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The effect of reduced heat transfer in a micropolar
fluid in natural convection
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Abstract This paper presents the numerical solution to the unsteady
natural convection problem in micropolar fluid in the vicinity of a vertical
plate, heat flux of which rises suddenly at a given moment. In order to solve
this problem the method of finite differences was applied. The numerical
results have been presented for a range of values of the dimensionless mate-
rial properties and fluid Prandtl number. The analysis of the results shows
that the intensity of the heat transfer in micropolar fluid is lower compared
to the Newtonian fluid.

Keywords: Micro polar fluid; Microrocation; Boundary layer theory; Local Nusselt
number

Nomenclature

a – fluid thermal diffusivity , m2/s
Grx – local Grashof number
g – gravitational acceleration, m/s2

j – microinertia density, m2

M – total number of spatial steps in x directions
N – microrotation component normal to (x,y)-plane, 1/s; total

number of spatial steps in y directions
n – microrotation parameter
Pr∞ – Prandtl number
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t – temperature of the fluid, K
T – dimensionless temperature
u, v – the x- and y-components of the velocity field, m/s

Greek symbols

β – volumetric coefficient of thermal expansion, 1/K
δ – boundary layer thickness, m
κ – rotational viscosity coefficient Pa s
λ – thermal conductivity, W/(mK)
ρ – density, m3/kg
γ – spin gradient viscosity, Ns
µ – dynamic viscosity, Pa s
τ – time, s
τw – shear stress of a vertical surface, Pa

Subscripts

i, j – grid locations in x, y directions
n – number of time steps
w – refers to conditions at the wall
∞ – refers to conditions far away from the wall

1 Introduction

The concept of micropolar and thermomicropolar fluids introduced by Erin-
gen [1] deals with the class of fluids which exhibit certain microscopic effects
arising from the local structure and micromotions of the fluid elements.
Eringen’s theory may form suitable non-Newtonian fluid models that can
be used to analyse the behaviour of exotic lubricant, colloidal suspensions
or polymeric fluids, liquid crystals and animal blood [2–4].

The process of natural convection in micropolar fluid located in the
vicinity of a vertical plate heated by the constant heat flux has been con-
sidered by Chang [5]. Studies of the convection heat transfer in micropolar
fluids have been focused on vertical and horizontal plates. El-Hakiem [3]
presented a similar solution for the steady laminar natural convection along
an isothermal vertical plate in a micropolar fluid with internal heat gener-
ation. Gorla [2] considered the unsteady mixed convection flow of a lam-
inar micropolar boundary layer over a vertical plate. Mohammadein and
Gorla [6] presented an analysis to study the heat transfer characteristics
of a steady laminar micropolar fluid over a linearly stretching, continuous
surface. They have taken into consideration the surface with prescribed
uniform surface temperature and the surface with prescribed uniform wall
heat flux.
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The present paper deals with numerical solution to the unsteady natural
convection problem in micropolar fluid of variable material coefficients κ and
j. The fluid under consideration is placed in the vicinity of a vertical surface,
heat flux of which rises suddenly at a given moment. The numerical results
have been presented for a range of values of the dimensionless material
properties and fluid Prandtl number.

2 Problem formulation

Let us consider the unsteady natural convection flow of a micropolar fluid
along a vertical plate. The heat flux of the plate rises suddenly at the initial
time τ = 0.

Figure 1. Considered fluid schema.

Due to a degree of complexity of general differential equations resulting
from a balance of mass, momentum, angular momentum and heat, we are
going to introduce the following simplifying assumptions:

• The analysed flows geometry justifies the use of the boundary layer
theory.
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• Oberbeck-Boussinesq approximation is assumed.

• The viscous dissipation motion, pressure and volumetric energy source
are neglected.

• Eringen’s theory of thermomicrofluids is assumed.

Taking into account the simplification resulting from the boundary layer
theory and fluid density changes according to the Oberbeck-Boussinesq ap-
proximation, the following system of equations can be obtained:

∂u
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+
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The above system of partial differential equations together with the follow-
ing boundary conditions:

τ < 0, u = v = 0, t = t∞ (5)

τ ≥ 0, x = 0, u = v = 0, t = t∞ , (6)

y = 0, u = v = 0,
∂t

∂y
= −q0

λ
, N = −n

∂u

∂y
, (7)

y → ∞, u = 0, N = 0, t = t∞ , (8)

formulates the mathematical description of momentum, angular momentum
and heat transfer driven by the unsteady convection in micropolar fluid. In
Eqs. (1)–(4), x and y are the coordinates measured along and perpendicular
to the plate, u and v being the velocity components in the x and y direc-
tions, N is the microrotation component in the xy-plane, τ is the time, ρ
is the density, µ and κ are the dynamic and rotational viscosity coefficient,
respectively , γ is the spin-gradient viscosity, j is the microinertia density,
α is the thermal diffusivity, β is the coefficient of volumetric expansion, t is
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the fluid temperature, and q0 denotes the surface heat flux. In the present
analysis, the spin gradient viscosity is assumed to be [2–4]:

γ =
(
µ +

κ

2

)
j . (9)

In the last condition listed in (7) we have assumed that the microcir-
culation on the boundary layer is equal to the angular velocity, namely,
N(x, 0, τ) = −n∂u

∂y . As the suspended particle cannot get closer than its
radius to the wall, the microstructure effect must be negligible on the bound-
ary. Therefore, in the vicinity of the boundary, the rotation is due to fluid
shear and thus the microrotation must be equal to the angular velocity of
the boundary.

The parameter n is a number between 0 and 1 and that relates microgy-
ration vector to the shear stress. The value n = 0 corresponds to the case of
the high density of liquid microparticles that prevents them from perform-
ing rotational movements in the vicinity of the wall. The value n = 0.5 is
indicative of weak concentrations, at n = 1 flows are believed to represent
turbulent boundary layers [2,6]. Taking into account the constitutive equa-
tions of the micropolar fluid [1,2], the shear stress of a considered vartical
surface was determined:
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∂u
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]
|y=0

. (10)

The fluid differential equations are recast in a dimensionless form by intro-
ducing:
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Substituting Eqs. (11)–(15) into the governing Eqs. (1)–(4), respectively,
leads to

∂U

∂X
+

∂V

∂Y
= 0 , (16)
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∂T

∂τ
+ U

∂T

∂X
+ V

∂T

∂Y
=

1
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∂Y 2
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The boundary conditions (5)–(8) are then given by the following dimension-
less form:

τ < 0, U = V = T = 0 , (20)

τ ≥ 0, X = 0, U = V = T = 0 , (21)

Y = 0, U = V = 0, −∂T

∂Y
= 1, N = −n

∂U

∂Y
, (22)

Y → ∞, U = V = T = N = 0 . (23)

Substituting into Eq. (10) dimensionless expressions (11)–(14) we obtain

τw =
τw

ρ∞ν2∞
j P (1 + ∆ − n∆)

=
∂U

∂Y |y=0
. (24)

The system of differential Eqs. (15)–(18) together with the initial and bound-
ary conditions (19)–(22) has been solved using the method of finite differ-
ences [7,8].

3 Dimensionless form of balance equations and their
numerical solution

The numerical scheme used for solving the natural convection problem was
also an explicit finite difference scheme. According to the method applied,
differential equations resulting from the balance of mass, momentum, angu-
lar momentum and energy have been replaced by corresponding difference
equations. Spatial distribution grid contains M × N points in the X and
Y direction respectively, ∆τ is the time step. Due to the intensive heat,
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momentum, angular momentum and mass transfer, only in the direct vicin-
ity of the considered vertical surface, the maximum values of dimensionless
coordinates X = 100 and Y = 30 were assumed [7,8]. A characteristic fea-
ture of the difference equations was to determine the temperature field, the
velocity field components and the microrotation component N at a time
τn+1 (τn+1 = τn + n∆τ , n = 1, 2..) depending on the certain parame-
ters, but determined at a time τn. Convection terms of balance equations
comprising time τ and spatial Y coordinate derivatives were approximated
by “forward” formulas whereas spatial X coordinate derivatives were ap-
proximated by “backward” formulas. Diffusion terms were approximated by
central differences. Derivatives appearing in the boundary conditions (22)
were approximated by higher order difference formulas taken in the form [7]

∂T

∂Y|ij
=

1
2∆Y

(−3Tij + 4Ti,j+1 − Ti,j+2) + O (∆Y )2 , (25)

− 1
n

N |i,j =
∂U

∂Y|ij
=

1
12∆Y

(−25Ui,j + 48Ui,j+1 −

−36Ui,j+2 + 16Ui,j+3 − 3Ui,j+4) + O (∆Y )4 . (26)

These difference formulas are statically stable and exhibit characteristics of
conservation [7].

Before performing the basic calculations for established, nonzero val-
ues of parameters ∆ and P describing the properties of micropolar fluid,
calculation tests were done. In these computational tests, the influence of
the spatial and time steps length on the result accuracy was investigated.
In the process of natural convection in a Newtonian fluid exact analytical
solutions are known [9], which were compared to the corresponding calcu-
lation results. These results and the relevant results of exact solutions [9]
are compared in Tab. 1.

The comparison presented in Tab. 1 leads to the finding that the ratio
of Nusselt and Grashof number, Nux/(Grx)

1
5 , calculated for the relatively

sparse spatial area division and considerable size of time step has a high
degree of accuracy with respect to the corresponding exact solution [9].

In the case of the numerical results of dimensionless shear stress τw

(dimensionless velocity component gradient) considerably smaller time and
spatial steps are required in order to achieve satisfactory accuracy in con-
formity to exact solutions. On the basis of trial calculations further ones,
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taking into account the non-zero values of ∆ and P parameters, were per-
formed with the following spatial area division: M × N = 250 × 450, the
set size of time step ∆τ = 0.001.

Table 1. Spatial and time steps size impact on calculation precision.

Pr M N ∆τ Nu
Gr

1
5
x

τw

0.72

190 250 0.0120 0.4898179 0.784502

190 390 0.0100 0.4898179 0.793826

290 290 0.0050 0.4898179 0.789164

290 292 0.0020 0.4898179 0.794909

250 450 0.0010 0.4898179 0.796920

0.489802 * 0.814100 *

* Exact analytical solution by [9]

4 Results and discussion

The system of Eqs. (16)–(19) together with the initial (20) and boundary
conditions (21), (22) and (23) has been integrated for the selected parameter
values Pr∞, P,∆, and n. To implement the numerical integration of the
equations an algorithm in FORTRAN was developed.

Figure 2 presents the U velocity component in the X-axis direction
of the fluid described by Prandtl number Pr∞ = 0.72 at fixed times of
the process τ = 10, 15, and 40. In order to simplify the analysis of the
rheological properties of the considered micropolar fluid impact in Fig. 2
three different cases are shown. Line marked with a circle represents the
results obtained for the case of Newtonian fluid, that does not demonstrate
micropolar effects. Lines marked with a triangle and a diamond depict
the profiles of velocity U component in micropolar fluids characterized by
different values of ∆ and P parameters respectively. Additionally, to obtain
unambiguous description, U component of velocity profiles obtained for the
process at τ = 15 is marked with black symbols. According to the velocity
profiles U component of the considered fluid described by Prandtl number
Pr∞ = 0.72 reaches a steady state in a relatively short time (τ = 40).
It is also worth noting that the maximum U velocity component in each of
the listed times, τ , is located at a greater distance from the vertical surface,
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Figure 2. Profiles of the fluid velocity component, U , at selected moments of the process
(profiles obtained at τ = 15 are marked with solid symbols).

compared to the case of a Newtonian fluid. Moreover, in the initial stage
of the heating process the corresponding velocities maxima for considered
micropolar fluids are smaller than the maximum velocity of a Newtonian
fluid.

Figure 3 shows the temperature profiles in the considered liquid (Pr∞ =
0.72) at certain moments of the process τ = 5, 15, and 40. Similarly as
for the U velocity component, proper values of parameters describing the
physical properties of the fluid were assumed.
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Figure 3. Profiles of the fluid temperature changes (profiles obtained at τ = 15 are
marked with solid symbols).

In contrast to the changes in the U component of velocity shown in Fig. 2,
the temperature profiles in the initial phase of the process, τ ≤ 5, presented
in Fig. 3 demonstrate the same course for Newtonian fluid and micropolar
fluid characterized by the corresponding values of ∆ and P parameters. In
the final stage of the process (steady state) vertical surface temperature
increases significantly with increasing values of ∆ and P parameters.

Based on a numerically calculated transient temperature field in the
fluid, local Nusselt number changes in time were determined on the suddenly
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heated vertical surface. The local Nusselt number is defined as follows:

Nux =
qo

tw − t∞
x

λ
. (27)

Substituting in (27) dimensionless expressions (11), (13) and (14) we obtain
after transformation

Nux

Gr
1
5
x

= X
1
5

1
Tw

, (28)

where

Tw =
tw − t∞[

ν2∞
(q0

λ

)3 1
gβ

] 1
4

. (29)

The relationship (28) is shown graphically in Fig. 4. For the sake of com-
parison, Fig. 4 comprises the corresponding curve obtained for Newtonian
fluid. It is worth noting that the dimensionless value coordinate X = 100
corresponds, according to the Eqs. (13) and (14), to the value of Grashof
number Grx = X4 = 106. According to the analysis of the curves in Fig. 4,
representing the change in Nusselt number [Nux/(Grx)]

1
5 , the heat trans-

fer intensity in micropolar fluids is much lower than in the corresponding
Newtonian fluids.

Based on a numerically calculated velocity field, the shear stress of a con-
sidered vertical surface was determined.

Table 2. A comparison of obtained results.

Pr = 0.72

∆ P Nu
Gr

1
5
x

τw

0.0 0.0 0.48980* 0.81410*

0.0 0.0 0.48982 0.79620

1.0 0.1 0.46520 0.61532

1.0 1.0 0.46470 0.62433

1.0 5.0 0.46545 0.63844

2.0 1.0 0.44712 0.52976

5.0 1.0 0.41446 0.38555

5.0 5.0 0.41446 0.38813

* Exact analytical solution by [9]
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In order to make a comparative analysis, Tab. 2 summarizes the Nusselt
number values according to the (28) formula and the dimensionless shear
stress τw in accordance with (24) formula, obtained from the numerical
calculations performed for the various parameters ∆ and P .

Summarized results relate to the steady state with regard to dimension-
less coordinate X = 100 and fixed value of the parameter n = 0.5. The first
line of Tab. 2 brings the corresponding exact solutions found in [9].

Figure 4. Transient changes of the local Nusselt number.

Figure 5 presents the dimensionless component profiles of microrotation
N in the selected moments of the process. As previously indicated, the
results for the case of fluid parameters ∆ = P = 0 and n = 0.5 are presented
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with a line marked with circles. Lines marked with a triangle, star and
diamond present microrotation component profiles N for selected, nonzero
values of ∆ and P . Additionally, in order to obtain unambiguous description
profiles of microrotation obtained for the time τ are marked with solid
symbols.

Figure 5. The changes of the profiles of dimensionless microrotation at certain moments
of the process.

A comparison of the presented curves in Fig. 5 shows that the dimension-
less microrotation component N attains the maximum value for the fluid
described by ∆ = P = 1, namely N = 0.409 for τ = 5.
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5 Concluding remarks and conclusions

In the present paper we have investigated the processes of momentum and
heat transfer in the range of natural convection in the micropolar fluid. For
the description of these processes, the equations of both hydrodynamic and
thermal boundary layer were applied. It is worth noting that the coupled
system of differential equations describing the analyzed exchange processes
also includes, in accordance with the boundary layer theory, simplified equa-
tion for the, N , microrotation component, arising from the angular momen-
tum principle.

In order to solve this problem the method of finite differences was ap-
plied. That the results obtained are consistent for the entire course of the
considered process, and therefore in the full range of the time variable τ .

The impact of changes in the ∆ and P parameter values on dimensionless
shear stress τw and the Nux number is clearly noticeable for the longer
process durations (τ > 20), that is in the time variable range where the
convection heat transfer between the suddenly heated vertical plate and
considered micropolar fluid prevails. Due to the obtained calculation results
the U velocity component gradient is much smaller for the micropolar fluid
compared to a corresponding Newtonian fluid throughout the entire heating
process. The maximum relative change (∂U/∂YY =0) is about 50%.

Significantly higher temperatures of the heated vertical wall at times τ >
5 in the vicinity of micropolar fluid indicate lower intensity of heat transfer
compared to the Newtonian fluid. The relative decrease in the Nux/(Grx)

1
5

ratio for the micropolar fluid (∆ = 5.0 ;P = 5.0) with reference to the
Newtonian fluid equals 15%. The biggest change in the N microrotation
component is observed, in turn, for the initial time of the process (τ < 20).
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