Applied sciences

Archives of Civil Engineering

Content

Archives of Civil Engineering | 2015 | No 4 |

Abstract

In Poland, it often happens that construction objects are subject to demolition work for different reasons. Demolition, according the Construction Law, is defined as a type of construction works and, as such, represents a particular type of construction project. As in other construction projects, a very important phase, in addition to execution of the works, is to prepare, design and plan demolition works. Some demolition activities are covered by appropriate regulations and can be described as typical. On the other hand the technical side of demolition works depends on many factors such as: the type of building, its age, technical condition, type of construction, etc. This article covers the analysis of the stages and tasks in the preparatory phase of the building demolition. This work will also present a description of the tasks carried out during the demolition works based on the example of a historic tenement house located in Krakow. This analysis aims to identify implementation problems and sources of risk that may occur during this type of construction work.

Go to article

Abstract

The article presents an analysis and evaluation of the accident rate in selected European Union countries. On the basis of available statistical data, the analysis of accidents in various sectors of the European Union economy was carried out. Afterwards, a ranking of countries regarding accidents in the construction industry was developed. For the selected representative countries, analysis of changes in the indicators which characterize the accident rate during the period between 2008 and 2012 was carried out. Conclusions resulting from the conducted research were formulated.

Go to article

Abstract

The paper presents an analysis of the influence of elevated temperature on thin-walled purlins restrained by sheeting. In the first part of the study the bearing capacity of purlins cooperating with sheeting is examined in normal and elevated temperature based on European Standards. Next, special attention is paid to creating a numerical FEM model of the restrained purlins in Abaqus program taking into account different materials properties with respect to temperature increase.

Go to article

Abstract

The transitional siliceous rocks from the Belchatow lignite deposit belong to the deposits with heterogeneous petrographic composition. The research allows us to identify among others, opoka-rocks and gaizes. The mineralogical-chemical analysis proves that the main ingredients of the studied rocks commonly used as building material are minerals of the SiO₂ group. Laboratory tests show that the nature of siliceous mineral phases has several effects on the geomechanical parameters of the studied transitional rocks. They are a reduction in water content and rock porosity, which leads to the transition of opal type A to opal type crystobalit and trydymit and then to quartz or microquartz. Their density and strength parameters are increased.

Go to article

Abstract

A study was undertaken to investigate the effects of crumb rubber on the strength and mechanical behaviour of Rubberized cement soil (RCS). In the present investigation, 26 groups of soil samples were prepared at five different percentages of crumb rubber content, four different percentages of cement content and two different finenesses of crumb rubber particle. Compressive strength tests were carried out at the curing age of 7 days, 14 days, 28 days and 90 days. The test results indicated that the inclusion of crumb rubber within cement soil leads to a decrease in the compressive strength and stiffness and improves the cement soil’s brittle behaviour to a more ductile one. A reduction of up to 31% in the compressive strength happened in the 20% crumb content group. The compressive strength increases with the increase in the cement content. And the enlargement of cement content is more efficient at low cement content.

Go to article

Abstract

For the construction company, tendering is the most popular way of acquiring contracts. The decision to participate in the tender needs to be made carefully, as it affects the condition of the company and is an important aspect in its quest for success. The bid/no bid decision making is a complex process involving a number of factors. The research carried out so far has mainly concerned the identification of the various kinds of influences on contractors’ bidding decisions. The researchers, on the basis of contractors’ opinions, created rank lists in an attempt to categorize the factors. In this paper the author employs factor analysis which belongs to basic methods of multi-dimensional data analysis. The paper’s aim is first to depict an output set of observed variables, that is bid/no bid factors, in terms of a smaller set of latent variables which cannot be directly observed and then to interpret the dependencies between them.

Go to article

Abstract

The paper presents a certain way which determines the critical buckling force for a micro-heterogeneous FGM plate band. A stiffness matrix of an individual cell of such band, different for various cells, has been determined. The obtained matrix can also be treated as a variable stiffness matrix of a “superelement” in the Finite Element Method. A computational algorithm for the critical force as well as the way of testing of its correctness has also been presented. The results obtained for various support conditions have been compared to the values known from the literature. The influence of the number of cells on the critical buckling force has been investigated.

Go to article

Abstract

Traffic related noise is currently considered as an environmental pollution. Paper presents results of multidirectional study attempting to serve urban traffic without the need to erect noise barriers interfering urban space. Initial concept of the road expansion included construction of 1000 m of noise barriers dividing city space. Improvement in the acoustic conditions after construction completion is possible due to the applied noise protection measures: vehicle speed limit, smooth of traffic flow, use of road pavement of reduced noise emission and the technical improvement of the tramway.

Go to article

Abstract

The analytical approach is used for checking the stability of laterally unrestrained bisymmetric beams. The stability equations for simply supported beams are solved approximately using the Bubnov–Galerkin method [4]. The lateral buckling moment depends on bending distribution and on the load height effect. Each of applied concentrated and distributed loads, may have arbitrary direction and optional coordinate for the applied force along the cross section’s height. Derived equations allow for simple, yet fast control of lateral buckling moment estimated by FEM [15].

Go to article

Abstract

The paper presents a proposal for the assessment of the reliability of steel truss (both statically determinate and indeterminate) in the persistent and accidental design situation. In the analysis, a probabilistic approach was used. The global Hasofer-Lind reliability index was employed, computed in successive time steps for the whole structure, not for individual elements. The statically determinate truss was modelled as a serial system from the reliability standpoint. For the statically indeterminate truss, kinematically admissible failure mechanisms were determined by means of the examination of the singularity of the stiffness matrix of the structure, converting the truss into a geometrically variable system. For the problem thus formulated, a serial-parallel reliability model was constructed. Monitoring the reliability index in the successive minutes of the fire makes it possible to estimate the probability of the structure failure, and to decide whether the required safety level is maintained.

Go to article

Abstract

The study presents the results of theoretical investigations into lateral torsional buckling (LTB) of bi-symmetric I-beams, elastically restrained against warping at supports. Beam loading schemes commonly used in practice are taken into account. The whole range of stiffness of the support joints, from free warping to warping fully restrained, is considered. To determine the critical moment, the energy method is used. The function of the beam twist angle is described with power polynomials that have simple physical interpretation. Computer programs written in symbolic language for numerical analysis are developed. General approximation formulas are devised. Detailed calculations are performed for beams with end-plate joints. Critical moments determined with programs and approximation formulas are compared with the results obtained by other researchers and with those produced by FEM. Very good accuracy of results is obtained.

Go to article

Abstract

The need for modernization of curricula is growing with the development of new technologies to support teaching, changes in business strategy of universities in Poland and European Union, and development of the society. In response to these changes, at the Department of Civil and Environmental Engineering at Poznan University of Technology, new English-language specialty master studies – Construction Technology Management was launched in March 2014. Studies are based on the cooperation between the student, the industry and the university, allowing students to get to know the specifics of the construction industry. In addition, Poznan University of Technology is involved in an MBAIC project MBA in construction aimed at common study for postgraduates.The synergy achieved through the implementation of these two projects enables the possibility to educate construction managers capable of communication in English, possessing knowledge regarding innovation in the construction industry, who are well prepared to enter the labour market and have the possibility of subsequent improvement of managerial competences.

Go to article

Abstract

The paper presented the model of a problem of choosing the location of a car crane for the installation of prefabricated elements in a given assembly situation with the solution proposal. The issue relates to the situation, in which the dimensions of the shielding structure (assembled) are specified, sizes and weights of the prefabricated elements with their location on the structure. The solution seeks the best location of a crane from the point of view of the parameters of the crane, scope and height of the lift.

Go to article

Abstract

The introduction of the sustainable development elements in the construction industry leads to finding new ways of using waste minerals that are difficult in storage and recycling. Coal combustion products have been already introduced into building materials as a part of cement or concrete but they have been thought insufficiently compatible with the polymer-cement binders [7]. The paper presents results of the mechanical properties of polymer-cement composites containing two types of mineral additives: waste perlite powder that is generated during the perlite expanding process, and calcium fly ash which is the byproduct of burning coal in conventional furnaces. Mechanical tests of polymer-cement composites modified with wastes were carried out after 28 and 90 days of curing. As a part of preliminary study specific surface area and particle size distribution of mineral wastes were determined.

Go to article

Editorial office

Editor-in-Chief
Henryk Zobel


Deputy Editor-in-Chief
Mariola Książek


Scientific Advisory Committee
:
Andrzej M. Brandt
Werner Brilon (Germany)
Jacek Chróścielewski
Luc Courard (Belgium)
Andrzej Garbacz
Andrzej Garstecki
Wojciech Gilewski
Marian Giżejowski
Oleg Kapliński
Piotr Konderla
Aleksander Kozłowski
Marian Kwietniewski
Zbigniew Młynarek
Andrzej S. Nowak (USA)
Anna Siemińska-Lewandowska
Jan Szwabowski
Waldemar Świdziński
Andrew P. Tarko (USA)
Marian Tracz
Edmundas K. Zavadskas (Lithuania)
Jerzy Ziółko

Secretary
Katarzyna Orzeł

Contact

 

Politechnika Warszawska

Wydział Inżynierii Lądowej

Al. Armii Ludowej 16, 00-637 Warszawa, Polska Pokój 618; Telefon 22 234 62 84

e-mail: ace@il.pw.edu.pl;

website: http://ace.il.pw.edu.pl

 

 

 

Instructions for authors

GUIDELINES FOR AUTHORS

1. Preparation of the paper

General: Author is responsible for the Paper contents including copyrights and text formatting. The manuscript should be written in English. It should be typed using 12 p TNR font with 1.5 line spacing, on single-sided A4 sheets with 2 cm margins. The paper should not exceed 10 pages including tables and figures plus 2 pages of an extended summary (TNR 10 pt. justify align), started from new page at the end of the manuscript. Summary in Polish for Polish natives only, others - summary in English.

The first page and the main text: The first page of the article should contain: (1) the title of the article, (2) the name, academic merits, affiliation and e-mail of each author, (3) the name and the address of the author to whom correspondence, proofs and reprints should be sent, (4) a summary of 50-150 words, (5) a list of key words (not to exceed 8). The main text should be divided into numbered (1, 2, etc.) and titled sections and, if needed, into subsections (1.1, 1.2, ... in Section 1, 2.1, 2.2, ... in Section 2, etc.). The abstract of 50-150 words is required on a separate sheet. Polish natives authors only are requested to enclose Polish translation of the abstract, others - abstract in English.

Tables and figures: Tables and figures should be inserted into the text (black-and-white figures and glossy photographs),numbered consecutively and titled. They should be referred to in the text as Fig. 1, Fig. 2, ..., Table 1, Table 2. A list of figures and tables captions (TNR 11 pt. left align, in Polish - for Polish natives only and in English) should be provided on separate sheet(s) at the end of the manuscript beforean extended summary. Colour figures will be accepted only if the colour is essential for the explanation.

Units and mathematical formulae: SI units and abbreviations are obligatory. Mathematical formulae should be typewritten and centred. The formulae referred to in the text are to be numbered consecutively in each Section, i.e. (1.1), (1.2), ... in Section 1, (2.1), (2.2), ... in Section 2, etc. The numbers should be placed in parentheses ( ) at the left margin. The formulae are to be referred to in the text as Eq. (1.1),, Eq. (1.2), ..., Eq. (2.1), Eq. (2.2), ..., etc. The formulae not referred to in the text should not be numbered.

Bibliography: References are to be listed at the end of the paper in the alphabetical order and consecutively numbered. A reference to a published paper should be referred to in the text by the last name(s) of author(s) and the reference's number in brackets [ ]. Each item should contain full bibliographical data in the format illustrated by the following examples:

[1] M. Abramowitz and I. A. Stegun, Eds. Handbook of Mathematical Functions (Applied Mathematics Series 55). Washington, DC: NBS, 1964, pp. 32-33.

[2] M. Gorkii, “Optimal design”, Dokl. Akad. Nauk SSSR, vol. 12, pp. 111-122, 1961.

(Transl.: in L. Pontryagin, Ed., The Mathematical Theory of Optimal Processes. New York: INTERSCIENCE, 1962, Ch. 2, sec. 3, pp. 127-135).

[3] B. Klaus and P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1986.

[4] E. F. Moore, “Gedanken-experiments on sequential machines”, in Automata Studies

(Ann. of Mathematical Studies, no. 1), C. E. Shannon and J. McCarthy, Eds. Princeton, NJ: Princeton Univ. Press, 1965, pp. 129-153.

[5] R. L. Myer, “Parametric oscillators and nonlinear materials”, in Nonlinear Optics, vol. 4, P. G. Harper and B. S. Wherret, Eds. San Francisco, CA: Academic, 1977, pp. 47-160.

[6] L. Stein, “Random patterns”, in Computers and You, J. S. Brake, Ed. New York: Wiley, 1994, pp. 55-70.

[7] Westinghouse Electric Corporation (Staff of Technology and Science, Aerospace Div.), Integrated Electronic Systems. Englewood Cliffs, NJ: Prentice-Hall, 1970.

[8] G. O. Young, “Synthetic structure of industrial plastics”, in Plastics, vol. 3, Polymers of Hexadromicon, J. Peters, Ed., 2nd ed. New York: McGraw-Hill, 1964, pp. 15-64.

In special cases, other formats related to codes, reports, dissertations, etc. will be accepted.

Layout of the text can be downloaded from ace website: http://ace.il.pw.edu.pl

2. Submission of the paper

Two electronic versions of the manuscript (DOC and PDF file) and License to publish should be submitted and sent directly to the Editor-in-chief by e-mail to: ace@il.pw.edu.pl

Signing license agreement is required.

3. Proof read: Proofs will be sent to the corresponding author to correct any typesetting errors. Alterations to the original manuscript at this stage will not be accepted. Corrected proofs page must be mailed to the Editorial Office as soon as possible.

4. Copyright: Submission of a paper to Archives of Civil Engineering implies that the material is an original and unpublished work, not under consideration for publication elsewhere. If permission for publication of any material is required, it should be obtained from appropriate sources by the author. The corresponding author is responsible for the other authors' approval of the paper publication.

5. Reprints: The corresponding author will receive ten reprints and PDF file of the published paper free of charge.

6. Other information: Apart from research papers, other articles such as review papers, brief notes, discussions and reports may be published in the journal. Monographic papers and state-of-the-art papers are accepted after prior approval of the Editor. Reports on important conferences held in Poland may also be published. Editor decides whether the paper fulfil all requirements i.e. formal and scientific. Editor nominates two reviewers, who shall forward reviews of the accepted publication.

The paper will be published in ACE provided that the reviews are positive. If reviewers have some comments authors have to correct the paper. Papers are subject to open discussion. All letters should be addressed to the Editorial Office and will be published together with the authors' response.

7. Fees: Submission of the paper is free of charge. Submitted papers are accepted for publication after a positive opinion of two independent reviewers. When publication accepted Author will be informed by email about article processing charge incl. amount and payment deadline. ACE is non for profit and all fees are calculated to cover operational costs only. Payment is required to the following bank account:

OFICYNA WYDAWNICZA POLITECHNIKI WARSZAWSKIEJ

ul. Polna 50, 00-644 WARSAW

PKO IV Department in WARSAW

Number: PL 84 1240 1053 1111 0000 0500 5707

with annotation: "Author(s) name and surname, ACE"

This page uses 'cookies'. Learn more