Effect of combined administration of enterocin 4231 and sage in rabbits

R. Szabóová1, A. Lauková1, L. Chrastinová2, V. Strompfová1, M. Pogány Simonová1, Z. Vasilková3, K. Čobanova1, I. Plachá1, M. Chrenková2

1 Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovak Republic
2 Animal Production Research Centre, Hlohovecká 2, 95141, Nitra-Luzianky, Slovak Republic
3 Parasitological Institute, Slovak Academy of Sciences, Hlinkova 3, 04001, Košice, Slovak Republic

Abstract

Enterocin (Ent) 4231, produced by non-rabbit origin strain Enterococcus faecium CCM 4231 was used in combination with sage plant extract in rabbits with the aim to check their antimicrobial activity against microbiota, their effect on immunological, biochemical blood parameters, values of volatile fatty acids in caecum, Eimeria sp. oocysts occurrence and selected parameters of rabbits meat. The animals were divided into three experimental groups (EG1-Ent 4231; EG2- sage; EG3- Ent 4231 with sage) and control group (CG); 24 rabbits in each. Natural substances (NS) were administered for 21 days. The experiment lasted for 42 days. The reduction of microbiota in faeces was observed in EG3 at day 21 by a decrease in the number of coagulase-positive staphylococci ($P < 0.01$) in comparison with that determined in CG. The bacterial counts in the caecum were lower than those found in faeces. A decrease in the number of Pseudomonas-like sp. in caeca of the experimental groups was observed at days 21 and 42 (difference in range 0.40-1.87 log cycles) comparing with that determined in CG. At day 21, a significant increase in phagocytic activity (PA, $P < 0.001$) was found in blood of rabbits from EG2 comparing with that observed in CG. At day 42, a significant increase in PA ($P < 0.001$) was determined in all experimental groups in comparison with CG. At day 21, in caecal content of EG3 significantly higher values of lactic acid were observed ($P < 0.05$) in comparison with those found in CG. The reduction of Eimeria sp. oocysts was demonstrated after application of each of NS. Addition of NS did not influence biochemical parameters, meat quality of the animals and does not influence negatively the health status of rabbits.

Key words: enterocin, sage, rabbit, microbiota, effect

Introduction

Enterococci represent Gram-positive, facultative anaerobic lactic acid bacteria from the genus Enterococcus, division Firmicutes. They are also known to produce ribosomally synthesized, extracellularly released antimicrobial peptides – bacteriocins, mostly enterocins (Franz et al. 2007); the number of those characterized has been significantly increased. However, most of them are produced by the species Enterococcus faecium of different origin (Franz et al. 2007, Mareková et al. 2007). According to the classification scheme of Franz et al. (2007), enterocins belong to class I (lantibiotic enterocins), class II (small,
nonantibiotic peptides), class III (cyclic enterocins) and class IV (large proteins). Class II is subdivided in three subclasses: II. 1, enterocins of the pediocin family; II. 2, enterocins synthesized without a leader peptide and II. 3, other linear, nonpediocin type enterocins.

Enterococcus faecium CCM 4231 (isolated in Laboratory of Animal Microbiology, Institute of Animal Physiology, Slovak Academy of Sciences) was found as the first bacteriocin-producing strain of ruminal origin with probiotic character (Laukóvá et al. 1993). Enterocin (Ent) 4231 is an antimicrobial termo-stable peptid (3-10 kDa) with optimum pH for its production between 4.0 and 7.5 in logarithmic phase of growth with activity 3200 AU/ml (Laukóvá et al. 1999b). Producer strain and its bacteriocin Ent 4231 have already been successfully applied into many ecosystems to reduce spoilage flora (Laukóvá et al. 1998a,b 1999a,b, 2001a,b). Producer strain E. faecium CCM 4231 was even tested in rabbits (Szabóová et al. 2008a).

Administration of natural substances (bacteriocins or phytoadjectives and their essential oils) in rabbits ecosystem offer an acceptable way to prevent and/or overcome bacterial and viral infections as well as to improve welfare, health and meat quality of rabbits (Xu et al. 1999, Fichi et al. 2007, Szabóová et al. 2008a, 2008b). The use of secondary metabolites of plants containing essential oils with inhibitory effects against pathogens represents an alternative approach (Marcín et al. 2006). The genus Salvia (sage) encompasses about 900 species of plants belonging to the mint family Lamiaceae (Labiatae; Gali-Muhtasib et al. 2000). Different types of extracts of Salvia officinalis has possessed antioxidant, anti-inflammatory, hypoglycemic and anti-mutagenic bioactivities (Wang et al. 1998, Baricivec et al. 2001, Alarcon-Aquilar et al. 2002). Based on our previous results (Szabóová et al. 2008b), in this study combined use of Ent 4231 and sage plant extract in rabbits was tested with the aim to detect their antimicrobial activity, immunological and biochemical blood parameters, the values of lactic acid and volatile fatty acids in the content of the caecum, reduction of Eimeria sp. oocysts and selected parameters of rabbit meat.

Materials and Methods

Animals and experimental design

Ninety six rabbits, 5-weeks old (male sex, Hy-Plus breed), were used in this experiment. All care and experimental procedures involving animals followed the guidelines stated in the Guide for the Care and Use of Laboratory Animals which was accepted by Slovak Governmental Veterinary and Food Institute. Rabbits were divided into three experimental groups (EG1, EG2, EG3) and control group (CG) of 24 animals in each group. The animals were kept in the standard cages, two animals per cage. All the animals were fed a commercial diet for growing rabbits (ANPRO.FEED, VKZ Bučany, Slovakia) during the entire experiment with free access to water. Rabbis in EG1 received every day (from day 0-1 to day 21) Ent 4231 (prepared according to Laukóvá et al. 1997) in drinking water at a dose of 50 μl/animal/day (1600 AU/ml); rabbits in EG2 received (from day 0-1 to day 21) sage plant extract (Salvia officinalis extract contained 24% of thujone, 18% of borneol, 15% of cineole; Calendula company, Nová Lúbovňa, Slovakia) in drinking water and at a dose of 10 μl/animal/day. This dose was decided to use according to our previous in vitro studies testing an inhibitory activity of sage extract against target of bacteria (Szabóová et al. 2008b) as well as this dose was well tolerated by the animals. The animals in EG3 received (from day 0-1 to day 21) the combination of Ent 4231 (50 μl/animal/day, 1600 AU/ml) strain and sage plant extract (10 μl/animal/day). The experiment lasted for 42 days. The doses of additives and their application form were decided developing from our previous experiments (Szabóová et al. 2008a,b, Pogány Simonová et al. 2009, Laukóvá et al. 2009). Moreover, developing from our previous experiments, the volume of water drunk by rabbits is known.

Bacterial counts

Faeces (faecal mixture from 96 animals, n=10) were sampled at the beginning of the experiment, day 0-1), then the samples were taken at day 21 [3 weeks of natural substances application (NS), faecal mixture of each group, 24 rabbits in each group, n=5]; at day 42 (3 weeks after cessation of NS administration, faecal mixture of each group, 24 rabbits in each group n=5) to monitor an inhibitory effect of Ent 4231 and sage extract as well separately and in their combination. The samples (1g) were collected into sterile polyvinylchlorid (PVC) bags, treated by the standard microbiological method (dilutions in Ringer solution, pH 7,0: Oxoid Ltd., Basingstoke, Hampshire, England) plating appropriate dilutions on the selective media according to ISO (International Organization for Standardization). To enumerate enterococci, M-Enterococcus agar (Difco, Detroit, USA) was used. Baird-Parker agar supplemented with egg yolk tellurite solution (Becton & Dickinson, Cockeysville, USA), Mannitol Salt Agar (Difco, Detroit, USA), Clostridium difficile agar with the supplement SR0096E and 7% (v/v) defibrinated horse blood (SR0050, Oxoid Ltd., Basingstoke, Hampshire, England) were used to enumerate coagulase-positive

Materials and Methods
staphylococci (CPS) including *Staphylococcus aureus*, coagulase-negative staphylococci (CNS) and *Clostridium*-like sp. Mac Conkey agar and Cetrimide agar (Becton and Dickinson) were used to count coliform bacteria and *Pseudomonas*-like sp. The plates were incubated at 30°C and/or 37°C for 24-48 h depending on the bacterial species. Bacterial counts were expressed in colony forming units (log10 CFU) per gram.

At days 21 and 42, three animals from each group were slaughtered. Caeca were separated from the other parts of the gastrointestinal tract and caecal contents (1g) were collected into sterile PVC sample tubes (Falcon, USA) to count microbiota. They were serially diluted in Ringer solution (according to the standard microbiological method) and plated on the media mentioned above. Lactic acid (g/100g) and volatile fatty acid values (acetic, propionic and butyric acids- mmol/l) were determined using gas chromatography from the samples of caecal content (15 g) at days 21 and 42.

Biochemical parameters and phagocytic activity

Biochemical parameters were examined at days 0-1, 21 and 42: serum levels of proteins and lipids (g/l), cholesterol (mmol/l), glucose (mmol/l), calcium (mmol/l), glutathion peroxidase (GPx; U/ml) using commercial kit Randox (England).

Phagocytic activity was measured by direct counting procedure using microspheric hydrophilic particles (MSHP). Ingestion of MSHP by polymorphonuclear cells (PMN) was determined using a modified test described by Vetvicka et al. (1982): 50 μl of MSHP suspension (ARTIM, Prague, Czech Republic) was mixed with 100 μl of blood in an Eppendorf-type test tube and incubated at 37°C for 1 h. Blood smears were then prepared and stained in accordance with May-Grunwald and Giemsa-Romanowski (Pappenheim stain – May-Grunwald solution was added on a slide with blood smear and worked for 3 minutes. Then 5 ml of distilled water was added and worked for 1 minute. After removal of the solution were added 75 drops of Giemsa-Romanowski solution and this solution worked for 20 minutes. Blood smears were examined microscopically after rinsing with distilled water). Phagocytic activity (PA) was calculated as number of white cells containing at least three engulfed particles/100 white cells (neutrophils and monocytes) and the index of PA was calculated as number of engulfed particles/total number of neutrophils and monocytes observed. The percentage of phagocytic cells was evaluated using an optical microscope, by counting PMN up to 100.

Eimeria sp. oocysts counting

*Eimeria* sp. oocysts were enumerated in the faecal samples microscopically at days 0-1, 21 and 42 of the experiment and expressed as counts of oocysts per 1 g of faeces (OPG). The samples were stored at 4°C and then evaluated by the quantitative flotation technique – McMaster method (Ministry of Agriculture, Fisheries and Food, UK, 1986).

Evaluation of meat

The following parameters were tested 24 h post mortem: total lipids and proteins, energetic value and the value of pH. The ultimative pH was determined 48 h post mortem by a Radelkis OP-109 with a combined electrode penetrating 3 mm into the *Musculus longissimus dorsi* (MLD). 100 g of MLD was sampled and after cooling at 5°C analysed using the spectroskop Infratec 1265 (STN 570185) – Meat Analyser (FOOS North America, Inc.; Minnesota; USA). Total proteins and lipids were expressed in g/100 g.

Statistical Analysis

The results are expressed as mean ± standard deviation (SD), statistical evaluation of the results was performed by the one-way ANOVA and the Tukey test.

Results

At day 21 (3 weeks after NS application), in faeces of EG3 (*Ent 4231 and sage extract*), a significant decrease in CPS (P<0.01; Table 1) was detected in comparison with CG. At days 21 and 42, a decrease in *Clostridium*-like sp. in faeces of EG1 was detected in comparison with CG (day 21, difference 1.53 logarithmic cycle (log); day 42, difference 1.57 log cycle, Table 1). The counts of the other microbiota in faeces were not influenced by the administration of both NS. In general, the bacterial counts in the caecum were lower than those found in faeces; the reduction of *Pseudomonas*-like sp. in caecal contents of the experimental groups was observed at days 21 and 42 (day 21, EG1: difference 0.40 log cycle; EG2: 1.59 log cycle; EG3: 1.87 log cycle; day 42, EG1: 1.16 log cycle; EG2: 1.05 log cycle; EG3: 1.56 log cycle) comparing with CG (differences in log cycle between EG and CG are calculated from their counts; Table 2).
Table 1. Microbiota in faeces of rabbits expressed in CFU/g.

<table>
<thead>
<tr>
<th></th>
<th>EG1</th>
<th>EG2</th>
<th>EG3</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Day 21</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td>4.40 ± 1.00</td>
<td>5.28 ± 1.29</td>
<td>3.30 ± 0.91</td>
<td>5.33 ± 0.57</td>
</tr>
<tr>
<td>CNS</td>
<td>3.70 ± 0.56</td>
<td>3.61 ± 0.80</td>
<td>3.98 ± 1.27</td>
<td>3.89 ± 1.33</td>
</tr>
<tr>
<td>CPS</td>
<td>3.90 ± 0.63</td>
<td>5.30 ± 1.01</td>
<td>2.31 ± 0.35a</td>
<td>4.80 ± 0.20b</td>
</tr>
<tr>
<td>Clostridium-like sp.</td>
<td>3.47 ± 0.72</td>
<td>4.41 ± 1.08</td>
<td>4.39 ± 1.52</td>
<td>5.00 ± 0.74</td>
</tr>
<tr>
<td>Pseudomonas-like sp.</td>
<td>3.50 ± 0.46</td>
<td>5.15 ± 0.88</td>
<td>3.98 ± 0.68</td>
<td>4.42 ± 0.40</td>
</tr>
<tr>
<td>Coliform bacteria</td>
<td>2.70 ± 1.48</td>
<td>3.69 ± 1.55</td>
<td>&lt; 1.00</td>
<td>3.64 ± 0.78</td>
</tr>
<tr>
<td><strong>Day 42</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td>3.35 ± 0.47</td>
<td>3.72 ± 0.39</td>
<td>3.56 ± 0.35</td>
<td>2.61 ± 0.45</td>
</tr>
<tr>
<td>CNS</td>
<td>3.29 ± 0.11</td>
<td>3.34 ± 0.18</td>
<td>3.29 ± 0.10</td>
<td>3.45 ± 0.10</td>
</tr>
<tr>
<td>CPS</td>
<td>3.68 ± 0.64</td>
<td>3.28 ± 0.48</td>
<td>3.62 ± 0.23</td>
<td>2.87 ± 0.34</td>
</tr>
<tr>
<td>Clostridium-like sp.</td>
<td>3.40 ± 1.54</td>
<td>5.11 ± 0.91</td>
<td>4.63 ± 1.39</td>
<td>4.97 ± 0.91</td>
</tr>
<tr>
<td>Pseudomonas-like sp.</td>
<td>3.79 ± 0.47</td>
<td>4.03 ± 0.34</td>
<td>3.52 ± 0.32</td>
<td>3.18 ± 0.26</td>
</tr>
<tr>
<td>Coliform bacteria</td>
<td>&lt; 1.00</td>
<td>2.65 ± 0.73</td>
<td>1.30 ± 0.42</td>
<td>1.83 ± 0.53</td>
</tr>
</tbody>
</table>

EG1 – experimental group (Ent 4231; n=5); EG2 – experimental group (sage; n=5); EG3 – experimental group (Ent 4231 with combination of sage; n=5); CG – control group (n=5); ^ 3 weeks of Ent 4231 strain and sage administration; a, b P < 0.01; Day 0-1: Enterococcus sp.: 2.64 ± 1.04 CFU/g; CNS: 2.54 ± 0.14 CFU/g; CPS: 2.47 ± 0.93 CFU/g; Clostridium-like sp.: 2.82 ± 1.17 CFU/g; Pseudomonas-like sp.: 1.56 ± 0.58 CFU/g; Coliform bacteria: 1.71 ± 0.57 CFU/g; decrease of Clostridium-like sp. in EG1 at days 21 and 42 in comparison with CG (day 21, difference 1.53 log cycle; day 42, difference 1.57 log cycle)

Table 2. Microbiota in caecum content in rabbits expressed in CFU/g.

<table>
<thead>
<tr>
<th></th>
<th>EG1</th>
<th>EG2</th>
<th>EG3</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Day 21</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td>1.00 ± 0.00</td>
<td>1.00 ± 0.00</td>
<td>&lt; 1.00</td>
<td>1.00 ± 0.00</td>
</tr>
<tr>
<td>CNS</td>
<td>2.94 ± 0.09</td>
<td>2.87 ± 0.11</td>
<td>2.63 ± 0.39</td>
<td>3.53 ± 0.51</td>
</tr>
<tr>
<td>CPS</td>
<td>1.24 ± 0.24</td>
<td>1.56 ± 0.66</td>
<td>1.55 ± 0.40</td>
<td>2.24 ± 0.30</td>
</tr>
<tr>
<td>Clostridium-like sp.</td>
<td>3.10 ± 0.14</td>
<td>4.29 ± 0.91</td>
<td>3.05 ± 0.18</td>
<td>3.49 ± 0.30</td>
</tr>
<tr>
<td>Pseudomonas-like sp.</td>
<td>3.65 ± 0.44</td>
<td>2.46 ± 0.13</td>
<td>2.18 ± 0.08</td>
<td>4.05 ± 0.54</td>
</tr>
<tr>
<td>Coliform bacteria</td>
<td>1.30 ± 0.00</td>
<td>2.04 ± 0.00</td>
<td>&lt; 1.00</td>
<td>2.68 ± 1.24</td>
</tr>
<tr>
<td><strong>Day 42</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td>&lt; 1.00</td>
<td>&lt; 1.00</td>
<td>&lt; 1.00</td>
<td>&lt; 1.00</td>
</tr>
<tr>
<td>CNS</td>
<td>3.33 ± 0.30</td>
<td>3.34 ± 0.19</td>
<td>2.98 ± 0.26</td>
<td>3.19 ± 0.15</td>
</tr>
<tr>
<td>CPS</td>
<td>2.02 ± 0.20</td>
<td>2.03 ± 0.16</td>
<td>1.79 ± 0.16</td>
<td>2.10 ± 0.04</td>
</tr>
<tr>
<td>Clostridium-like sp.</td>
<td>2.15 ± 0.93</td>
<td>2.63 ± 0.48</td>
<td>2.18 ± 0.59</td>
<td>2.47 ± 0.38</td>
</tr>
<tr>
<td>Pseudomonas-like sp.</td>
<td>2.30 ± 0.49</td>
<td>2.41 ± 0.14</td>
<td>1.90 ± 0.30</td>
<td>3.46 ± 0.12</td>
</tr>
<tr>
<td>Coliform bacteria</td>
<td>2.15 ± 1.15</td>
<td>1.00 ± 0.00</td>
<td>&lt; 1.00</td>
<td>1.79 ± 0.79</td>
</tr>
</tbody>
</table>

EG1 – experimental group (Ent 4231; n=3); EG2 – experimental group (sage; n=3); EG3 – experimental group (Ent 4231 with combination of sage; n=3); CG – control group (n=3); ^ 3 weeks of Ent 4231 strain and sage administration; a, b P < 0.01; Day 0-1: Enterococcus sp.: 2.64 ± 1.04 CFU/g; CNS: 2.54 ± 0.14 CFU/g; CPS: 2.47 ± 0.93 CFU/g; Clostridium-like sp.: 2.82 ± 1.17 CFU/g; Pseudomonas-like sp.: 1.56 ± 0.58 CFU/g; Coliform bacteria: 1.71 ± 0.57 CFU/g; decrease of Clostridium-like sp. in the experimental groups at days 21 and 42 (day 21, EG1: difference 0.40 log cycle; EG2: 1.59 log cycle; EG3: 1.87 log cycle; day 42, EG1: 1.16 log cycle; EG2: 1.05 log cycle; EG3: 1.56 log cycle) comparing with CG

At day 21, a significant increase in PA (P<0.001; Table 3) was determined in blood of rabbits from EG2 comparing with CG. At day 42, a significant increase in PA (P<0.001; Table 3) in all experimental groups (EG1; EG2; EG3) was found in comparison with CG. PA at day 21 in EG1 was 18.67% ± 0.42; in EG2 was 27.67% ± 0.42; in EG3 20.50% ± 0.43 in comparison with CG (22.50% ± 0.85); while at day
42, PA in rabbits of EG1 was 25.20% ± 0.80; EG2 30.50% ± 0.96 and EG3 28.60% ± 0.51 in comparison with CG (20.40% ± 0.51; Table 3).

At day 21 in caecal content of rabbits in EG3 significantly higher values of lactic acid were noted (P< 0.05; Table 4) in comparison with CG. The values of other volatile fatty acids were not significantly changed.

The reduction of *Eimeria* sp. oocysts was demonstrated after application of each of NS (Ent 4231; sage; combination of both) in EG1 (not detected – nd); in EG2 (30.00 ± 2.74 OPG); in EG3 (20.00 ± 2.74 OPG) comparing with CG (1184.00 ± 45.83 OPG) at day 21. Moreover, at day 42 the reduction of *Eimeria* sp. oocysts was found in EG1 (2250.00 ± 161.79 OPG); in EG2 (20.00 ± 2.74 OPG); in EG3 (nd) comparing with CG (5640.00 ± 263.20 OPG).

The feeding of NS by rabbits did not influence biochemical parameters e.g. they did not evoke oxidative stress – nor influence values of GPx during the entire experiment as well as does not influence negatively the health status of rabbits.

By the monitoring of meat quality parameters, slight changes between experimental (EG1, EG2, EG3) and control groups (CG) were noted – total proteins (EG1: 21.96 ± 0.35; EG2: 21.83 ± 0.30; EG3: 22.03 ± 0.15; CG: 22.20 ± 0.10 g/100g), pH (EG1: 5.93 ± 0.07; EG2: 5.97 ± 0.11; EG3: 5.83 ± 0.07; CG: 5.83 ± 0.07) and water content (EG1: 75.83 ± 161.79 OPG); in EG2 (20.00 ± 2.74 OPG); in EG3 (nd) comparing with CG (5640.00 ± 263.20 OPG).
Discussion

At recent time, an increase in the number of studies testing enterocins in vivo was noted; there are more studies involving poultry, pigs, cows, food (Foulquié Moreno et al. 2006, Strompfova et al. 2006, Svetoch and Stern 2010). In rabbits husbandry, post-weaned period is problematic. The most frequent agents detected in this period are coliform bacteria, clostridiae, staphylococci (Isolauri et al. 1990, Chrastinova et al. 2010). Therefore, significant decrease in CPS, reduction of clostridiae in faeces and pseudomonads in the caecum after Ent 4231 application is important and promising result. Previously, Ent 4231 has been experimentally added to the run men fluid, cattle dung water and food products and showed the inhibition of listeriae and staphylococci (Lauková et al. 1998a,b, 1999a,b, 2001a,b). Reduction of Staphylococcus aureus and Clostridium-like bacteria in the rabbits faeces after administration of Ent 2019 already reported Pogány Simonová et al. (2009). However, Ent 2019 is produced by the rabbits isolate E. faecium EF2019-CCM7420 and Ent 4231 is produced by non-rabbit origin strain. The other Ent-Ent M produced by non-rabbit origin strain E. faecium AL41 (environmental isolate) was reported to reduce CPS (Lauková et al. 2009). It seems, that enterocins like proteinaceous substances can act beneficially in GIT, although their mode of action is not fully known. Mechanism for the interaction of plants including Salvia sp. with host organism may be related to intestinal and extraintestinal effects. Intestinal effects may be explained by the effects on microbiota (Montagne et al. 2003) or intestinal mucosal system (Garcia et al. 2007). Microflora can influence activities of certain enzymes involved in the metabolism uptake, and incorporation by enterocytes of dietary nucleic acids components (Whitt and Savage 1988). The inhibitory mechanism is the damage of permeability of cell membrane integrity, pH homeostasis (Helander et al. 1998), the balance of inorganic ions (Sikkema et al. 1995) and also depends on the concentration of essential oils. The low concentration of plant essential oils inhibits the activity of enzymes involved in energy metabolism of the cells as well as it inhibits the activity of enzymes involved in the precipitation of proteins. Phenols, active components of many essential oils destabilize the cytoplasmic and outer cell membranes, reduce the pH gradient, cause the depletion of ATP, what induce the leakage of ions, ATP, amino acids, nucleic acids and in a consequence the cell death (Tranter et al. 1993, Ullée et al. 2002). Antimicrobial activity of sage plant extract has been tested mostly individually (Eidi et al. 2005, Szabóová et al. 2008b, Revajová et al. 2010); also in our experiment, in sage group of rabbits (EG2) higher PA value was measured at day 21 and 42 as compared with those found in EG1, EG3 and CG. On the other side, our experiment showed beneficial influence of sage plant extract also in combination with Ent. Moreover, higher percentage of PA in rabbits of the experimental groups at day 42 has shown prolonged immuno-stimulatory effect of NS. Pláchá et al. (2010) have reported significantly increased values of PA (P<0.001) in hens administrating Ent M (produced by the strain E. faecium AL41) in the drinking water in comparison with hens fed by the standard diet. According to Lauková et al. (2008), administration of Eleutherococcus senticosus (as phytoadditive) separately showed stimulating effect on PA in rabbits. Also, Nofrarias et al. (2006) have reported immuno-modulatory effect of dietary plant extracts (carvacrol, cinnamaldehyd) which can affect the intestinal morphology and immune cell subsets of gut tissues and blood in weaned pigs. Neutrophil polymorphonuclear leucocytes (granulocytes) are responsible for the non-specific immune response and in the first line share for phagocytosis intro-defence of the host to infectious and inflammatory actions (Escribano et al. 2005).

A decrease in the numer of Eimeria sp. oocysts in rabbits after administration of Ent 4231 has been considered as very important result, although the same effect was previously observed after application of Ent 2019 (Poghy Simonová et al. 2009). It means, that in spite of not known mechanism of action yet, enterocins can cause a decrease in the numer of Eimeria oocysts. Moreover, Strompfova et al. (2010) reported a decrease in the numer of Eimeria oocysts under in vitro conditions using enterocin-producing strains. The chamomile essential oil administration influenced survival of Eimeria sp. oocysts in faeces of rabbits; there the reduction of Eimeria sp. oocysts was recorded through the entire experiment (Simonová et al. 2007). Anticoccidial effects of green tea-based diets were evaluated in chickens by Seung et al. (2007). The green tea-fed chickens produced significantly reduced number of faecal oocysts (P<0.05) when compared to that observed in the E. maxima-infected group fed standard diet. It is also important, that administration of such NS as enterocins or sage did not evoke oxidative stress; this is also one more beneficial point showing their further use in breedings. Similarly, administration of Ent 2019 for rabbits did not evoke oxidative stress (Lauková et al. 2008, Pogány Simonová et al. 2009).

In conclusion, it can be stated, that higher effectiveness of Ent 4231 was observed in Eimeria oocysts and clostridiae reduction; sage extract administered individually was more effective in stimulation of unspecific immunity parameter (higher increasе of PA in this group). However, PA was also increased in rabbits administered the combination of both NS.
That is, they can be recommended for rabbits husbandry. Moreover, they did not influence negatively the quality of meat. Of course, further clinical testing is requested.

Acknowledgement

This work was supported by the Slovak Scientific Agency VEGA project 2/0008/08 and partially 2/0002/11. The authors would like to thank Mrs. M. Bodnárová for her excellent technical assistance. We are grateful to Dr. Rastislav Jurčík and Ing. L‘ubomír Ondruška from Animal Production Research Centre in Nitra for their help with blood sampling as well as to Ing. Jozef Mojtó for his co-operation in meat quality parameters analyses. We are also grateful to Dr. Jana Poračková (Department of Biology, University in Prešov, Slovakia) for supplying the sage extract. Some data concerning Ent 4231 and sage application in rabbits were presented in Proceedings of the 9th World Rabbit Congress, Verona, Italy, June 10-13, 2008, p. 815-819.

References


Mareková M, Lauková A, Skagen M, Nes I (2007) Isolation and characterization of a new bacteriocin, termed...


