operator acting on Hilbert space Ho® Hp. Then
p is separable if and only if for any positive map A € L(B(Ha), B(Hg)) the operator
(1® A)(p) is positive.

Suppose that A is a transposition operator such that A(c) = o?. Hence
(1 ® A)(p) = p'® and p is entangled if operator p’® is not positive. Thus, if A is
a transposition operator, then we obtain PPT criterion.

Positive maps are a strong tool to detection of entanglement. Unfortunately it is not
easy to find a good mapping for solving problem of entanglement. Proposals of positive
maps used for deciding whether state is entangled are contained in [17].

5.4. Reduction criterion for separability

Reduction criterion is based on the theory of positive maps [4]. Theorem (1) shows
that for any positive map A which is not CP, state p is separable if

(I@A)(p) = 0. (26)

Consider the map A of the form A(o) = tr(o)1 — 0. If o is positive then A(o) is
also positive, hence A is a positive map. Thus, condition (4) can be written as

pa®l1—p=>0, (27)
where p4 = trp(p). Dual criterion for (4) is given by
1@ pp—p > 0. (28)

In general reduction criterion is weaker than the PPT criterion, but for 2 x 2 and 2 x 3
dimensional states, PPT criterion and reduction criterion are equivalent.

5.5. Entanglement witness

Entanglement witness is a strong criterion used for distinguish an entangled state
from separable ones. The idea of entanglement witnesses is based on the Hahn-Banach
theorem.
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Fig. 1. Graphical interpretation of the Hahn-Banach theorem

Theorem 4 ([20]) Denote by S a convex, compact set in a finite dimensional Banach
space. Let p be a point in the space with p & S. Then there exist a hyperplane that
separates p from S.

Figure 1 shows the geometric interpretation of the Hahn-Banach theorem. Hyper-
plane separating the set .S of the point p is determined by the orthonormal vector W,
which is selected from outside the set S. Each point p may be characterized by the
signum of the scalar product tr(Wp). If state p is separable then distance is positive
otherwise the distance is negative. By using entanglement witnesses it is possible to
approximation the set of separable states. Since the separable states form a convex,
compact set, hence Hahn-Banach theorem is interesting in terms of entanglement detec-
tion

Theorem 5 ([19]) A density operator p is entangled if and only if there exist a Hermitian
operator W with tr(Wp) < 0 and tr(W o) > 0 for any separable state o.

Operator W is called an entanglement witness (EW). Between positive maps and entan-
gled witness exists a close relationship [19]. For any entanglement operator W exists
positive map A such that

W= (1 A)(Py), (29)

where P, is the projector operator

1 M M
Pp = <Z !ii>> > Gl | - (30)
i=1 j=1

Operator P, is a projector operator onto the maximally entangled state. Correspondence
between W and A is determined by Jamiotkowski isomorphism.
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Definition 6 ([21]) An entanglement witness W is decomposable (DEW) if it can be
written as
W=aP+(1-a)Q", 31)

where P,QQ > 0, a € [0, 1] and T4 is a partial transpose on subsystem A.
Decomposable entanglement witnesses cannot detect entanglement of PPT states. If ex-
ists at least one PPT entangled state which cannot be detected by entanglement witness
W, then W is non-decomposable [21].

Each entangled state can be detected by some witness W, but there is no general
method for construction of entanglement witnesses. Thus the entanglement witness is

difficult to use. Construction a entanglement witnesses for different classes of entangled
states are described in [21, 23, 22].

5.6. Majorization

The majorization criterion proposed by Nielsen and Kempe [3] is necessary but not
sufficient condition for separability.

Definition 7 Denote by X = {x1,....,x,} and Y = {y1,...,yn} non-increasing se-
quence such that x1 > x9 > -+ > xpand y; > yo > -+ > yYp. Sequence X majorizes
Y, if the conditions

k k
=Dy (32)
=1 =1

is held forany k =0, ...,n — 1 and

ZJ:‘Z' = Zyi. (33)
i=1 i=1

If X majorizes Y, then we write that X < Y.

Theorem 6 ([3]) Let p*, p? and pP be the density operators of quantum systems A, B
and composite systems AB. If state pB is separable, then

A(p*P) < A(p™), (34)

and

A(p™P) < A(pP), (35)

where N(pap) is a non-increasing sequence of eigenvalues of operator pap and sim-
ilarly X(pa), N(pp) are non-increasing sequences of eigenvalues of operators p 4 and
pB respectively.
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Sequences A(p4), A(pp) are shorter than \(p4p), thus they are enlarged by appending
zeros to equalize their dimensions with sequence A(pap).
Conditions (7) and (8) imply that

S(p*?) = S(p™) and S(p*?) = 5(p?), (36)

so this criterion is stronger than entropic criterion [3].

6. Measures of entanglement

6.1. Local Operations and Classical Communication

Local Operations and Classical Communication LOCC' is an important class of
maps which are necessary to define measures of entanglement. The class of LOCC op-
erations includes all quantum operations, also measurements, but only performed locally
in each subsystems. LOCC operations are characterized by two properties:

— Local Operations: all operations are performed locally on the respective subsys-
tems. Simple example of local operation is trace, which can be performed locally
on the subsystems: 7' = T4 @ T'5.

— Classical Communication: this properties means that information between sub-
systems is exchanged by means of classical communication channels.

6.2. Requirements for entanglement measures

Entanglement criteria are helpful in detecting entanglement, but they do not give
quantitative information on how much the state is entangled. Despite the fact that it is
still being discussed what conditions should be fulfilled by a measure of entanglement,
it is widely assumed that the measure of entanglement should satisfy the following re-
quirements [8].

1. A measure of entanglement E is a function which assigns non-negative value for
each state p.

2. LOCC Monotonicity: Measure E cannot increase under LOCC' operations. Al-
ternative weaker condition is invariant under local unitary operations. Measure
F is invariant under local unitary operations, because they are reversible thus
E(p) = E(U® VpU'" ® V1), where U, V are unitary.

3. Normalization: For any state o holds E(c) < E(p) = S(p), where p is maxi-
mally entangled.

4. Convexity: E(Ap+ (1 —X)o) < AE(p) + (1 — X\)E(0), with A € [0, 1].
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5. Continuity: Let p, and o, be a sequences of states acting with composite Hilbert
spaces (Ha ® Hp)®". If lim, o0 ||pn — onll1 = O then

lim — 2 Pn) = Blow)
n—oo nIn(dim(Hs ® Hp))

=0. 37

6. Depending on the requirements of measurement functions, additivity condition
can be formulated in several ways

Additivity: E(p ® o) = E(p) + E(o) for any states p and o.
Subadditivity: E(p ® o) < E(p) + E(o) for any states p and o.
Weak additivity: E(p) = +E(p®™) for any state p.

E(p®N)
-

Existence of regularization: E(p) = limy_,oo =

6.3. Important entanglement measures

For bipartite pure states which satisfies requirements from section (1) there exists
only one entanglement measure — von Neumann entropy of reduced density operator
[8]. Let p be a density operator of a pure state from Hilbert space H4 ® Hp. Thus
measure of entanglement E for p is given by

E(p) = S(p") = —tr(p" log p"), (38)

where pP = tra(p).
For mixed states, there exist a lot of measures of entanglement. The most important
of these are contained in [9].

1. Entanglement cost: Let A be a trace preserving LOCC' operations and denote
by W (K) a density operator corresponding to the maximally entangled state in K
dimensions. Thus entanglement cost for operator p is given by

n—oo

Ec(p) :inf{r: lim {il&ftr(]p®"—A(\Il(2m))|)] :o}. (39)

This measure gives information how expensive it is to create an entangled state p
using LOCC operations in bipartite entangled state.

2. Distillable entanglement: Similarly let A be a trace preserving LOCC operations
and ¥ (K) be a density operator of maximally entangled state in /& dimensions.
The distillable entanglement for state p is defined as

En(p) =sup{r: in_finfex(ao°) — wz))| <o} o
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Distillable entanglement is reverse to the entanglement cost and tells how many
LOCC operations should be used to extract state p into composition of bipartite
entangled states.

3. Entanglement of formation: For a mixed states p the entanglement of formation is
given by

Ep(p) = inf {zpz’E(|¢z’><¢z‘|) tp= ZM%MUM’} ) 41)

where E is measure of entanglement for pure states defined as (5). This measure
is minimized over all possible decompositions state p. This measure is close to
entanglement cost. Measure F¢ is asymptotic version fo Er and can be expressed

as
Ep(p®n
Ec(p) = lim 7}?(0 )

n— oo n

(42)

4. Relative entropy of entanglement: Let S be a set of separable states. Relative
entropy of entanglement for state p is defined as

Egr(p) = inf S(p|lo) = inf tr(plogp — plog o). (43)
oeS oeS

Quantum relative entropy is a measure of similarity between two quantum states.
Relative entropy of entanglement gives distance between p and the nearest sepa-
rable state.

For pure states, the above-mentioned measures coincide with the von Neumann en-
tropy of reduced density operator. The situation is more difficult for mixed states, where
many entanglement measures exist. It can be shown that for each measure of entangle-
ment E' and density operator p it holds Ep(p) < E(p) < Ec(p) [7]. Thus Ep and E¢
are the lower and upper limits of values assumed by any entanglement measures.

7. Conclusion

Entanglement of quantum states is the object of intensive research, due to the wide
range of applications in quantum information theory. In this paper we present the basic
aspects of quantum entanglement. For bipartite pure state there exist efficient methods
for detection entanglement. The situation is more complicated for mixed states. Unfor-
tunately, there is no general, efficient method for identifying entanglement. The theory
of positive mappings gives strong tools for the deciding whether state is separable or en-
tangled. In special cases, the positive maps can be reduced to the reduction criterion or
PPT criterion. These criteria are necessary conditions for separability of mixed states.
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For 2 x 2 and 2 x 3 dimensional states, PPT criterion and reduction criterion are also
sufficient conditions of separability. The most of the entanglement detection methods is
strongly associated with positive maps, for example described entanglement witness. Of
the presented methods, only majorization criterion entanglement is not related to posi-
tive mappings. This paper contains also a description of the measures of entanglement,
which give information on how much the state is entangled.
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Wprowadzenie do kwantowego splatania
Streszczenie

W artykule zostaly poruszone podstawowe aspekty splatania kwantowego. Przy-
toczone zostaty definicje splatania dla stanéw czystych oraz mieszanych. Nastepnie
opisano pojecie entropii von Neumanna oraz jej zwiazek ze splataniem stanéw kwan-
towych. Kolejne sekcje zawieraja opis kryteriow separowalnosci. Ostatnia sekcja za-
wiera aksjomaty miar splatania, a takze najwazniejsze miary splatania.



