Applied sciences

Bulletin of the Polish Academy of Sciences: Technical Sciences

Content

Bulletin of the Polish Academy of Sciences: Technical Sciences | 2005 | vol. 53 | No 2 |

Abstract

In this paper the overview of the recent study on the rare-earth activated waveguides performed in the Optoelectronic Department of IMiO is presented. We reported on the development of rare earth-doped fluorozirconate (ZBLAN) glass fibers that allow a construction of a new family of visible and ultraviolet fiber lasers pumped by upconversion. Especially the performance of holmium devices is presented. The properties of laser planar waveguides obtained by the LPE process and the growth conditions of rare earths doped YAG layers are presented. In this paper we present also the theoretical study of the nonlinear operation of planar waveguide laser, as an example the microdisk Nd:YAG structure is discussed. We derived an approximate formula which relates the small signal gain in the Nd:YAG active medium and the laser characteristics, obtained for whispering-gallery modes and radial modes, to the output power and real parameters of the laser structure

Go to article

Abstract

The paper describes the research on soft X-ray lasers with an active medium created using a gas puff target irradiated

with high-intensity laser pulses. The gas puff target in a form of an elongated gas sheet is produced by pulsed injection of

gas through a slit nozzle using a high-pressure electromagnetic valve. The method of generation of soft X-ray lasers using a

laser-irradiated gas puff target has been developed at the Institute of Optoelectronics. The collaborative experiments were

performed at various laser laboratories using high-intensity laser systems to irradiate the gas puff target and pump the X-ray

laser active medium. Results of these experiments are presented and discussed. Works aimed at increasing the efficiency of

X-ray lasers using a longitudinally irradiated gas puff target are also reviewed.

Go to article

Abstract

Strained layer InGaAs/GaAs SCH SQW (Separate Confinement Heterostructure Single Quantum Well) lasers were

grown by Molecular Beam Epitaxy (MBE). Highly reliable CW (continuous wave) 980-nm, broad contact, pump lasers were

fabricated in stripe geometry using Schottky isolation and ridge waveguide construction. Threshold current densities of the

order of Jth ≈ 280 A/cm2 (for the resonator length L = 700 um) and differential efficiency η= 0.40 W/A (41%) from one

mirror were obtained. The record wall-plug efficiency for AR/HR coated devices was equal to 54%. Theoretical estimations

of above parameters, obtained by numerical modelling of devices were Jth ≈ 210 A/cm and η = 0.47 W/A from one mirror,

respectively. Degradation studies revealed that uncoated and AR/HR coated devices did not show any appreciable degradation

after 1500 hrs of CW operation at 35oC heat sink temperature at the constant optical power (50 mW) conditions.

Go to article

Abstract

The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control, diagnostic and telemetric system for a large industrial object. An example of system implementation is the European TESLA-XFEL accelerator. The free electron laser is expected to work in the VUV region now and in the range of X-rays in the future. The design of a system based on the FPGA circuits and multi-gigabit optical network is discussed. The system design approach is fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of DSP/PC enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. The current parameters of the system model, under the design, are presented. The considerations are shown on the background of the system application in the hostile industrial environment. The work is a digest of a few development threads of the hybrid, optoelectronic, telemetric networks (HOTN). In particular, the outline of construction theory of HOTN node was presented as well as the technology of complex, modular, multilayer HOTN system PCBs. The PCBs contain critical sub-systems of the node and the network. The presented exemplary sub-systems are: fast optical data transmission of 2.5 Gbit/s, 3.125 Gbit/s and 10 Gbit/s; fast A/C and C/A multichannel data conversion managed by FPGA chip (40 MHz, 65 MHz, 105 MHz), data and functionality concentration, integration of floating point calculations in the DSP units of FPGA circuit, using now discrete and next integrated PC chip with embedded OS; optical distributed timing system of phase reference; and 1GbEth video interface (over UTP or FX) for CCD telemetry and monitoring. The data and functions concentration in the HOTN node is necessary to make efficient use of the multigigabit optical fiber transmission and increasing the processing power of the FPGA/DSP/PC chips with optical I/O interfaces. The experiences with the development of the new generation of HOTN node based on the new technologies of data and functions concentration are extremely promising, because such systems are less expensive and require less labour.

Go to article

Abstract

In the paper recent progress at VIGO/MUT (Military University of Technology) MOCVD Laboratory in the growth of Hg1-xCdxTe (HgCdTe) multilayer heterostructures on GaAs/CdTe substrates is presented. The optimum conditions for the growth of single layers and complex multilayer heterostructures have been established. One of the crucial stages of HgCdTe epitaxy is CdTe nucleation on GaAs substrate. Successful composite substrates have been obtained with suitable substrate preparation, liner and susceptor treatment, proper control of background fluxes and appropriate nucleation conditions. The other critical stage is the interdiused multilayer process (IMP). The growth of device-quality HgCdTe heterostructures requires complete homogenization of CdTe-HgTe pairs preserving at the same time suitable sharpness of composition and doping profiles. This requires for IMP pairs to be very thin and grown in a short time.

Arsenic and iodine have been used for acceptor and donor doping. Suitable growth conditions and post growth anneal is essential for stable and reproducible doping. In situ anneal seems to be sufficient for iodine doping at any required level. In contrast, efficient As doping with near 100% activation requires ex situ anneal at near saturated mercury vapours. As a result we are able to grow multilayer fully doped (100) and (111) heterostructures for various infrared devices including photoconductors, photoelectromagnetic and photovoltaic detectors. The present generation of uncooled long wavelength infrared devices is based on multijunction photovoltaic devices. The technology steps in fabrication of devices are described. It is shown that near-BLIP performance is possible to achieve at ≈ 230 K with optical immersion. These devices are especially promising as 7.8–9.5 um detectors, indicating the potential for achieving detectivities above 109 cmHz1/2/W.

Go to article

Abstract

In recent years organic semiconductors have been given attention in the field of active materials for gas sensor applications. In the paper the investigations of the optoelectronic sensor structure of ammonia were presented. The sensor head consists of polyaniline and Nafion layers deposited on the face of the telecommunication optical fiber. The elaborated sensor structure in the form of Fabry-Perot interferometer is of the extremely small dimension – its thickness is of the order of 1 um. Many sensor structures of diffierent combinations of the polyaniline and Nafion layers were constructed and investigated. The optimal solution seems to be the structures with small number of polianiline layers (up to three).

Go to article

Abstract

Thin film solar cells based on multinary compound Cu(In,Ga)Se2 show record photovoltaic conversion efficiency approaching 20%. Investigation on defect physics in this compound is crucial for making further progress in the technology. In this work we present the results on photocapacitance (PC) and deep level optical spectroscopy (DLOS) for two types of cells – high efficiency Cu(In,Ga)Se2 cell with about 20% of gallium and pure gallium CuGaSe2 device. We show that PC and DLOS, employed as the techniques complimentary to deep level transient spectroscopy DLTS and admittance spectroscopy, are useful methods in providing information on defect levels in solar cells. In particular they are helpful in diffierentiating between levels belonging to the bulk of absorber and to the interface states. We tentatively assign some of the observed deep levels to InCu or GaCu antisites and Cu interstitials.

Go to article

Abstract

Two constructions of microfluidic structures are described in this paper. A fibre optic microcell for spectrophometric measurements and a microcell for fluorescence experiments were designed and tested. The structures were made of polymer optical fibres which were incorporated into polymeric material i.e. poly(dimethylsiloxane). The structures were tested as detectors in absorbance measurement (solutions of bromothymol blue with diffierent pH were used) and in fluorescence tests (solution of fluoresceine was used).

Go to article

Abstract

The double barrier separate confinement heterostructure (DBSCH) design aimed at reduction of vertical beam divergence and increase of catastrophic optical damage (COD) level for high power laser diodes (LDs) operation is presented. Insertion of thin, wide-gap barrier layers at the interfaces between waveguide and cladding layers of SCH gives an additional degree of freedom in design making possible more precise shaping of the optical field distribution in the laser cavity. By comparison with the large optical cavity (LOC) heterostructure design it has been shown that the low beam divergence emission of DBSCH LDs can be attributed to the soft-profiled field distribution inside the cavity. This ‘soft mode profile’ seems to determine narrow laser beam emission rather than the field distribution width itself.

The potential problem with the soft-profiled but relatively narrow (at half-maximum) mode distribution is a lower COD level. Widening of the mode profile by the heterostructure design corrections can increase it, but care must be taken to avoid excessive decrease of confinement factor (Γ). As a result it is shown that DBSCH design is possible, where the low beam divergence and high COD level is achieved simultaneously.

Wide stripe gain-guided LDs based on GaAsP/AlGaAs DBSCH SQW structures have been manufactured according to the design above. Gaussian-shaped narrow directional characteristics are in relatively good agreement with modelling predictions. Vertical beam divergences are 13–15o and 17–18o FWHM for design versions experimentally investigated. Threshold current densities of the order of 350–270 Acm-2 and slope efficiencies of 0.95 and 1.15 W/A have been recorded for these two versions, respectively. Optical power at the level of 1 W has been achieved. The version with lower beam divergence proves to be more durable. Higher optical power levels are to be obtained after heterostructure doping optimisation.

Go to article

Editorial office

Editor-in-Chief:

T. Kaczorek, Warsaw University of Technology

Deputy Editor-in Chief:

M. Kaźmierkowski, Warsaw University of Technology

A. Rogalski, Division IV Technical Sciences PAN

Board of Co-editors:

Artificial and Computational Intelligence

S. Osowski and B. Sawicki, Warsaw University of Technology

Biomedical Engineering and Biotechnology

A. Liebert and R. Maniewski, Institute of Biocybernetics and Biomedical Engineering PAN

Civil Engineering

L. Czarnecki, Building Research Institute, ITB, Warsaw

Control, Robotics and Informatics

J. Klamka and A. Babiarz, Silesian Technical University

A. Borkowski, Institute of Fundamental Technological Research PAN

Electronics, Telecommunication and Optoelectronics

M. Mrozowski and A. Lamęcki, Gdansk University of Technology

W. Woliński, Warsaw University of Technology

Mechanical and Aeronautical Engineering, Thermodynamics

A. Styczek and A. Tylikowski, Warsaw University of Technology

Materials Science and Nanotechnology

B. Major and P. Czaja, Institute of Metallurgy and Materials Science PAN

T.A. Kowalewski and B. Blachowski, Institute of Fundamental Technological Research PAN

Power Systems and Power Electronics

M.P. Kazmierkowski, Warsaw University of Technology

International Editorial Advisory Board

I.V. Alexandrov, Ufa State Aviation Technical University, Russia

R. Asthana, University of Wiscontin-Stout, Menomonie, USA

Xu Binshi, China Association of Plant Engineering, Beijing, P.R. China

F. Blaabjerg, Aalborg University, Denmark

C. Cecati, University of L’Aquila, Italy

A. Cichocki, RIKEN Institute, Tokyo, Japan

M. David, National Polytechnique de Toulouse, France

R. Ebner, Materials Centre Leoben, Leoben, Austria

E. Fornasini, University of Padova, Padova, Italy

L.G. Franquelo, University of Sevilla, Spain

M. Gad-el-Hak, Virginia Commonwealth University, Richmond, USA

D. van Gemert, Catholic University Leuven, KU Leuven, Belgium

L. Keviczky, Hungarian Academy of Sciences, Budapest, Hungary

V. Kučera, Czech Technical University in Prague, Prague, Czech Republic

R. Kennel, Technical University Munich, Germany

E. Levi, Liverpool John Moore University, UK

G. Maier, Technical University of Milan, Milan, Italy

K.F. Man, City University of Hong Kong,

H.A. Mang, Austrian Academy of Sciences, Vienna, Austria

H. Mihashi, Tohoku University, Aoba-ku, Sendai, Japan

S. Mindess, University of British Columbia, Vancouver, Canada

D.A. Mlynski, University of Karlsruhe, Karlsruhe, Germany

A.S. Nowak, University of Michigan, Ann Arbor, USA

K. Ohnishi, Keio University, Yokohama, Japan

A. Öberg, Linköping University, Linköping, Sweden

W. Pedrycz, University of Alberta, Canada

S. Przemieniecki, University of South Florida, Tampa, USA

M. Razeghi, Northwestern University, Evanston, USA

J. Rodriguez, Technical University of Federico Santa Maria, Valparaiso, Chile

J.V. Sloten, Catholic University Leuven, Leuven, Belgium

B.M. Wilamowski, University of Auburn, Alabama, USA

W. Włosiński, Warsaw University of Technology, Warsaw, Poland

A.L. Yarin, Institute of Illinois at Chicago, USA

Du Xiangwan, Chinese Academy of Engineering, China

J. Żurada, Department of Computer Engineering, University of Louisville, USA

Contact

Editorial Office:

Pałac Kultury i Nauki

Wydział IV Nauk Technicznych PAN

Pl. Defilad 1

PL 00-901 Warszawa

Mrs Ewa Trojanowska

bulletinpas.et@gmail.com

Instructions for authors

Instructions for Authors

About the Journal

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull. Pol. Ac.: Tech.) is published by the Division IV: Engineering Sciences of the Polish Academy of Sciences. The journal is peer‐reviewed and is published both in printed and electronic form (http://www.czasopisma.pan.pl/bpas). It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:

• Artificial and Computational Intelligence,

• Biomedical Engineering and Biotechnology,

• Civil Engineering,

• Control, Informatics and Robotics,

• Electronics, Telecommunication and Optoelectronics,

• Mechanical and Aeronautical Engineering, Thermodynamics,

• Material Science and Nanotechnology,

• Power Systems and Power Electronics.

General data:

Format of the journal – A4 printed and electronic form,

Paper type – offset

Colourfulness – full colour at an extra charge,

The volume of the journal – 200 pages (ca 20 papers) + 4 cover pages,

Frequency of publication – bimonthly,

ISSN: 0239-7528 (print version),

ISSN: 2300-1917 (on line version),

DOI: 10.2478/bpasts

Abbreviations/Acronym:

Journal citation: Bull. Pol. Ac.: Tech.

ISO: Bull. Pol. Acad. Sci.-Tech. Sci.,

JCR Abbrev: B POL ACAD SCI-TECH

Acronym in the Editorial System: BPASTS

Journal Metrics:

JCR Impact Factor 2017: 1.361

5 Year Impact Factor 2017: 1.323

SCImago Journal Rank (SJR) 2015: 0.526

Source Normalized Impact per Paper (SNIP) 2015: 1.208

Impact per Publication (IPP) 2015: 1.158

The Polish Ministry of Science and Higher Education 2017: 25 points

Manuscript types:

Invited reviews presenting the state of the knowledge and/or devoted to novel topics,

• Refereed research papers reporting on original scientific or technological achievements,

• Refereed papers in special issues/sections serving as conference proceedings arranged by guest editors.

Special Section Policy

Proposals of original Special Sections within the scope of the Journal may be submitted to the Editorial Office. Special Section submission rules are described in detail at: Edytorial Systems

Guest Editor form needed for submitting a Special Section proposal: Edytorial systems

Manuscript Submission Policy

All manuscripts submitted for publication should be original. Manuscripts published or under consideration for publication elsewhere should not be submitted and will not be considered. Submission of a paper implies that it has not been published previously, that it is not under consideration for publication elsewhere, and that if accepted it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher.

However, manuscripts based on papers published at related conferences and workshops proceedings may be submitted for consideration provided that: (1) the papers are not identical (similarity index must be below 50%), (2) the authors cite their earlier conference paper on which this new work is based, (3) the journal publication includes clearly shown novel elements (e.g., more comprehensive experiments).

Manuscript submission for review

The Bull. Pol. Ac.: Tech now employs a Web-based manuscript submission and peer-review tracking system called Editorial System. Authors must submit their manuscript electronically on the web: http://www.editorialsystem.com/bpasts/.

From this entry page, access can be obtained to all information required for the submission of a manuscript. First‐time users must create an Author’s account to obtain a user ID and password required to enter the system. All manuscripts receive individual identification codes that should be used in any correspondence with regard to the publication process. For the authors already registered in the Editorial System it is enough to enter their username and password to login as an author (Sign in).

Author(s) will be notified about registration and manuscript review process by e-mail.

The manuscripts must be uploaded as a single PDF file.

If you experience difficulties with the manuscript submission website, please contact the Copy Editor of the Bull. Pol. Ac.: Tech (Anna Jurkiewicz: bulletinPAS@gmail.com).Names of authors and their affiliation should be removed from the manuscripts for the review process in order to have a fair evaluation of their manuscript. All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf in all matters pertaining to publication. The Corresponding Author is responsible for informing the coauthors of the manuscript status throughout the submission, review, and production process. All submitted papers are checked using iThenticate plagiarism detection software.

Manuscript preparation

1. The manuscript should be written in clear and concise English.

2. For manuscript preparation please use the attached Word or LaTeX template.

3. Please remember that in the .pdf version of the manuscript for evaluation process author(s) name(s) and affiliation should be removed.

4. Authors should consult a recent issue of the journal for style if possible.

Manuscript decision and Proofs

Manuscript evaluations are assigned one of four outcomes: Accept, Minor Revisions, Major Revisions, and Reject. Manuscripts with "Minor Revision" do not require a second review. All manuscripts receiving a "Major Revision" evaluation must be subjected to a second review. Rejected manuscripts are given no further consideration. Normally, manuscripts that receive a "Major Revision" decision have only one additional chance for revision and the revised version should be uploaded to the Editorial System within six weeks. If the author(s) failed to make satisfactory changes, the manuscript is rejected. On acceptance, manuscripts are subject to editorial amendment to suit house style.

Transfer of Copyright Agreement

Once the paper is initially accepted, the authors are assumed to have transferred the copyright of the paper to the publisher. Please fill the attached Form, sign, and add to the final version of the manuscript as separate .pdf file.

It is also available on the webpage

https://www.editorialsystem.com/files/bpasts/docs/BPASTS_License_to_publish.pdf.

Proofs will be sent to the author (first named author if no corresponding author is identified for multi-authored papers) and should be returned within 48 hours of receipt.

Fees for printing the article

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull. Pol. Ac.: Tech.) is published in Open Access, which means that all papers are available on the internet to all users immediately upon publication free of charge for the readers. By submitting a paper for publication, authors declare that they are ready to cover the costs of printing their paper. In exchange for a fee for printing, the PDF file of published paper is available at the Open Access platform: http://www.degruyter.com/view/j/bpasts

National (foreign) authors:

• The flat fee of 1230 PLN (approximately 300 EUR) per paper

Exempt from the fee are:

• Authors of articles ordered by the Editorial Board (Invited papers)

50% discount for:

• Reviewers (who performed at least 5 reviews per year) – one paper per year

• Guest Editors (the discount is valid only within the special section guest-edited by the author)

Mandatory over-length charges of 200 PLN (approximately 50 EUR) per page

in case the paper exceeds

• 8 printed double-column pages for regular research papers,

• 8 printed double-column pages for Special issue/section papers,

• No limit for invited (review) papers.

In addition, each color page will be charged an additional fee according to the current cost of printing. Otherwise, the paper will be printed in black-white.

Information needed for Proforma Invoice

1. Author’s/Authors’ Last name(s), Name(s), e-mail

2. Title of the paper

3. Exact name of the payer (person / institution or other legal entity realizing the transfer)

4. Address of the payer

5. Taxpayer Identification Number (TIN, in Polish NIP) – only when paid by an institution or another legal entity!

Check list for final submission to the Bull. Pol. Ac.: Tech (after review)

1. Is your manuscript up to date? Did you include references, which were published while your manuscript was being processed? It is expected that at least 20% of references are to journal papers published in the last two years. Authors are welcome to consider reference papers published in the Bull. Pol. Ac.: Tech. In order to find the recent Bull. Pol. Ac.: Tech. papers please visit Open Access platform: http://www.czasopisma.pan.pl/dlibra/journal/95347

2. Is your title adequate and is your abstract correctly written? In the age of electronic publications it is not easy to be noticed! Authors have to do everything possible so the paper will be seen and read. Therefore, very careful wording should be used in the title and in the abstract. Without a proper and interesting title and abstract a great paper might never be downloaded from the de Gruyter platform http://www.czasopisma.pan.pl/dlibra/journal/95347 and read.

3. Does the manuscript clearly describe problem(s) and your accomplishments? Can your manuscript be shortened? Are there sentences or paragraphs that do not provide important information and can be eliminated?

4. Is the length of your manuscript adequate? Please notice that for long papers, you may face mandatory over length charges per page.

5. Please make sure that the fee for printing your manuscript is paid.

Open Access policy

Bulletin of the Polish Academy of Sciences: Technical Sciences jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Bulletin of the Polish Academy of Sciences: Technical Sciences is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0.

This page uses 'cookies'. Learn more