Applied sciences

Archives of Thermodynamics


Archives of Thermodynamics | 2011 | No 4 December |

Download PDF Download RIS Download Bibtex


The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Go to article

Authors and Affiliations

Piotr Krawczyk
Krzysztof Badyda
Download PDF Download RIS Download Bibtex


The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
Go to article

Authors and Affiliations

Dawid Taler
Adam Sury
Download PDF Download RIS Download Bibtex


Photovoltaic cells have been used for a long time to supply the electrical devices of small power in areas without access to the electricity networks (or other sources of electric energy). The ecological aspect of the use of the renewable energy sources, together with the technology development and increasingly lower costs of production the photovoltaic cells, cause the increase of their application. The solar power plants are built in several places in the world, not necessarily in the areas of high light intensity. Nowadays, such developments mostly depend on the wealth of a particular country. The largest photovoltaic power stations have power of a several dozen of MW. The major disadvantage of the photovoltaic cells is that the energy production is possible only during the day. This causes a necessity of energy accumulation in large photovoltaic systems. One possibility of storing large amounts of energy gives a hydrogen fuel, generated in the electrolysers powered directly from photovoltaic cells. Hydrogen, stored in pressure tanks or in tanks with synthetic porous materials, can be again used to produce electricity in fuel cells. This paper introduces selected issues and test results associated with the use of photovoltaic cells to power the hydrogen generators. The possible connections of photovoltaic modules integrated with electrolysers were analyzed. In this article the results of the electricity daily production by polycrystalline photovoltaic cells, collected in the course of the entire year were also presented.
Go to article

Authors and Affiliations

Daniel Węcel
Włodzimierz Ogulewicz
Download PDF Download RIS Download Bibtex


Under steady-state conditions when fluid temperature is constant, temperature measurement can be accomplished with high degree of accuracy owing to the absence of damping and time lag. However, when fluid temperature varies rapidly, for example, during start-up, appreciable differences occur between the actual and measured fluid temperature. These differences occur because it takes time for heat to transfer through the heavy thermometer pocket to the thermocouple. In this paper, a method for determinig transient fluid temperature based on the first-order thermometer model is presented. Fluid temperature is determined using a thermometer, which is suddenly immersed into boiling water. Next, the time constant is defined as a function of fluid velocity for four sheated thermocouples with different diameters. To demonstrate the applicability of the presented method to actual data where air velocity varies, the temperature of air is estimated based on measurements carried out by three thermocouples with different outer diameters. Lastly, the time constant is presented as a function of fluid velocity and outer diameter of thermocouple.
Go to article

Authors and Affiliations

Magdalena Jaremkiewicz
Download PDF Download RIS Download Bibtex


Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.
Go to article

Authors and Affiliations

Tomasz Bury
Download PDF Download RIS Download Bibtex


This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.
Go to article

Authors and Affiliations

Janusz Kotowicz
Henryk Łukowicz
Łukasz Bartela
Sebastian Michalski
Download PDF Download RIS Download Bibtex


Secure and cost-effective power generation has become very important nowdays. Care must be taken while designing and operating modern steam power plants. There are regulations such as German boiler regulations (Technische Regeln für Dampfkessel 301) or European Standards that guide the user how to operate the steam power plants. However, those regulations are based on the quasi-steady state assumption and one dimensional temperature distribution in the entire element. This simplifications may not guarantee that the heating and cooling operations are conducted in the most efficient way. Thus, it was important to find an improved method that can allow to establish optimum parameters for heating and cooling operations. The optimum parameters should guarantee that the maximum total stresses in the construction element are in the allowable limits and the entire process is conducted in the shortest time. This paper summarizes mathematical descriptions how to optimize shut down process of power block devices. The optimization formulation is based on the assumption that the maximum total stresses in the whole construction element should be kept within allowable limits during cooling operation. Additionally, the operation should be processed in the shortest time possible.
Go to article

Authors and Affiliations

Dariusz Rząsa
Piotr Duda
Download PDF Download RIS Download Bibtex


In recent years, we can observe the development of the thermal diagnosis and operating control systems based on measuring techniques and mathematical modelling of processes improvement. Evaluation of the actual operating state is insufficient to make an optimal operating decisions. Thus, information about the influence of the operating parameters' deviations from the reference state on indicators describing energy consumption of the process (for example specific heat consumption or specific energy consumption) is also necessary. The paper presents methods for generation the information about the influence of the steam-water cycle operating parameters on specific heat consumption in a turbine's cycle. A mathematical model of steam-water cycle for a CHP (Cogeneration - also Combined Heat and Power) unit is being worked out. Methods for calculation of operating deviations with the application of correction curves and a mathematical model are described. Exemplary calculation results are presented.
Go to article

Authors and Affiliations

Henryk Rusinowski
Grzegorz Szapajko

Editorial office

Honorary Editor
Wiesław Gogół, Warsaw University of Technology, Poland
Jarosław Mikielewicz, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Dariusz Mikielewicz, Gdansk University of Technology, Poland

Deputy Editors
Piotr Lampart, The Szewalski Institute of Fluid Flow Machinery PAS, Poland
Marian Trela, The Szewalski Institute of Fluid Flow Machinery PAS, Poland

Members of Editorial Commitee
Roman Domanski, Warsaw University of Technology, Poland
Andrzej Ziębik, Technical University of Silesia, Poland
Ryszard Białecki, Silesian University of Technology, Poland

Managing Editor
Jarosław Frączak, The Szewalski Institute of Fluid Flow Machinery PAS, Poland

International Advisory Board
J. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University,  Durham, USA
W. Blasiak, Royal Institute of Technology,  Stockholm, Sweden
G. P. Celata, ENEA,  Rome, Italy
M. W. Collins, South Bank University,  London, UK
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
D. Jackson, University of Manchester, UK
S. Michaelides, University of North Texas, Denton, USA
M. Moran, Ohio State University,  Columbus, USA
W. Muschik, Technische Universität, Berlin, Germany
I. Müller, Technische Universität, Berlin, Germany
V. E. Nakoryakov, Institute of Thermophysics, Novosibirsk, Russia
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
M.R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA


Wydawnictwo IMP

The Szewalski Institute of Fluid Flow Machinery PAS

Fiszera 14, 80-952 Gdańsk, Poland

telephone: +48 58 5225 141, fax: +48 58 3416 144




Instructions for authors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The language of the papers is English. No paper should exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please show the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Summary and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should expressed in SI units.

3. The equations should be each in a separate line. The numbers of the equations should run on, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the right-hand side of the page.
4. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa ) should be avoided wherever possible.

5. Computer-generated figures should be produced using pretty bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only, the relevant explanations given below in the caption.
6. The figures, including photographs, diagrams etc., should be numbered with Arabic numerals in the same order in which they appear in the text.

7. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a Word file – ¤:doc or LATEX file –¤:tex.
8. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:
(a) for books: the publishing house and the place and year of publication, for example:
`1` Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.
(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example: 
`2` Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction.
AIAA Journal 8(1970), No. 11, 2004–2009.
9. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.

This page uses 'cookies'. Learn more