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ECONOMETRIC BALANCING OF A SOCIAL ACCOUNTING MATRIX 
UNDER A POWER-LAW HYPOTHESIS

1.  INTRODUCTION

Contrary to many other  elds, macroeconomics has neglected the link between 
phenomena and power-law (PL)1, characterizing non-extensive complex systems 
within the class of Levy’s process laws. In light of recent literature, the amplitude and 
frequency of macroeconomic  uctuations are not considered to substantially diverge 
from many other extreme events, natural or human-related, once they are explained 
in the same time (or space) scale. Following a few recent studies related to applying 
non-extensive entropy to economics, this study extends the theoretical model (e.g., 
Bwanakare, 2013a, b; Tsallis, 2004) and proposes a new direction for applications in 
solving ill-posed inverse problems. In this study, a social accounting matrix (SAM) 
will be balanced to illustrate this new technique. 

In the rest of this introduction, the rationale of applying PL is presented. Accord-
ing to many studies (e.g., Bottazzi, 2007; Champernowne, 1953; Gabaix, 2008), 
a large array of economic laws take the form of PL, in particular, macroeconomic 
scaling laws, distribution of income, wealth, the size of cities and  rms2, and the dis-
tribution of  nancial variables such as returns and trading volume. Mantegna, Stanley 
(1999) have studied the dynamics of a general system composed of interacting units 
each with a complex internal structure comprising many subunits where they grow 
in a multiplicative way over a period of 20 years. They found the system following 
a PL distribution. It is worth noting the similarity of such a system with the internal 
mechanism of national account tables, like SAMs. Ikeda, Souma (2008) have worked 
on an international comparison of labour productivity distribution for manufacturing 
and non-manufacturing  rms. A power-law distribution in terms of  rms and sector 
productivity was found in US and Japan data. Testing Gibrat’s law of proportionate 
effect, Fujiwara et al. (2004) have found, among other things, that the upper-tail of the 
distribution of  rm size can be  tted with a power-law (Pareto–Zipf law). In a recent 
monograph, Bwanakare (2013b) has proposed a theorem linking low-frequency time 

1 For details about a PL, see, e.g. Gabaix (2008).
2 See Bottazzi et al. (2007) for a different standpoint on the subject.
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series macroeconomic phenomena- and thus input output accounts- with PL distribu-
tion. The above citations are not exhaustive. 

The central point is that a PL displays, besides its well-known scaling law, a set of 
interesting characterizations related to its aggregative properties, in that it is conserved 
under addition, multiplication, polynomial transformation, minimum and maximum. 
Basically, non-extensive (Tsallis) entropy is a thermodynamic concept which, con-
trary to that of Boltzmann-Gibbs-Shannon, is characterized by complex dependency 
between elements of non-ergodic systems and independency from initial conditions, 
 tting power-law a PL distribution (Tsallis, 2009). As opposed to the Gaussian3 family 

model, a non-ergodic system suggests that micro-states of the system do not display 
identical odds of appearing. From the microeconomic prospective4, this suggests 
that some economic agents’ behaviour does happen more frequently than gener-
ally expected- then a heavy queue- and may rely on distant memory and complex 
correlations. While the Gaussian related Shannon-Kullback-Leibler (SKL) entropy 
approach is well suited in cases that exhibit limited perturbations, exponential-fam-
ily phenomena, it remains less appropriate for a class of more complex PL driven 
shocks, the ubiquity of which, as already mentioned above, now seems evident in 
nature or social science. Testing PL multifractal properties requires high-frequency 
series. The higher the series frequency is, the more signi  cant the test outputs about 
these properties are. The distribution with an exponential tail might correspond to an 
intermediate stage between a distribution with the PL asymptotics and a very large 
time lag limit-a Gaussian (Dragulescu, Yakovenko, 2001; Rak et al. 2007). Recently, 
Nielsen, Nock (2012) have casted exponential family form into PL-related Tsallis 
non-extensive entropy expression and shown conditions for a closed-form. However, 
delimiting threshold values for law transition- which is a function of frequency 
level- is dif  cult since, to our knowledge, neither a parametric nor non-parametric 
test yet exists.

Thus, applying Gaussian law systematically could be misleading in the case of 
some aggregated series and lead in many cases to instable solutions, for example, 
when a random error diverges enough from the Gaussian model5 (i.e., with q  param-
eter equaling unity). The methodology presented below  ts well with more types of 
series when applying q-Tsallis entropy. In fact, Gaussian law can be generalized by 
a class of a few types of Higher-Order Entropy Estimators (Golan, Perloff, 2001; 
Tsallis, 2009) among which there is Tsallis non-extensive entropy, which presents the 
valuable additional quality of concavity- then stability- along the existence interval 

3 Then, this law includes all discrete laws converging to normal law. This observation is important 
for such a study dealing with low frequency time series. 

4 A SAM re  ects a general macroeconomic equilibrium based upon microeconomic behaviour of 
economic agents through an aggregative process.

5 For instance, data from statistical survey might display systematic errors.



Econometric Balancing of a Social Accounting Matrix Under a Power-law Hypothesis 265

characterizing most real world phenomena. Furthermore, as we will see below, the 
q-Tsallis parameter presents the strong advantage of monitoring complexity of any sys-
tem. Among rival methods, only it can measure how far a given random phenomenon 
is from the Gaussian benchmark. Since the generated empirical solution constitutes 
a converging case of Gaussian law, outputs of the present work should remain quali-
tatively comparable with those that can be produced by other rival approaches, such 
as the RAS approach. However, at least two advantages of the proposed technique 
deserve to be emphasized. The  rst relates to the possibility of deriving the q-Tsallis 
parameter, thereby allowing for assessment of the complexity level of the analyzed 
system. The second advantage is from an epistemological standpoint. By proposing 
the non-extensive entropy approach for balancing a social accounting matrix- which is 
a one-period time series sample- we extend one of the main laws of modern physics 
(the generalized second law of thermodynamics) to low frequency economic time 
series and, thus, propose a new competitive econometric instrument for economic 
modeling. 

This paper is organized as follows: Section II is devoted to presenting the link 
between Kullback-Leibler (K-L) information divergence and non-extensive Tsallis 
entropy. Section III presents a generalized linear non-extensive entropy economet-
ric model. Then, for empirical applications, a Tsallis cross-entropy econometric 
model for SAM parameter estimation is presented with details. Section IV proposes 
parameter area inference for the estimated model. Section V presents the princi-
pal theoretical aspects of a SAM structure and its balancing. Section VI presents 
model outputs, and the last section concludes the paper with some comments and 
suggestions.

2.  Q-GENERALIZATION OF THE K-L RELATIVE ENTROPY AND CONSTRAINING 
PROBLEM

To derive non-extensive entropy formulation, one  rst needs to set up the three 
simplest differential equations and their inverse functions (see Tsallis, 2009) and, next, 
unify these three cases (without preserving linearity). One then gets:

 qy
dx
dy  (y(0)=1; q ).  (1)

We observe that this expression displays power-law distribution form.
Its solution is
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and its inverse function is 

 . (2)

The above eq. (2) represents the non-extensive (Tsallis ) entropy formula6, which 
can be explained in logarithmic terms lnq x where q stands for the basis. In particular, 
for q approaching unity, we get the traditional Gibbs-Shannon maximum entropy 
(Shannon, 1948) upon which the K-L information divergence index (IDI)7 (Kullback, 
Leibler, 1951; Maasoumi, 1993) is dually related. The symbol “y  f(x)” means y is 
de  ned to be the same as f(x) under certain assumptions taken in context. This can be 
generalized in a straightforward manner as follows (Tsallis, 2009):

1

1)(/)(
)(

)(

)(
ln)(),(

1)0()0(
)0(

q

xpxp
xdxp

xp

xp
xdxpppI

q

qq

or,

 
1

1/),(
1)0(

)0(

q
pppppI

q

ii
iq  (3)

in discrete cases. Thus, index Iq (p, p(0)) stands for the traditional K-L IDI between 
hypotheses p and p(0), provided that q converges to unity8. There exist two main 
versions of Kullback-Leibler divergence (K-Ld) in Tsallis statistics, namely the usual 
generalized K-Ld shown above and the generalized Bregman K-Ld (Tsallis et al. 
1998). Following Venkatesan, Plastino (2011), problems have been encountered in 
empirical implementation while trying to reconcile these. In their recent study, the 
above authors have revealed interesting aspects concerning empirical research when 
q-generalized cross-entropy is associated with constraining information.

Following recent literature (e.g., Abe, Bagci, 2004; Venkatesan, Plastino, 2011), 
the generalized Kullback-Leibler de  ned by eq. 3 could be more consistent with 

6 Eq. (2) can be optimized under moment restriction and then represents the generalized maximum 
entropy principle.

7 See, e.g., Kullback (1968) for a rich de  nition of this index and its connection with Bayesian 
formalism.

8 If we dispose of two systems P and R, the level of q-Tsallis allows for de  nition of three different 
entropies. For q < 1, the Tsallis entropy becomes a super-extensive entropy where Sq(P + R) < Sq(P) + Sq(R); 
for q = 1, the Tsallis entropy reduces to a standard Gibbs-Shannon extensive entropy where 
Sq(P + R) = Sq(P) + Sq(R); for q > 1, the Tsallis entropy becomes a sub-extensive entropy where 
Sq(P + R) > Sq(P) + Sq(P).
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expectations and the constraints form proposed by Tsallis et al. (1998), known as 
q-averages or escort distribution9:
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3. A GENERALIZED LINEAR NON-EXTENSIVE ENTROPY ECONOMETRIC MODEL

This section applies the results of, e.g., Jaynes (1994) and Golan at al. (1996), 
to present the model to be later implemented for updating and balancing the social 
account matrix of the Polish economy. While the argument in criterion function is 
already known (see eq. 7), we need to reparameterize the generalized linear model 
which has to play the role of restrictions. Note that this presentation for the present 
problem is limited to methodological aspects. In fact, elements inside a SAM can 
be meaningfully presented by columns as the ratio explaining a sector disbursement 
distribution in favour of the rest of economy sectors. Each coef  cient varies between 
zero and one and the coef  cient total by column sums up to unity. De  nitely, support 
space, usually de  ned a priori for the purpose of reparametrization, coincides with 
probability space. In this case, the accuracy of estimated parameters is higher as 
there is non-loss of information from this a priori data (Shen, Perloff, 2001). In any 
event, to be consistent, let us succinctly present the general procedure of parameter 
reparametrization in the case of a general inverse linear model:

 Y = X ·  +  , (4)

where unknown  parameter values are not necessarily constrained between 0 and 
1, which suggests the necessity of reparametrization. The term  is an unobservable 
disturbance term, plausibly with  nite variance, owing to the nature of economic data, 
exhibiting observation errors from empirical measurement or from random shocks. 
These stochastic errors are assumed to be driven by PL, as explained in the intro-
ductory section of this document. The variable Y represents a system and X accounts 
for covariates generating the system through relation parameter matrix  and unob-
servable disturbance  to be estimated through observable error components e. Unlike 
classical econometric models, no constraining hypothesis is needed. In particular, the 
number of parameters to be estimated may be higher than the observed data points, 
and the quality of collected information data low. Additionally, as already explained, 

9 However, for computational reasons, we have de  nitely opted in this document for applying the 
Curado-Tsallis (C-T) constraints [2] of the form: 

i
i

q
iq ypy   where the symbol  means  that yq is an average of yi weighed by piq.
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to increase precision of such estimated parameters from poor-quality data points, the 
entropy objective function allows for incorporation of all constraining consistency 
moments, which act as new Bayesian evidence in the model (Zellner, 1991). Thus, 
referring to, e.g., Jaynes (1994) and Golan et al. (1996), owing to the maximum 
entropy principle, each new piece of constraining information will reduce the entropy 
level of the system depending on the degree of its consistency with the prior.

Taking each k (k = 1…K) as a discrete, random variable with compact support 
(Golan et al. 1996) and 2 < M <  possible outcomes, one can estimate it by Bk, that 
is:

 
M

m
kmkmk vpB

1

, Kk ,  (5)

where pkm is the probability of outcome vkm and the probabilities must be non-negative 
and sum up to one. Similarly, by treating each element ei of e as a  nite and discrete 
random variable with compact support and 2 < M <  possible outcomes centred 
around zero, we can express ei as:
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where rn is the probability of outcome zn on the support space j. We will use the 
commonly adopted index n, here and in the remaining mathematical formulations, 
to set the number of statistical observations. It is worth note that the term e can be 
empirically  xed as a percentage of the explained variable as an a priori Bayesian 
hypothesis. Posterior probabilities within the support space may display a non-Gaus-
sian distribution class. The element vkm constitutes an a priori information provided by 
the researcher while pkm is an unknown probability whose value must be determined 
by solving a maximum entropy problem. In matrix notation, let us rewrite  = V · P, 
with pkm  0 and K

k Mm kmp1 2 1, where again, K is the number of parameters 
to be estimated and M the number of data points over the support space. Also, let 
e = r · z, with rnj  0 and N

n

J

Jj njr
1 2

1 for N the number of observations and J 
the number of data points over the support space for the error term. Then, the Tsallis 
cross-entropy econometric estimator can be stated as:
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Additionally, k macro-aggregates can be added to the set of above constraining 
consistency moments as follows:
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where H is a dxd aggregator matrix with ones for cells that represent the macro-con-
straints and zeros otherwise, and  is the expected value of the aggregate constraint. 
Once again, gs stands for a discrete point support space from s = 2..S. Probabilities wts 
stand for point weights over gs. The real q, as previously stated, stands for the Tsallis 
parameter. In the empirical part of this document, the Polish gross domestic product 
at market and at factor prices will exemplify the above “macro-aggregates”.

Above, Hq (p // p0, r // r0, w // w0) is nonlinear and measures the entropy in the 
model. Relative entropies of the three independent systems (the three posteriors p, r 
and w and the corresponding priors p0, r0 and w0, respectively) are then summed up 
using the weights , , . These are real positives summing up to unity under the given 
restrictions. The symbol // is a “distance metric”10 of divergence information. We 
need to  nd the minimum divergence between the priors and the posteriors while the 
imposed restrictions must be ful  lled. As will be the case in the application below, the 
 rst component of the criterion function may concern the parameter structure of the 

table, the second component errors on column (or row) totals and the last component 
may concern errors around any additional consistency variable, like the GDP in the 

10 However, note that K-L divergence is not a true metric since it is not symmetric and does not 
satisfy the triangle inequality. 
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case below. As has been shown by Tsallis (2009), this form of entropy displays the 
same basic properties as K-L IDI or relative entropy. The estimates of the parameters 
and residual are sensitive to the length and position of support intervals of  param-
eters (eq. 5 and eq. 6) in the context of the Bayesian prior. When parameters of the 
proposed model are expressed under the form of elasticity or ratios, then the support 
space should be de  ned inside the interval between zero and one and will correspond 
to that of the usual probabilities. In such a case, no reparametrization of parameters 
is needed. In other cases, support space may be de  ned between minus and plus 
in  nity, according to intuitive evaluation by the modeller. Additionally, within the 
same support space, the model estimates and their variances should be affected by 
the support space scaling effect, i.e., the number of affected point values (Golan et al. 
1996). The higher the number of these points, the better the prior information about 
the system. The weights , ,  are introduced into the above dual objective function. 
The  rst term of “precision” accounts for deviations of the estimated parameters from 
the prior (generally de  ned under a support space). The second and the third terms 
of “prediction ex post” account for the empirical error term as a difference between 
predicted and observed data values of the model. As expected, the presented entropy 
model is an ef  cient information processing rule which transforms, according to 
Bayes’s rule, prior and sample information into posterior information (Zellner, 1991).

4. PARAMETER CONFIDENCE AREA

In this section we will propose an inference information index s(aj) as an equiv-
alent to a standard parameter error measure in the case of classical econometrics. An 
equivalent of determination coef  cient R2 will be proposed, too, under the entropy 
symbol S(Pr). The departure point is that the maximum level of entropy-uncertainty 
is reached when non-relevant information-moment constraints are enforced. This 
leads to a uniform distribution of probabilities over the k states of the system. As we 
add each piece of informative data in the form of a constraint, a departure from the 
uniform distribution will result, which means uncertainty shrinkage. Thus, the value 
of the proposed S(Pr) below should re  ect a global departure from the maximum 
uncertainty for the whole model. Let us follow formulations presented by Golan 
et al. (1996) and propose a normalized non-extensive entropy measure of s(aj) and 
S(Pr). From the Tsallis entropy de  nition, Sq > 0, let us consider now all possible 
micro-states of the model. This number varies with the number of support space data 
points i (i = 1..M) and the number of parameters of the model j(j = 1..J). Entropy Sq 
vanishes (for all q) in the case of M = 1; and for M  1, q > 0, whenever one of the 
pi (i = 1..M) occurrence equals unity, the remaining probabilities, of course, vanish. 
A global, absolute maximum of Sq (for all q) is obtained, in the case of uniform 
distribution, i.e., when all Mpi

1 . In such an instance, we have for both systems 
the maximum entropy equal to:
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 11 11 qMaS q
jq   (11) 

and 

 11 11 qnrS q
q .  (12)

In eq. 11, n varies with the number of support space data points and the number 
of observations of the model. We propose below a normalized entropy index in which 
the numerator stands for the calculated entropy of the system and the denominator 
displays the highest maximum entropy as shown above (eq. 11 and 12): 
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with j varying from 1 to J (number of parameters of the system) and i belonging to 
M (number of support space points), with M > 2; with the total number micro-states, 
which is obtained by multiplying number of model parameters J by number of support 
space points M with M > 2. Then s(aj) reports precision on the estimated parameters. 
Equation 14 re  ects the non-additivity Tsallis entropy property for two independent 
systems. The  rst term S(p) is related to parameter probability distribution and the 
second S(r) to error disturbance probability:

 rSpSqrSpSrpSS ˆˆ1ˆˆˆˆrP̂ ,  (14)
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rP̂S   is then the sum of normalized entropies related to parameters of the model 
pS ˆ , and to disturbance term rS ˆ . Likewise, the latter value rS ˆ  is derived for all 

observations n, with F the number of data points on the support space of estimated 
probabilities r related to the error term. As it results from the above formulation, the 
values of these normalized entropy indexes S(âij), rP̂S   vary between zero and one. 
Its values, near unity, indicate a poor informative variable- with higher entropy- while 
lower values are, on the contrary, an indication of a better informative variable about 
the model. From information properties and the above formulation of the q-gener-
alized cross-entropy concept (see eq. 3), the reader can observe that both indexes 
ful  l basic Fisher-Rao-Cramer information index properties, among them continuity, 
symmetry, maximum, and additivity. 
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5. THEORETICAL ASPECTS OF BALANCING A SAM

A SAM is a quadratic table that encompasses information about complex pro-
cesses of supply and demand of a real, open economy involving, under optimizing 
behaviors, different economic agents and endowments for a given time period and 
region. Regarding SAM construction and components (see, e.g., Pyatt, Round, 1985), 
general equilibrium (e.g., Wing, 2004) implies that respective row and column totals 
are expected to balance. Conceptually, this model is based on the laws of product and 
value conservation which guarantee conditions of zero pro  t, market clearance, and 
income balance (Scrieciu, Blake, 2005). However, different stages of statistical data 
processing remain concomitant with observation and measurement errors, and the 
SAM will not balance. This means that an unknown number of economic transaction 
values within the matrix are inconsistent with the data generating macroeconomic 
system. For clarity, let us use Table 1 to explain these imbalances, noting, for instance, 
a difference between the activities row and column totals as follows: 

 )()()( 1111 uaTuaT . (15)

The term on the left hand side of the above expression stands for the difference 
between two erroneous and unequal totals of the activity account. Its origin is the 
plausibly different stochastic errors u1 and 1 on column and row totals, respectively. 
In Table 1, the  rst alphabetical letter of symbols inside each cell stands for the  rst 
letter of the row (supply) account, and the second letter represents the  rst letter of 
the corresponding (demand) column. For instance, in the prototype SAM below, the 
symbol “ca” stands for the purchases by the activity sector of goods and services from 
the commodity sector. 

Table 1.
A simpli  ed stochastically non-balanced SAM 

 Activities Commodities Factors Institutions Capital World Total

Activities 0 ac 0 Ai 0 aw aT+ 1

Commodities Ca 0 0 Ci cc 0 cT+ 2

Factors Fa 0 0 0 0 0 fT+ 3

Institutions Ia ic If Ii 0 iw iT+ 4

Capital 0 0 0 Ci 0 cw cT+ 5

World 0 wc 0 Wi 0 0 wT+ 6

Total aT+u1 cT+u2 fT+u3 iT+u4 cT+u5 wT+u6  

Source: own presentation.
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The objective is to  nd, out of all probability distributions, the one (the poste-
rior) closest to Table 2 (the prior) and ensuring its balance while satisfying other 
imposed consistency moments and normalization conditions. Referring to Shannon 
entropy, one may consider post entropy structural coef  cients and disturbance errors, 
respectively, as signal and noise. The  rst step consists of computing a priori coef-
 cients by column, from real data from Table 2, by dividing each cell account by 

the respective column total. Next, we treat these column coef  cients as analogous to 
probabilities, and column totals as expected column sums, weighted by these prob-
abilities (see eq. 7). Coef  cient values in initial Table 2 will serve as the starting, 
best prior estimates of the model. Two other types of priors to initialize the solution 
concern errors on column totals (eq. 8) and on gross domestic product (GDP) at 
factor and market prices (eq. 10). GDP variables are added to the model with the 
purpose of restricting the model to meet consistency macroeconomic relationships 
for different accounts inside the SAM. The proposed approach combines non-ergodic 
Tsallis entropy with Bayes’s rule to solve a generalized random inverse problem. 
We may optionally consider only some cell values as certain11 while the rest of the 
random accounts are unknown. Once again, this is one of the strongest points of the 
entropy approach over most rival mechanical techniques of balancing national account 
tables. All row and column totals are not known with certainty. It is apparent that the 
potential number of degrees-of-freedom of parameters to estimate n (n – 1) remains 
signi  cantly higher than n observed data points (column totals). In the particular case 
of a SAM, and due to empty cells, that number of unknown parameters may be 
much lower. Nonetheless, that will not generally prevent us from dealing with an 
ill-behaved inverse stochastic problem. The next important step is that of initializing 
the above de  ned error trough, a reparameterizing process. A  ve point support space 
symmetric around zero is de  ned. To scale the error support space to real data, we 
apply Chebychev’s inequality and Three Sigma rule (Golan at al. 1996; Pukelsheim, 
1994). Corresponding optimal probability weights are then computed so as to de  ne 
the prior noise component (Robinson, El-Said, 2000).

6. BALANCING A SOCIAL ACCOUNTING MATRIX OF POLAND AND OUTPUTS

This section presents one of the plausible applications of the non-extensive 
cross-entropy approach. Readers acquainted with the Shannon entropy approach12 and 
its economic applications may know its particular role in recent years for balancing 
social accounting matrices of many countries (e.g., Miller, Matthews, 2012; Robinson 
at al., 2000). In the present case, we have used this new technique to balance the 

11 In the present case, only transaction accounts with the rest of the world (import, export, external 
current balance), plus government commodity consumption accounts are concerned. 

12 We recall here that Shannon-Gibbbs entropy remains a converging case of Tsallis non-extensive 
entropy.
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Polish SAM of 2005. Technically, the problem of cross-entropy is to  nd a new set 
of SAM coef  cients (posteriors) that minimize the so-called Kullback -Leibler  (1951) 
divergence measure of the Tsallis “cross-entropy” (CE) between the prior  (the ini-
tial, unbalanced SAM) and the posteriori SAM, under given restrictions. These are 
related to data moments, normalization condition, or any other a priori information 
presenting consistency with posterior probabilities in the criterion function (see eq. 
7–10). For the model computations, we have used the GAMS code and the solver 
Minos5. Table 2 and Table 3 present the non-balanced and the post entropy-balanced 
SAM, respectively. The statistical data used come from the Polish Main Public Of  ce 
of Statistics (http://www.stat.gov.pl/gus/), and from EUROSTAT (www.eurostat.eu). 
In Table 2, the number values in the total column marked in bold are related to the 
non-balanced sectors. As suggested in the preceding section, such imbalances and 
inconsistencies mainly result from the complexity of economic information gather-
ing at country scale, where various institutions constitute different and contradictory 
sources of information. Furthermore, other human error during statistical table com-
pilation remains plausible. In their recent work, trying to balance the Polish SAM 
for 2010, Tomaszewicz, Tr bska (2013) have noticed the lack of direct data values 
of current and capital transfers in the case of Polish statistical data. As explained 
in the celebrated work of Golan et al. (1996), and based on various simulations, 
entropy formalism acts as a Bayesian ef  cient processing rule. Then, independent of 
the prior information level, when new data (new evidence) is consistent with the data 
generating process, the entropy formalism allows the estimator to quickly converge 
toward the minimum variance. However, in the real world, the data generating system 
is unknown and the assessment of a new methodology may rely on mere opinion. In 
fact, an of  cial balanced SAM may still contain many con  icting errors, for instance, 
those related to the selected closure rule. There are other SAM balancing techniques. 
The RAS approach remains the most popular among them. In a recent, thorough study 
on the comparative performance of cross-entropy and RAS techniques, Chisari at al. 
(2012) concluded that cross-entropy had a more general character for the reasons 
listed below:
a. It does not need all the new totals of rows or columns (although prediction will 

be less accurate).
b. It does not need a balanced initial matrix (the sum of rows could be more/less than 

the sum of columns).
c. New rims could contain an error term.
d. New rims can be non-  xed parameters.
e. Many values on the  nal matrix could be  xed (not necessarily a parameter).
f. It allows non-linear constraints.

Referring to their simulation outputs, the authors propose a rule of thumb con-
sisting of preferring the RAS method if and only if no constraint or one constraint is 
enforced. This seems to explain why the RAS approach continues to be successfully 
applied in different prediction studies. In a recent study conducted by Bwanakare 
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Table 2.
Initial unbalanced Polish SAM (2005)

 aAct pCom Labor Capital Pollfees Hou Ent GRE CapAc RoW Total

aAct 0.0 160.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.5 196.6

pCom 108.6 0.0 0.0 0.0 0.0 71.6 0.0 7.8 18.9 0.0 207.0

Labor 35.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.2

Capital 50.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.5

Pollfees 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3

Hou 0.0 0.0 31.7 27.9 0.0 0.0 7.2 27.1 0.0 1.8 95.7

Ent 0.0 0.0 0.0 24.8 0.0 0.0 0.0 0.0 0.0 0.0 24.8

GRE 0.0 10.3 0.0 0.0 2.3 22.4 7.0 0.0 0.0 0.0 42.0

CapAc 0.0 0.0 0.0 0.0 0.0 6.5 11.0 0.5 0.0 0.9 18.9

RoW 0.0 37.2 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 39.1

Total 196.6 207.7 31.7 52.7 2.3 100.5 27.2 35.5 18.9 39.1  

Source: own compilation.

Table 3.
Balanced, post non extensive entropy Polish SAM (2005); weight equals (0.05; 0.94; 0.01) 

 Aact Pcom Labor Capital Pollfees Hou Ent Gre Capac Row Total

Aact  160.2        36.5 196.7

Pcom 109.4     71.13  7.85 18.94  207.3

Labor 33.46          33.46

Capital 51.61          51.61

Pollfees 2.272          2.272

Hou   33.46 25.62   6.9 30.3  1.8 98.1

Ent    25.99       25.99

Gre  9.848   2.272 20.13 6.52    38.76

Capac      6.843 10.6 0.61  0.86 18.94

Row  37.2     1.94    39.13

Total 196.7 207.3 33.46 51.61 2.272 98.1 26 38.8 18.94 39.1  

Source: own compilation.
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(2013b) consisting of balancing the EU input output matrix, the author- after having 
applied only a single constraint- found the outputs from the RAS approach slightly 
better compared with those from the cross-entropy technique. Thus, the conclusion 
from that study seems to support the one presented above by Chisari at al. (2012). 
However, this suggestion does not seem to be consistent with the investigations done 
by Robinson, El-Said (2000) on the Mozambique economy. These authors have found 
that the RAS and Shannon entropy approaches produce the same performance when 
no additional restriction is imposed. More investigations are needed to contradict 
or con  rm the  ndings of the authors mentioned in this paragraph. Nevertheless, 
taking its stochastic characteristics into account, cross-entropy potentially has a higher 
performance than the RAS approach, particularly when statistical data are known with 
uncertainty.

The main purpose of the  gures displayed below is to put emphasis on some 
model output characteristics through selected parameters or indices. In particular, the 
impact of q-Tsallis variation and weights in criterion function on computed outputs is 
underscored. Increasing this parameter is equivalent to a kind of “complexifying” of 
interrelations between economic actors or sectors inside the economy (Foley, Smith, 
2008), such as reinforcing competitive conditions. Three distinct weight components 
(eq. 7) {(0.94;0.05;0.01)_p; (0.333; 0.334; 0.333)_nw; (0.05; 0.94; 0.01)_w1} have 
been assigned in the entropy criterion function and each weight inside each set cor-
responds, respectively, to distribution of SAM coef  cients, column totals, and GDP 
disturbance errors. GDP accounts deserve relatively lower importance as they are 
only connected with a limited number of SAM accounts (production factors and tax 
income). Then, symbols _p, _nw, and _w1 on the right hand side of each of the above 
weight set underscore the dominant probability in each set. In particular, the _nw cor-
responds to the case equivalent weights. Figure 1 compares model goodness according 
to weights assigned to different components in the criterion function, for different q 
lying inside Gaussian attractor interval [1-5/3]. Increasing weights on the parameter 
probability component should enhance post-entropy SAM coef  cient precision while 
worsening error estimation, thus at the cost of model ex-post-prediction (Golan at al., 
1996). As has already been said, the model entropy encompasses statistical losses in 
the parameter space (precision) and in the sample space (prediction). Analytically, it 
can be directly shown that Lagrange multipliers stand for implicit nonlinear function 
of weights imposed in the generalised cross-entropy criterion function. Changes in 
weights thus alter the corresponding optimal solution value. In general, as in most 
constrained optimisation problems, smaller Lagrange multipliers for a q cross-en-
tropy formulation should imply smaller impact of constraints on the objective, at 
least for q around unity, i.e., the Gaussian case. The above de  ned three weight types 
correspond, respectively, to three goodness indices “S(Pr)”: good–p, good–nw, good–w1, 
where S(Pr) is the total normalized entropy of the system (eq. 14). This index then 
tells us, given the unbalanced prior SAM, to what extent new evidence re  ected in 
constraining moment conditions and the estimated model has discriminated in favour 
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of the balanced post entropy SAM for different levels of the q-Tsallis parameter. 
In the present model, its highest value is around 0.99 once higher weight has been 
imposed on column total errors (_w1) for a q- parameter evolving around unity. We 
recall that this inference index varies between zero and one. Figure 2 analyses the 
precision-prediction loss trade-off between the two random sources of model sensi-
tivity by the above selected weights and different q-Tsallis parameters. We compare 
two extreme weighting cases A= {(0.94; 0.05; 0.01)_p and B=(0.05; 0.94; 0.01)_w1}. 
The symbol “PPI shrink” is a precision index for each q-Tsallis parameter. To get the 
measure, we  rst calculate the relative differences (in absolute value) between the 
SAM post-entropy probability from cases A and B. Next, we calculate the arithmetical 
divergence mean by summing up, in absolute values, those differences divided by the 
number of structural probabilities being parameters within the table. 
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Figure 1. Model of goodness q-entropy index and weights in criterion function

The next prediction index values, “Sigma shrink,” are obtained in the same way 
as “PI shrink” described above with the difference that, in this last case, attention 
is drawn to standard disturbance error affecting column totals. As we can observe, 
reducing weights on the SAM probability component in favor of the column total 
errors component relatively increases information divergence related to SAM coef  -
cients between the prior and the posterior. Impact of such a weight change is to reduce 
standard disturbance error on column totals. This is described by Figure 2, where the 
best outputs are re  ected by values at the beginning of the curve in the south-eastern 
corner. We notice, in the present case, a higher sensitivity of error component to 
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weight change than the one from SAM coef  cients. The index varies between approx-
imately 0 and 0.9 while in the last case it varies between -0.12 and zero. 
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Figure 2. Precision and prediction loss tradeoff due to weight change in c.f. for different q_ parameters

7. CONCLUDING REMARKS

This paper aims at extending applications of a non-extensive entropy approach to 
modeling generalized inverse problems in the case of stochastically balanced systems. 
A Polish SAM, as a case study, has been optimally balanced. However, because the 
existing SAM represents only an approximation of the unknown true values of the 
macroeconomic transactions, it is dif  cult to accurately assess outputs of the estimated 
model. We found optimal outputs for q-Tsallis close to unity, suggesting the Gaussian 
structure of the SAM. Statistical inference indices proposed in this paper have been 
used to analyze the tradeoff between parameter precision and sample prediction for 
different weights in the objective function and different q-Tsallis complexity parame-
ters. Superiority of the proposed approach should rely essentially on its generalizing 
attributes owing to its non-extensivity, conceptually ensuring solutions less prone to 
initial conditions. We suggest more investigations in other economies and other  elds, 
particularly those in countries with different economic structures.

University of Information Technology and Management in Rzeszow 
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EKONOMETRYCZNE ZBILANSOWANIE MACIERZY RACHUNKOWO CI SPO ECZNEJ 
POD HIPOTEZ  PRAWA POT GOWEGO

S t r e s z c z e n i e

Wzgl dna Entropia Shannon-Kullback-Leibler (SKLCE) jest szczególnie przydatna przy rozwi zaniu 
problemu odwrotnego systemu ergodycznego. Cho  empiryczne zastosowanie podej cia Shanon-Gibbsa 
spotka o si  ostatnim czasem ze znacznym sukcesem, cierpi jednak ca y czas ze wzgl du na charakter 
hipotezy ergodycznej, ograniczaj c wszystkie mikroelementy systemu pojawianiem si  identycznego 
prawdopodobie stwa. Niniejszy artyku  ma na celu rozszerzenie zastosowania nieekstensywnego modelu 
wzgl dnej entropii (NECE) dla zbilansowania losowych macierzy wyj cia-wej cia. Model ten postuluje, 
e dzia alno  ekonomiczna cechuje si  d ugookresow  pami ci  kompleksowych interakcji mi dzy 

podmiotami gospodarczymi lub mi dzy sektorami. Stosuj c w asno ci skalowania prawa pot gowego 
budujemy model, który z powodzeniem zbilansuje polsk  macierz rachunkowo ci spo ecznej cechuj c  
si  równowag  ogóln  Warlasa. Zaproponowano wnioskowanie statystyczne dla przedzia u ufno ci 
indeksów informacji. Zaobserwowano, e zwi kszenie wag komponentów sk adnika losowego dualnego 
kryterium funkcji prowadzi do wi kszych warto ci parametru q-Tsallisa, za  zmniejszenie tych wag 
przybli a warto  parametru q-Tsallis’a do jedno ci. Przewag  podej cia entropii Tsallis’a nad innymi 
konkuruj cymi metodami jest mo liwo  uogólnienia modelu Gaussowskiego, ze wzgl du na to, e 
bierze ono pod uwag  istnienie rozk adu grubego ogona. Dzi ki cechom parametru q-Tsallis’a mo liw  
staje si  równie  ocena kompleksowo ci systemu statystycznego.

S owa kluczowe: q-uogólniana dywergencja informacji Kullback-Leibleir’a, macierz rachunkowo ci 
spo ecznej
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ECONOMETRIC BALANCING OF A SOCIAL ACCOUNTING MATRIX 
UNDER A POWER-LAW HYPOTHESIS

A b s t r a c t

Shannon-Kullback-Leibler cross-entropy (SKLCE) is particularly useful when ergodic system inverse 
problems require a solution. Though empirical application using the Shanon-Gibbs approach has recently 
met with notable success, it suffers from its ergodicity, constraining all micro-states of the system to 
appear with identical odds. The present document aims at extending applications of a non-extensive 
cross-entropy model (NECE) for balancing an input output stochastic system. The model then postulates 
that economic activity is characterized by long run complex behavioural interactions between economic 
agents and/or economic sectors. Applying scaling property of a Power-law we present a model which 
successfully balances a Polish national social accounting matrix (SAM) expected to exhibit Warlasian 
general equilibrium features. The Rao-Cramer-Kullback inferential information indexes are proposed. We 
note that increasing relative weight on the disturbance component of the dual criterion function leads to 
higher values of the q-Tsallis complexity index while smaller disturbance weights produce q values closer 
to unity, the case of Gaussian distribution. 

The great advantage of the approach presented over rival techniques is its allowing for the gene-
ralisation of Gaussian law enabled by its capability of including heavy tall distributions. The approach 
also constitutes a powerful instrument for the assessment of complexity in the analysed statistical system 
thanks to the q-Tsallis parameter.

Keywords: q-Generalization of K-L information divergence, social accounting matrix




