This paper presents a three-dimensional model of an airbag located outside of a small city car at the front bumper, which is intended to protect the vehicle against the effects of road traffic collisions. Results of numerical simulations of airbag operation in case of collision with two types of obstacles are presented: a flat, vertical wall and a circular pillar with a diameter of 200 mm. The paper presents the physical model, which is the subject of simulation, along with its mathematical description and the numerical calculation scheme used.
The beam elements, which are widely used in the absolute nodal coordinate formulation (ANCF) can be treated as isoparametric elements, and by analogy to the classical finite element analysis (FEA) are integrated with standard, spatial Gauss-Legendre quadratures. For this reason, the shape of the ANCF beam cross section is restricted only to the shape of rectangle. In this paper, a distinct method of integration of ANCF elements based on continuum mechanics approach is presented. This method allows for efficient analysis of the ANCF beam elements with circular cross section. The integration of element vectors and matrices is performed by separation of the quadrature into the part that integrate along beam axis and the part that integrate in the beam cross section. Then, an alternative quadrature is used to integrate in the circular shape of the cross section. Since the number of integration points in the alternative quadrature corresponds to the number of points in the standard Gaussian quadrature the change in the shape of the cross section does not affects negatively the element efficiency. The presented method was verified using selected numerical tests. They show good relatively agreement with the reference results. Apart from the analysis of the beams with the circular cross section, a possibility of further modifications in the methods of the element integration is also discussed. Due to the fact that locking influence on the convergence of the element is also observed, the methods of locking elimination in the proposed elements are also considered in the paper.
In the paper, the author presents the application of thermography method for investigation of elastic-plastic states in two-dimensional models. The experimental testing was carried out on the duralumin elements with different stress concentrators loaded by uniformly distributed tensile stresses. The changes of temperature distribution on the surface of the models during loading process were recorded by a thermovision camera. On the basis of calibrating test carried out on the stretched element, the relationship between loading, temperature increment and specimen elongation was determined. Quantitative temperature distribution in chosen cross-sections of the models was determined using thermograms received for various levels of loading. On the basis of the obtained results, the author estimated the accuracy of the method as well as its usability for investigation of the plastic zones' localization and propagation.
The machining technology of electrochemical micromachining with ultra short voltage pulses (μPECM) is based on the already well-established fundamentals of common electrochemical manufacturing technologies. The enormous advantage of the highest manufacturing precision underlies the fact of the extremely small working gaps achievable through ultra short voltage pulses in nanosecond duration. This describes the main difference with common electrochemical technologies. With the theoretical resolution of 10 nm, this technology enables high precision manufacturing.
The paper presents the results of research on low cycle properties of high-chromium martensitic GX12CrMoVNbN9-l (GP91) cast steel. The tests of fatigue strength were carried out at two temperatures: room temperature and at 600 degrees centigrade. At both temperatures the occurrence of cyclic softening of the cast steel was observed, revealing no clear stabilization period. Moreover, it has been proved that the fatigue life is influenced by the temperature which depends on the level of strain. The greatest influence was observed for the smallest strain levels applied in the research.
The aim of this paper is to analyze various CO2 compression processes for post-combustion CO2 capture applications for 900 MW pulverized coal-fired power plant. Different thermodynamically feasible CO2 compression systems will be identified and their energy consumption quantified. A detailed thermodynamic analysis examines methods used to minimize the power penalty to the producer through integrated, low-power compression concepts. The goal of the present research is to reduce this penalty through an analysis of different compression concepts, and a possibility of capturing the heat of compression and converting it to useful energy for use elsewhere in the plant.
This numerical research is devoted to introducing the concept of helical cone coils and comparing the performance of helical cone coils as heat exchangers to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil. This vortex, known as the Dean Vortex, is a secondary flow superimposed on the primary flow. The Dean number, which is a dimensionless number used in describing the Dean Vortex, is a function of Reynolds Number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean Number. Numerical investigation based on the commercial CFD software fluent is used to study the effect of changing the structural parameters (taper angle of the helical coil, pitch and the base radius of curvature changes while the height is kept constant) on the Nusselt Number, heat transfer coefficient and coil outlet temperature. Six main coils having pipe diameters of 10 and 12.5 mm and base radius of curvature of 70, 80 and 90 mm were used in the investigation. It was found that, as the taper angle increases, both Nusselt Number and the heat transfer coefficient increase, also the pitch at the various taper angles was found to have an influence on Nusselt Number and the heat transfer coefficient. A MATLAB code was built to calculate the Nusselt Number at each coil turn, then to calculate the average Nusselt number for all of the coil turns. The MATLAB code was based on empirical correlation of Manlapaz and Churchill for ordinary helical coils. The CFD simulation results were found acceptable when compared with the MATLAB results.
Editor-in-Chief
Prof. Marek Wojtyra, Warsaw University of Technology, Poland
Editorial Board
Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland
Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland
Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany
Prof. Peter Eberhard, University of Stuttgart, Germany
Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada
Prof. Janusz Frączek, Warsaw University of Technology, Poland
Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland
Prof. Andrzej J. Nowak, Silesian University of Technology, Poland
Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom
Prof. Jerzy Sąsiadek, Carleton University, Canada
Prof. Jacek Szumbarski, Warsaw University of Technology, Poland
Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland
Prof. Günter Wozniak, Chemnitz University of Technology, Germany
Assistant to the Editor
Małgorzata Broszkiewicz, Warsaw University of Technology, Poland
Editorial Advisory Board
Prof. Alberto Carpinteri, Politecnico di Torino, Italy
Prof. Fernand Ellyin, University of Alberta, Canada
Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China
Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece
Prof. Gregory Glinka, University of Waterloo, Ontario, Canada
Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania
Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal
Prof. Andrzej Neimitz, Kielce University of Technology, Poland
Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France
Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France
Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France
Prof. Jan Ryś, Cracow University of Technology, Poland
Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,
Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland
Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland
Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany
Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland
Language Editor
Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
ARCHIVE OF MECHANICAL ENGINEERING
Editorial Office:
Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology
Nowowiejska 24, Room 132, 00-665 Warsaw, Poland
Phone: (+48) 22 234 7448, fax: (+48) 22 628 25 87,
E-mail: ame.eo@meil.pw.edu.pl
About the Journal
Archive of Mechanical
Engineering is an international journal publishing works of wide
significance, originality and relevance in most branches of mechanical
engineering. The journal is peer-reviewed and is published both in
electronic and printed form. Archive of Mechanical Engineering
publishes original papers which have not been previously published in
other journal, and are not being prepared for publication elsewhere. The
publisher will not be held legally responsible should there be any
claims for compensation. The journal accepts papers in English.
Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.
Original high quality papers on the following topics are preferred:
All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame
More detailed instructions for Authors can be found there.